1
|
Nikitovic D, Kukovyakina E, Berdiaki A, Tzanakakis A, Luss A, Vlaskina E, Yagolovich A, Tsatsakis A, Kuskov A. Enhancing Tumor Targeted Therapy: The Role of iRGD Peptide in Advanced Drug Delivery Systems. Cancers (Basel) 2024; 16:3768. [PMID: 39594723 PMCID: PMC11592346 DOI: 10.3390/cancers16223768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Chemotherapy remains the primary therapeutic approach in treating cancer. The tumor microenvironment (TME) is the complex network surrounding tumor cells, comprising various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as ECM components, blood vessels, and signaling molecules. The often stiff and dense network of the TME interacts dynamically with tumor cells, influencing cancer growth, immune response, metastasis, and resistance to therapy. The effectiveness of the treatment of solid tumors is frequently reduced due to the poor penetration of the drug, which leads to attaining concentrations below the therapeutic levels at the site. Cell-penetrating peptides (CPPs) present a promising approach that improves the internalization of therapeutic agents. CPPs, which are short amino acid sequences, exhibit a high ability to pass cell membranes, enabling them to deliver drugs efficiently with minimal toxicity. Specifically, the iRGD peptide, a member of CPPs, is notable for its capacity to deeply penetrate tumor tissues by binding simultaneously integrins ανβ3/ανβ5 and neuropilin receptors. Indeed, ανβ3/ανβ5 integrins are characteristically expressed by tumor cells, which allows the iRGD peptide to home onto tumor cells. Notably, the respective dual-receptor targeting mechanism considerably increases the permeability of blood vessels in tumors, enabling an efficient delivery of co-administered drugs or nanoparticles into the tumor mass. Therefore, the iRGD peptide facilitates deeper drug penetration and improves the efficacy of co-administered therapies. Distinctively, we will focus on the iRGD mechanism of action, drug delivery systems and their application, and deliberate future perspectives in developing iRGD-conjugated therapeutics. In summary, this review discusses the potential of iRGD in overcoming barriers to drug delivery in cancer to maximize treatment efficiency while minimizing side effects.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Ekaterina Kukovyakina
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Alexandros Tzanakakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Anna Luss
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Elizaveta Vlaskina
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Anne Yagolovich
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Aristides Tsatsakis
- Forensic Medicine Department, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| |
Collapse
|
2
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
3
|
Ryan B, Marioni RE, Simpson TI. Multi-Omic Graph Diagnosis (MOGDx): a data integration tool to perform classification tasks for heterogeneous diseases. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae523. [PMID: 39177104 PMCID: PMC11374023 DOI: 10.1093/bioinformatics/btae523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
MOTIVATION Heterogeneity in human diseases presents challenges in diagnosis and treatments due to the broad range of manifestations and symptoms. With the rapid development of labelled multi-omic data, integrative machine learning methods have achieved breakthroughs in treatments by redefining these diseases at a more granular level. These approaches often have limitations in scalability, oversimplification, and handling of missing data. RESULTS In this study, we introduce Multi-Omic Graph Diagnosis (MOGDx), a flexible command line tool for the integration of multi-omic data to perform classification tasks for heterogeneous diseases. MOGDx has a network taxonomy. It fuses patient similarity networks, augments this integrated network with a reduced vector representation of genomic data and performs classification using a graph convolutional network. MOGDx was evaluated on three datasets from the cancer genome atlas for breast invasive carcinoma, kidney cancer, and low grade glioma. MOGDx demonstrated state-of-the-art performance and an ability to identify relevant multi-omic markers in each task. It integrated more genomic measures with greater patient coverage compared to other network integrative methods. Overall, MOGDx is a promising tool for integrating multi-omic data, classifying heterogeneous diseases, and aiding interpretation of genomic marker data. AVAILABILITY AND IMPLEMENTATION MOGDx source code is available from https://github.com/biomedicalinformaticsgroup/MOGDx.
Collapse
Affiliation(s)
- Barry Ryan
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - T Ian Simpson
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom
| |
Collapse
|
4
|
Smith MM, Melrose J. Lumican, a Multifunctional Cell Instructive Biomarker Proteoglycan Has Novel Roles as a Marker of the Hypercoagulative State of Long Covid Disease. Int J Mol Sci 2024; 25:2825. [PMID: 38474072 DOI: 10.3390/ijms25052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.
Collapse
Affiliation(s)
- Margaret M Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Arthropharm Pty Ltd., Bondi Junction, NSW 2022, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Li LY, Zi H, Deng T, Li BH, Guo XP, Ming DJ, Zhang JH, Yuan S, Weng H. Autophagy-related long non-coding RNAs act as prognostic biomarkers and associate with tumor microenvironment in prostate cancer. Am J Cancer Res 2024; 14:545-561. [PMID: 38455413 PMCID: PMC10915326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 11/27/2022] [Indexed: 03/09/2024] Open
Abstract
Aberrant autophagy could promote cancer cells to survive and proliferate in prostate cancer (PCa). LncRNAs play key roles in autophagy regulatory network. We established a prognostic model, which autophagy-related lncRNAs (au-lncRNAs) were used as biomarkers to predict prognosis of individuals with PCa. Depending on au-lncRNAs from the Cancer Genome Atlas and the Human Autophagy Database, a risk score model was created. To evaluate the prediction accuracy, the calibration, Kaplan-Meier, and receiver operating characteristic curves were used. To clarify the biological function, gene set enrichment analyses (GSEA) were performed. Quantitative real-time PCR (qRT-PCR) was employed to determine the au-lncRNAs expression in PCa cell lines and healthy prostate cells for further confirmation. We identified five au-lncRNAs with prognostic significance (AC068580.6, AF131215.2, LINC00996, LINC01125 and LINC01547). The development of a risk scoring model required the utilization of multivariate Cox analysis. According to the model, we categorized PCa individuals into low- and high-risk cohorts. PCa subjects in the high-risk group had a worse disease-free survival rate than those in the low-risk group. The 1-, 3-, and 5-year periods had corresponding areas under curves (AUC) of 0.788, 0.794, and 0.818. The prognosis of individuals with PCa could be predicted by the model with accuracy. Further analysis with GSEA showed that the prognostic model was associated with the tumor microenvironment, including immunotherapy, cancer-related inflammation, and metabolic reprogramming. Four lncRNAs expression in PCa cell lines was greater than that in healthy prostate cells. The au-lncRNA prognostic model has significant clinical implications in prognosis of PCa patient.
Collapse
Affiliation(s)
- Lu-Yao Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
- Institutes of Evidence-Based Medicine and Knowledge Translation, Henan UniversityKaifeng, Henan, China
| | - Hao Zi
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
- Institutes of Evidence-Based Medicine and Knowledge Translation, Henan UniversityKaifeng, Henan, China
- Department of Urology, Institute of Urology, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
| | - Tong Deng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
| | - Bing-Hui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
- Department of Urology, Institute of Urology, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
| | - Xing-Pei Guo
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
- Institutes of Evidence-Based Medicine and Knowledge Translation, Henan UniversityKaifeng, Henan, China
| | - Dao-Jing Ming
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
- Institutes of Evidence-Based Medicine and Knowledge Translation, Henan UniversityKaifeng, Henan, China
| | - Jin-Hui Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
- Institutes of Evidence-Based Medicine and Knowledge Translation, Henan UniversityKaifeng, Henan, China
| | - Shuai Yuan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
| | - Hong Weng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
- Department of Urology, Institute of Urology, Zhongnan Hospital of Wuhan UniversityWuhan, Hubei, China
| |
Collapse
|
6
|
Goldberg M, Mondragon-Soto MG, Altawalbeh G, Meyer B, Aftahy AK. New Breakthroughs in the Diagnosis of Leptomeningeal Carcinomatosis: A Review of Liquid Biopsies of Cerebrospinal Fluid. Cureus 2024; 16:e55187. [PMID: 38558729 PMCID: PMC10980855 DOI: 10.7759/cureus.55187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Leptomeningeal carcinomatosis represents a terminal stage and is a devastating complication of cancer. Despite its high incidence, current diagnostic methods fail to accurately detect this condition in a timely manner. This failure to diagnose leads to the refusal of treatment and the absence of clinical trials, hampering the development of new therapy strategies. The use of liquid biopsy is revolutionizing the field of diagnostic oncology. The dynamic and non-invasive detection of tumor markers has enormous potential in cancer diagnostics and treatment. Leptomeningeal carcinomatosis is a condition where invasive tissue biopsy is not part of the routine diagnostic analysis, making liquid biopsy an essential diagnostic tool. Several elements in cerebrospinal fluid (CSF) have been investigated as potential targets of liquid biopsy, including free circulating tumor cells, free circulating nucleic acids, proteins, exosomes, and even non-tumor cells as part of the dynamic tumor microenvironment. This review aims to summarize current breakthroughs in the research on liquid biopsy, including the latest breakthroughs in the identification of tumor cells and nucleic acids, and give an overview of future directions in the diagnosis of leptomeningeal carcinomatosis.
Collapse
Affiliation(s)
- Maria Goldberg
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| | | | - Ghaith Altawalbeh
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| | - Amir Kaywan Aftahy
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, DEU
| |
Collapse
|
7
|
Su CC, Yu CC, Shih YW, Liu KL, Chen HW, Wu CC, Yang YC, Yeh EL, Li CC. Protective Effect of Alpha-Linolenic Acid on Human Oral Squamous Cell Carcinoma Metastasis and Apoptotic Cell Death. Nutrients 2023; 15:4992. [PMID: 38068849 PMCID: PMC10708481 DOI: 10.3390/nu15234992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Oral cancer ranks sixth among Taiwan's top 10 cancers and most patients with poor prognosis acquire metastases. The essential fatty acid alpha-linolenic acid (ALA) has been found to diminish many cancer properties. However, the anti-cancer activity of ALA in oral cancer has yet to be determined. We examined the mechanisms underlying ALA inhibition of metastasis and induction of apoptotic cell death in oral squamous cell carcinoma (OSCC). Migration and invasion assays confirmed the cancer cells' EMT capabilities, whereas flow cytometry and Western blotting identified molecular pathways in OSCC. ALA dramatically reduced cell growth in a concentration-dependent manner according to the findings. Low concentrations of ALA (100 or 200 μM) inhibit colony formation, the expression of Twist and EMT-related proteins, the expression of MMP2/-9 proteins, and enzyme activity, as well as cell migration and invasion. Treatment with high concentrations of ALA (200 or 400 μM) greatly increases JNK phosphorylation and c-jun nuclear accumulation and then upregulates the FasL/caspase8/caspase3 and Bid/cytochrome c/caspase9/caspase3 pathways, leading to cell death. Low concentrations of ALA inhibit SAS and GNM cell migration and invasion by suppressing Twist and downregulating EMT-related proteins or by decreasing the protein expression and enzyme activity of MMP-2/-9, whereas high concentrations of ALA promote apoptosis by activating the JNK/FasL/caspase 8/caspase 3-extrinsic pathway and the Bid/cytochrome c/caspase 9 pathway. ALA demonstrates potential as a treatment for OSCC patients.
Collapse
Affiliation(s)
- Ching-Chyuan Su
- Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan;
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yi-Wen Shih
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung 40678, Taiwan
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan
| | - En-Ling Yeh
- Department of Nutrition, College of Medical and Health Care, Hung-Kuang University, Taichung 43302, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
8
|
Pirmoradi L, Shojaei S, Ghavami S, Zarepour A, Zarrabi A. Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications. Pharmaceutics 2023; 15:2284. [PMID: 37765253 PMCID: PMC10536801 DOI: 10.3390/pharmaceutics15092284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Macroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran;
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| |
Collapse
|
9
|
Hou L, Chen X, Qiu G, Qi X, Zou Y, He J, Bu H. Cerebrospinal fluid exosomal protein alterations via proteomic analysis of NSCLC with leptomeningeal carcinomatosis. J Neurooncol 2023; 164:367-376. [PMID: 37656377 PMCID: PMC10522761 DOI: 10.1007/s11060-023-04428-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Leptomeningeal carcinomatosis (LC) is a rare complication of non-small cell lung cancer (NSCLC) with highly mortality. Cerebrospinal fluid (CSF) as a special kind of tumor microenvironment (TME) better represents alterations than plasma. However, the clinical value of protein profiles of exosome in CSF as liquid biopsy remains unclear. METHODS In this study, CSF samples of NSCLC patients with (LC group) or without (NSCLC group) LC were collected and compared to patients without tumors (normal group). CSF exosomes were isolated by ultracentrifugation and protein profiles were performed by label-free proteomics. Differentially expressed proteins (DEPs) were detected by bioinformatics tools and verified by parallel reaction monitoring (PRM). RESULTS A total of 814 proteins were detected. Bioinformatics analysis revealed their shared function in the complement activation, extracellular region, and complement and coagulation cascades. Between LC and NSCLC group, 72 DEPs were found among which FN1 demonstrated the highest betweenness centrality (BC) after protein-protein interaction network analysis. CONCLUSION We investigated the application of label free and PRM based proteomics to detect key proteins related to LC. FN1 may serve as potential indicator to classify LC and NSCLC. Extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) are important in the process of LC. These data is promising for early prediction and diagnosis of LC.
Collapse
Affiliation(s)
- Lan Hou
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
- Department of Neurology, Baoding No.1 Central Hospital, Baoding, China
| | - Xin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Gang Qiu
- Secondary Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xuejiao Qi
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Yueli Zou
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Junying He
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China.
| |
Collapse
|
10
|
Berdiaki A, Giatagana EM, Tzanakakis G, Nikitovic D. The Landscape of Small Leucine-Rich Proteoglycan Impact on Cancer Pathogenesis with a Focus on Biglycan and Lumican. Cancers (Basel) 2023; 15:3549. [PMID: 37509212 PMCID: PMC10377491 DOI: 10.3390/cancers15143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer development is a multifactorial procedure that involves changes in the cell microenvironment and specific modulations in cell functions. A tumor microenvironment contains tumor cells, non-malignant cells, blood vessels, cells of the immune system, stromal cells, and the extracellular matrix (ECM). The small leucine-rich proteoglycans (SLRPs) are a family of nineteen proteoglycans, which are ubiquitously expressed among mammalian tissues and especially abundant in the ECM. SLRPs are divided into five canonical classes (classes I-III, containing fourteen members) and non-canonical classes (classes IV-V, including five members) based on their amino-acid structural sequence, chromosomal organization, and functional properties. Variations in both the protein core structure and glycosylation status lead to SLRP-specific interactions with cell membrane receptors, cytokines, growth factors, and structural ECM molecules. SLRPs have been implicated in the regulation of cancer growth, motility, and invasion, as well as in cancer-associated inflammation and autophagy, highlighting their crucial role in the processes of carcinogenesis. Except for the class I SLRP decorin, to which an anti-tumorigenic role has been attributed, other SLPRs' roles have not been fully clarified. This review will focus on the functions of the class I and II SLRP members biglycan and lumican, which are correlated to various aspects of cancer development.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - George Tzanakakis
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
11
|
Tsatsakis A, Oikonomopoulou T, Nikolouzakis TK, Vakonaki E, Tzatzarakis M, Flamourakis M, Renieri E, Fragkiadaki P, Iliaki E, Bachlitzanaki M, Karzi V, Katsikantami I, Kakridonis F, Hatzidaki E, Tolia M, Svistunov AA, Spandidos DA, Nikitovic D, Tsiaoussis J, Berdiaki A. Role of telomere length in human carcinogenesis (Review). Int J Oncol 2023; 63:78. [PMID: 37232367 PMCID: PMC10552730 DOI: 10.3892/ijo.2023.5526] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Cancer is considered the most important clinical, social and economic issue regarding cause‑specific disability‑adjusted life years among all human pathologies. Exogenous, endogenous and individual factors, including genetic predisposition, participate in cancer triggering. Telomeres are specific DNA structures positioned at the end of chromosomes and consist of repetitive nucleotide sequences, which, together with shelterin proteins, facilitate the maintenance of chromosome stability, while protecting them from genomic erosion. Even though the connection between telomere status and carcinogenesis has been identified, the absence of a universal or even a cancer‑specific trend renders consent even more complex. It is indicative that both short and long telomere lengths have been associated with a high risk of cancer incidence. When evaluating risk associations between cancer and telomere length, a disparity appears to emerge. Even though shorter telomeres have been adopted as a marker of poorer health status and an older biological age, longer telomeres due to increased cell growth potential are associated with the acquirement of cancer‑initiating somatic mutations. Therefore, the present review aimed to comprehensively present the multifaceted pattern of telomere length and cancer incidence association.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Tatiana Oikonomopoulou
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Taxiarchis Konstantinos Nikolouzakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Elisavet Renieri
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Evaggelia Iliaki
- Laboratory of Microbiology, University Hospital of Heraklion, 71500 Heraklion
| | - Maria Bachlitzanaki
- Department of Medical Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion
| | - Vasiliki Karzi
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Ioanna Katsikantami
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Fotios Kakridonis
- Department of Spine Surgery and Scoliosis, KAT General Hospital, 14561 Athens
| | - Eleftheria Hatzidaki
- Department of Neonatology and Neonatal Intensive Care Unit (NICU), University Hospital of Heraklion, 71500 Heraklion
| | - Maria Tolia
- Department of Radiation Oncology, University Hospital of Crete, 71110 Heraklion, Greece
| | - Andrey A. Svistunov
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
12
|
Giatagana EM, Berdiaki A, Gaardløs M, Tsatsakis AM, Samsonov SA, Nikitovic D. Rapamycin-induced autophagy in osteosarcoma cells is mediated via the biglycan/Wnt/β-catenin signaling axis. Am J Physiol Cell Physiol 2022; 323:C1740-C1756. [PMID: 36280393 DOI: 10.1152/ajpcell.00368.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biglycan is a class I secreted small leucine-rich proteoglycan (SLRP), which regulates signaling pathways connected to bone pathologies. Autophagy is a vital catabolic process with a dual role in cancer progression. Here, we show that biglycan inhibits autophagy in two osteosarcoma cell lines (P ≤ 0.001), while rapamycin-induced autophagy decreases biglycan expression in MG63 osteosarcoma cells and abrogates the biglycan-induced cell growth increase (P ≤ 0.001). Rapamycin also inhibits β-catenin translocation to the nucleus, inhibiting the Wnt pathway (P ≤ 0.001) and reducing biglycan's colocalization with the Wnt coreceptor LRP6 (P ≤ 0.05). Furthermore, biglycan exhibits protective effects against the chemotherapeutic drug doxorubicin in MG63 OS cells through an autophagy-dependent manner (P ≤ 0.05). Cotreatment of these cells with rapamycin and doxorubicin enhances cells response to doxorubicin by decreasing biglycan (P ≤ 0.001) and β-catenin (P ≤ 0.05) expression. Biglycan deficiency leads to increased caspase-3 activation (P ≤ 0.05), suggesting increased apoptosis of biglycan-deficient cells treated with doxorubicin. Computational models of LRP6 and biglycan complexes suggest that biglycan changes the receptor's ability to interact with other signaling molecules by affecting the interdomain bending angles in the receptor structure. Biglycan binding to LRP6 activates the Wnt pathway and β-catenin nuclear translocation by disrupting β-catenin degradation complex (P ≤ 0.01 and P ≤ 0.05). Interestingly, this mechanism is not followed in moderately differentiated, biglycan-nonexpressing U-2OS OS cells. To sum up, biglycan exhibits protective effects against the doxorubicin in MG63 OS cells by activating the Wnt signaling pathway and inhibiting autophagy.
Collapse
Affiliation(s)
- Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| | - Margrethe Gaardløs
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - Sergey A Samsonov
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| |
Collapse
|
13
|
Mohamed HT, El-Sharkawy AA, El-Shinawi M, Schneider RJ, Mohamed MM. Inflammatory Breast Cancer: The Secretome of HCMV+ Tumor-Associated Macrophages Enhances Proliferation, Invasion, Colony Formation, and Expression of Cancer Stem Cell Markers. Front Oncol 2022; 12:899622. [PMID: 35847899 PMCID: PMC9281473 DOI: 10.3389/fonc.2022.899622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive phenotype of breast cancer that is characterized by a high incidence early metastasis. We previously reported a significant association of human cytomegalovirus (HCMV) DNA in the carcinoma tissues of IBC patients but not in the adjacent normal tissues. HCMV-infected macrophages serve as “mobile vectors” for spreading and disseminating virus to different organs, and IBC cancer tissues are highly infiltrated by tumor-associated macrophages (TAMs) that enhance IBC progression and promote breast cancer stem cell (BCSC)-like properties. Therefore, there is a need to understand the role of HCMV-infected TAMs in IBC progression. The present study aimed to test the effect of the secretome (cytokines and secreted factors) of TAMs derived from HCMV+ monocytes isolated from IBC specimens on the proliferation, invasion, and BCSC abundance when tested on the IBC cell line SUM149. HCMV+ monocytes were isolated from IBC patients during modified radical mastectomy surgery and tested in vitro for polarization into TAMs using the secretome of SUM149 cells. MTT, clonogenic, invasion, real-time PCR arrays, PathScan Intracellular Signaling array, and cytokine arrays were used to characterize the secretome of HCMV+ TAMs for their effect on the progression of SUM149 cells. The results showed that the secretome of HCMV+ TAMs expressed high levels of IL-6, IL-8, and MCP-1 cytokines compared to HCMV- TAMs. In addition, the secretome of HCMV+ TAMs induced the proliferation, invasion, colony formation, and expression of BCSC-related genes in SUM149 cells compared to mock untreated cells. In addition, the secretome of HCMV+ TAMs activated the phosphorylation of intracellular signaling molecules p-STAT3, p-AMPKα, p-PRAS40, and p-SAPK/JNK in SUM149 cells. In conclusion, this study shows that the secretome of HCMV+ TAMs enhances the proliferation, invasion, colony formation, and BCSC properties by activating the phosphorylation of p-STAT3, p-AMPKα, p-PRAS40, and p-SAPK/JNK intracellular signaling molecules in IBC cells.
Collapse
Affiliation(s)
- Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
- *Correspondence: Hossam Taha Mohamed,
| | | | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Galala University, Suez, Egypt
| | - Robert J. Schneider
- Department of Microbiology, School of Medicine, New York University, New York, NY, United States
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Sector of International Cooperation, Galala University, Suez, Egypt
| |
Collapse
|
14
|
Biglycan Interacts with Type I Insulin-like Receptor (IGF-IR) Signaling Pathway to Regulate Osteosarcoma Cell Growth and Response to Chemotherapy. Cancers (Basel) 2022; 14:cancers14051196. [PMID: 35267503 PMCID: PMC8909324 DOI: 10.3390/cancers14051196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Osteosarcoma (OS) is an aggressive, primary bone cancer. OS cells produce altered osteoid whose components participate in signaling correlated to the development of this cancer. Biglycan (BGN), a proteoglycan, is correlated to aggressive OS type and resistance to chemotherapy. A constitutive signaling of insulin-like growth factor receptor I (IGF-IR) signaling in sarcoma progression was established. We showed that biglycan binds IGF-IR resulting in prolonged IGF-IR activation, nuclear translocation, and growth response of the poorly-differentiated MG63 cells correlated to increased aggressiveness markers expression and enhanced chemoresistance. This mechanism is not valid in moderately and well-differentiated, biglycan non-expressing U-2OS and Saos-2 OS cells. Abstract Osteosarcoma (OS) is a mesenchymally derived, aggressive bone cancer. OS cells produce an aberrant nonmineralized or partly mineralized extracellular matrix (ECM) whose components participate in signaling pathways connected to specific pathogenic phenotypes of this bone cancer. The expression of biglycan (BGN), a secreted small leucine-rich proteoglycan (SLRP), is correlated to aggressive OS phenotype and resistance to chemotherapy. A constitutive signaling of IGF-IR signaling input in sarcoma progression has been established. Here, we show that biglycan activates the IGF-IR signaling pathway to promote MG63 biglycan-secreting OS cell growth by forming a complex with the receptor. Computational models of IGF-IR and biglycan docking suggest that biglycan binds IGF-IR dimer via its concave surface. Our binding free energy calculations indicate the formation of a stable complex. Biglycan binding results in prolonged IGF-IR activation leading to protracted IGF-IR-dependent cell growth response of the poorly-differentiated MG63 cells. Moreover, biglycan facilitates the internalization (p ≤ 0.01, p ≤ 0.001) and sumoylation-enhanced nuclear translocation of IGF-IR (p ≤ 0.05) and its DNA binding in MG63 cells (p ≤ 0.001). The tyrosine kinase activity of the receptor mediates this mechanism. Furthermore, biglycan downregulates the expression of the tumor-suppressor gene, PTEN (p ≤ 0.01), and increases the expression of endothelial–mesenchymal transition (EMT) and aggressiveness markers vimentin (p ≤ 0.01) and fibronectin (p ≤ 0.01) in MG63 cells. Interestingly, this mechanism is not valid in moderately and well-differentiated, biglycan non-expressing U-2OS and Saos-2 OS cells. Furthermore, biglycan exhibits protective effects against the chemotherapeutic drug, doxorubicin, in MG63 OS cells (p ≤ 0.01). In conclusion, these data indicate a potential direct and adjunct therapeutical role of biglycan in osteosarcoma.
Collapse
|
15
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
16
|
Yang X, Zhao Y, Shao Q, Jiang G. Cytochrome b561 Serves as a Potential Prognostic Biomarker and Target for Breast Cancer. Int J Gen Med 2022; 14:10447-10464. [PMID: 35002301 PMCID: PMC8722309 DOI: 10.2147/ijgm.s338878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Cytochrome b561 (CYB561) is a transmembrane protein and participates in ascorbate recycling and iron homeostasis. However, its role in breast cancer remains unclear. PATIENTS AND METHODS In this study, we explored the expression pattern and prognostic value of CYB561 in breast cancer through The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), PrognoScan and Kaplan-Meier Plotter and confirmed its mRNA expression in human breast cell lines. LinkedOmics, Metascape and Gene Expression Profiling Interactive Analysis (GEPIA2) databases were applied to investigate the co-expression genes and construct microRNA (miRNA) networks associated with CYB561. The correlations between CYB561 and immune infiltration cells and genes were also illustrated. RESULTS The CYB561 expression was upregulated in breast cancer tissues and cell lines and significantly correlated with the clinical features of breast cancer patients. High CYB561 expression was associated with poor survival and was an independent risk factor for overall and disease-specific survival. Functional enrichment analysis showed that CYB561 and its co-expressed genes were mainly enriched in lipid biosynthetic process, Wnt signaling pathway, Hippo signaling pathway, etc. The miRNA network analysis suggested that hsa-miR-497 was negatively correlated with CYB561 expression and was predicted to direct target CYB561. CYB561 expression was positively correlated with infiltrating levels of CD4+ T cells, neutrophils and dendritic cells in breast cancer. Subsequent analysis found that B cells could predict the outcome of breast cancer. Also, CYB561 showed strong correlations with diverse immune marker sets in breast cancer. CONCLUSION CYB561 may serve as a potential prognostic biomarker and target for breast cancer. Our findings laid foundation for future research on molecular mechanisms of CYB561 in breast cancer.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, People's Republic of China.,Department of Thyroid and Breast Surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu Province, People's Republic of China
| | - Yangjing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Qixiang Shao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, People's Republic of China
| |
Collapse
|
17
|
Giatagana EM, Berdiaki A, Tsatsakis A, Tzanakakis GN, Nikitovic D. Lumican in Carcinogenesis-Revisited. Biomolecules 2021; 11:biom11091319. [PMID: 34572532 PMCID: PMC8466546 DOI: 10.3390/biom11091319] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Carcinogenesis is a multifactorial process with the input and interactions of environmental, genetic, and metabolic factors. During cancer development, a significant remodeling of the extracellular matrix (ECM) is evident. Proteoglycans (PGs), such as lumican, are glycosylated proteins that participate in the formation of the ECM and are established biological mediators. Notably, lumican is involved in cellular processes associated with tumorigeneses, such as EMT (epithelial-to-mesenchymal transition), cellular proliferation, migration, invasion, and adhesion. Furthermore, lumican is expressed in various cancer tissues and is reported to have a positive or negative correlation with tumor progression. This review focuses on significant advances achieved regardingthe role of lumican in the tumor biology. Here, the effects of lumican on cancer cell growth, invasion, motility, and metastasis are discussed, as well as the repercussions on autophagy and apoptosis. Finally, in light of the available data, novel roles for lumican as a cancer prognosis marker, chemoresistance regulator, and cancer therapy target are proposed.
Collapse
Affiliation(s)
- Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Department of Morphology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.-M.G.); (A.B.); (G.N.T.)
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Department of Morphology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.-M.G.); (A.B.); (G.N.T.)
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Department of Morphology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, Department of Morphology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.-M.G.); (A.B.); (G.N.T.)
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Department of Morphology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.-M.G.); (A.B.); (G.N.T.)
- Correspondence: ; Tel.: +30-281-039-4557
| |
Collapse
|
18
|
Gül D, Habtemichael N, Dietrich D, Dietrich J, Gößwein D, Khamis A, Deuss E, Künzel J, Schneider G, Strieth S, Stauber RH. Identification of cytokeratin24 as a tumor suppressor for the management of head and neck cancer. Biol Chem 2021; 403:869-890. [PMID: 34450690 DOI: 10.1515/hsz-2021-0287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
To improve management of head and neck squamous cell carcinoma patients, we need to increase our understanding of carcinogenesis, to identify biomarkers, and drug targets. This study aimed to identify novel biomarkers by providing transcriptomics profiles of matched primary tumors, lymph node metastasis, and non-malignant tissue of 20 HNSCC patients as well as by bioinformatic analyses of a TCGA HNSCC cohort, comprising 554 patients. We provide cancer cell signaling networks differentially expressed in tumors versus metastases, such as mesenchymal-epithelial transition, and structural integrity networks. As a proof of principle study, we exploited the data sets and performed functional analyses of a novel cytokeratin, cytokeratin24 (cKRT24), which had not been described as biomarker for tumors before. Survival analysis revealed that low cKRT24 expression correlated with poor overall survival in HNSCC. Experimentally, downregulation of cKRT24 in primary tumors, metastases, and HNSCC cell lines was verified on mRNA and protein level. Cloning and ectopic overexpression of cKRT24 not only affected viability and growth of HNSSC cell lines, but also inhibited tumor growth in murine xenograft studies. We conclude that cKRT24 functions as a tumor suppressor in HNSCC, and may serve as an additional prognostic biomarker and novel target to support current HNSCC treatments.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Negusse Habtemichael
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Dorothee Gößwein
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Aya Khamis
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Eric Deuss
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany.,Department of Otorhinolaryngology Head and Neck Surgery, University Hospital, D-45147Essen, Germany
| | - Julian Künzel
- Ear, Nose and Throat Department, University Hospital, D-93053Regensburg, Germany
| | - Günter Schneider
- Ear, Nose and Throat Department, University Hospital, D-93053Regensburg, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Roland H Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| |
Collapse
|
19
|
Neill T, Kapoor A, Xie C, Buraschi S, Iozzo RV. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 2021; 100-101:118-149. [PMID: 33838253 PMCID: PMC8355044 DOI: 10.1016/j.matbio.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
20
|
Tzanakakis GN, Giatagana EM, Berdiaki A, Spyridaki I, Hida K, Neagu M, Tsatsakis AM, Nikitovic D. The Role of IGF/IGF-IR-Signaling and Extracellular Matrix Effectors in Bone Sarcoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13102478. [PMID: 34069554 PMCID: PMC8160938 DOI: 10.3390/cancers13102478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bone sarcomas are mesenchymal origin tumors. Bone sarcoma patients show a variable response or do not respond to chemotherapy. Notably, improving efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Most clinical trials aiming at the IGF pathway have had limited success. Developing combinatorial strategies to enhance antitumor responses and better classify the patients that could best benefit from IGF-axis targeting therapies is in order. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects bone sarcomas’ basal functions and their response to therapy. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized. Abstract Bone sarcomas, mesenchymal origin tumors, represent a substantial group of varying neoplasms of a distinct entity. Bone sarcoma patients show a limited response or do not respond to chemotherapy. Notably, developing efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Whereas failures have been registered in creating novel targeted therapeutics aiming at the IGF pathway, new agent development should continue, evaluating combinatorial strategies for enhancing antitumor responses and better classifying the patients that could best benefit from these therapies. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects sarcomas’ basal functions and their response to therapy. This review highlights key studies focusing on IGF signaling in bone sarcomas, specifically studies underscoring novel properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized.
Collapse
Affiliation(s)
- George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Ioanna Spyridaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan;
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Correspondence:
| |
Collapse
|
21
|
MicroRNA profiling identifies Forkhead box transcription factor M1 (FOXM1) regulated miR-186 and miR-200b alterations in triple negative breast cancer. Cell Signal 2021; 83:109979. [PMID: 33744419 DOI: 10.1016/j.cellsig.2021.109979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is the most commonly diagnosed malignancy. MicroRNAs (miRNAs) play important roles in the tumorigenesis, metastasis and progression of BC. Forkhead Box M1 (FOXM1) oncogenic transcription factor is involved in events considered as hallmarks of cancer. However, the specific mechanism by which FOXM1 exerts its oncogenic effects remains unclear and little is known about its effects on the regulation of miRNA expression. We have found that FOXM1 is upregulated in breast cancer cells and that its expression is associated with shortened overall survival and poor prognosis in patients with BC. Using microarray technology, we assessed the expression profiles of 752 miRNAs in highly aggressive and metastatic triple negative breast cancer (TNBC) cells in response to FOXM1 knockdown and identified 13 differentialy expressed miRNAs (3 miRNAs upregulated and 10 miRNAs down-regulated). We validated the results of the miRNA expression profile in two different TNBC cells by performing qRT-PCR and identified that miR-186-5p and miR-200b-5p were consistently down- or up-regulated, respectively, after knockdown of FOXM1. We further performed KEGG pathway analysis and GO enrichment analysis for miR-186-5p and miR-200b-5p, and identified that these miRNAs are associated with cancer development and progression involving toll-like receptor signaling, cell cycle, AMPK, p53 and NF-kappa B signaling pathways. Taken together, our results suggest that increased FOXM1 expression is associated with poor patient survival and leads to induction of oncomiR miR-186-5p expression and tumor-suppressor inhibition miR-200b-5p, suggesting that the FOXM1/miRNA signaling pathway may contribute to poor patient prognosis and may be a potential therapeutic target in TNBC.
Collapse
|
22
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
23
|
Abstract
Herd immunity is a form of indirect protection that is offered to the community when a large proportion of individuals contained in the community are immune to a certain infection. This immunity can be due to vaccination or to the recovery post-disease. Effective herd immunity in SARS-CoV-2 infection has several hurdles upon achievement. Herd immunity cannot be obtained concomitantly in many geographical areas because the areas have different population density and the societal measures to contain the spreading are different. A proportion of 50-66% of the population needs to be immunized naturally or artificially in this SARS-Cov2 pandemic and this percentage is not easily achievable. The duration of herd immunity is another issue while information on the long-term immune response against SARS-CoV2 is yet scarce. Epitope stability, another issue to be solved when achieving herd immunity, is important. Mutation in the viral structure will call upon other sets of neutralizing antibodies and hence for other herd immunity type installment. The societal tactics to achieve the much-needed herd immunity should be developed keeping in mind the welfare of the population. Without being exhaustive, throughout our paper we will elaborate on each of the hurdles encountered in developing herd immunity to SARS-Cov2 infection.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology , Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital , Bucharest, Romania
| |
Collapse
|