1
|
Hermouet S, Mennesson N, Allain‐Maillet S, Bigot‐Corbel E, Olafsson A, Viðarsson B, Önundarson PT, Agnarsson BA, Sigurðardóttir M, Þorsteinsdóttir I, Ólafsson Í, Eyþórsson E, Jónsson Á, Love TJ, Rognvaldsson S, Björnsson ES, Thorsteinsdóttir S, Kristinsson SY. Analysis of smoldering multiple myeloma according to the target of the monoclonal immunoglobulin of patients. Hemasphere 2024; 8:e70053. [PMID: 39670186 PMCID: PMC11635023 DOI: 10.1002/hem3.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302NantesFrance
- Laboratoire d'Hématologie, CHU NantesNantesFrance
| | - Nicolas Mennesson
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302NantesFrance
| | - Sophie Allain‐Maillet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302NantesFrance
| | - Edith Bigot‐Corbel
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302NantesFrance
- Laboratoire de Biochimie, CHU NantesNantesFrance
| | - Andri Olafsson
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Brynjar Viðarsson
- Landspitali–The National University Hospital of IcelandReykjavikIceland
| | | | - Bjarni A. Agnarsson
- Faculty of MedicineUniversity of IcelandReykjavikIceland
- Landspitali–The National University Hospital of IcelandReykjavikIceland
| | | | | | - Ísleifur Ólafsson
- Faculty of MedicineUniversity of IcelandReykjavikIceland
- Landspitali–The National University Hospital of IcelandReykjavikIceland
| | - Elías Eyþórsson
- Landspitali–The National University Hospital of IcelandReykjavikIceland
| | | | - Thorvardur J. Love
- Faculty of MedicineUniversity of IcelandReykjavikIceland
- Landspitali–The National University Hospital of IcelandReykjavikIceland
| | - Saemundur Rognvaldsson
- Faculty of MedicineUniversity of IcelandReykjavikIceland
- Landspitali–The National University Hospital of IcelandReykjavikIceland
| | - Einar S. Björnsson
- Faculty of MedicineUniversity of IcelandReykjavikIceland
- Landspitali–The National University Hospital of IcelandReykjavikIceland
| | | | - Sigurdur Y. Kristinsson
- Faculty of MedicineUniversity of IcelandReykjavikIceland
- Landspitali–The National University Hospital of IcelandReykjavikIceland
| |
Collapse
|
2
|
Cuenca-Zamora EJ, Martínez C, Morales ML, Guijarro-Carrillo PJ, López-Poveda MJ, Alcolea-Guardiola C, Vidal-Garrido N, Lozano ML, Gonzalez-Conejero R, Teruel-Montoya R, Ferrer-Marín F. Pacritinib prevents inflammation-driven myelofibrosis-like phenotype in a miR-146a -/- murine model. Biomed Pharmacother 2024; 181:117712. [PMID: 39603040 DOI: 10.1016/j.biopha.2024.117712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic proinflammatory signaling is a characteristic trait in myeloproliferative neoplasms (MPN), particularly myelofibrosis (MF). Aberrant inflammatory signaling, particularly from NF-κB pathway, exacerbates the progression of MPN. Previously, we identified a critical role of miR-146a, a negative regulator of the TLR/NF-κB axis, in MF development. MPN patients carrying the miR-146a rs2431697-TT genotype, associated with lower miR-146a expression levels, have a higher risk of progression to overt-MF from chronic-phase disease. Using miR-146a-/- (KO) mice, a MF-like model lacking MPN driver mutations, we here investigate whether pacritinib, a dual JAK/NF-κB pathways inhibitor (via JAK2/IRAK1, respectively), prevents the age-associated myelofibrotic phenotype of these mice. Young miR-146a-/- mice were treated either with or without pacritinib, for 3 or 6 months. Notably, pacritinib prevented the splenomegaly, reticulin fibrosis and osteosclerosis observed in untreated KO mice. Pacritinib also avoided the myeloproliferation, loss of splenic architecture, and extramedullary hematopoiesis observed in age-matched untreated KO mice. Pharmacological targeting of IRAK1/JAK2 attenuated the pro-inflammatory environment, preventing the increase of inflammatory cytokines, particularly CXCL1 and TNF-α, without inducing cytopenias but rather the opposite. Compared to age-matched untreated KO mice, treated mice showed higher platelet counts irrespective of treatment duration, and higher erythrocyte counts with the longer treatment. Additionally, pacritinib preventive treatment reduced COL1A1 production in an in vitro model mimicking JAK2-driven fibrosis. These findings highlight that dual inhibition of JAK2/IRAK1 with pacritinib, by delaying or attenuating the myelofibrotic progression, could be a potential modifier of the natural course of MPN.
Collapse
Affiliation(s)
- Ernesto José Cuenca-Zamora
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Constantino Martínez
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | - María Luz Morales
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Pedro Jesús Guijarro-Carrillo
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | | | | | - Natalia Vidal-Garrido
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | - María Luisa Lozano
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain
| | - Rocío Gonzalez-Conejero
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; Universidad de Murcia, Murcia, Spain
| | - Raúl Teruel-Montoya
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| | - Francisca Ferrer-Marín
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| |
Collapse
|
3
|
Hermouet S, Hasselbalch HC. Interleukin-1β, JAK2V617F mutation and inflammation in MPNs. Blood Adv 2024; 8:4344-4347. [PMID: 38985205 PMCID: PMC11372809 DOI: 10.1182/bloodadvances.2024013528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/11/2024] Open
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire d’Hématologie, CHU Nantes, Nantes, France
| | - Hans C. Hasselbalch
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
4
|
Haage TR, Charakopoulos E, Bhuria V, Baldauf CK, Korthals M, Handschuh J, Müller P, Li J, Harit K, Nishanth G, Frey S, Böttcher M, Fischer KD, Dudeck J, Dudeck A, Lipka DB, Schraven B, Green AR, Müller AJ, Mougiakakos D, Fischer T. Neutrophil-specific expression of JAK2-V617F or CALRmut induces distinct inflammatory profiles in myeloproliferative neoplasia. J Hematol Oncol 2024; 17:43. [PMID: 38853260 PMCID: PMC11163796 DOI: 10.1186/s13045-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1β. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.
Collapse
Affiliation(s)
- Tobias Ronny Haage
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Emmanouil Charakopoulos
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Vikas Bhuria
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Conny K Baldauf
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Mark Korthals
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Juliane Handschuh
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Müller
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Juan Li
- Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, GB, England
| | - Kunjan Harit
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Gopala Nishanth
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Stephanie Frey
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Martin Böttcher
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Jan Dudeck
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Dudeck
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniel B Lipka
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Anthony R Green
- Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, GB, England
| | - Andreas J Müller
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Thomas Fischer
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
5
|
Eickhardt-Dalbøge CS, Nielsen HV, Fuursted K, Stensvold CR, Andersen LOB, Lilje B, Larsen MK, Kjær L, Christensen SF, Knudsen TA, Skov V, Sørensen AL, Ellervik C, Olsen LR, Christensen JJE, Nielsen XC, Hasselbalch HC, Ingham AC. JAK2V617F drives gut microbiota differences in patients with myeloproliferative neoplasms. Eur J Haematol 2024; 112:776-787. [PMID: 38226781 DOI: 10.1111/ejh.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (MF) are myeloproliferative neoplasms (MPN). Inflammation is involved in the initiation, progression, and symptomology of the diseases. The gut microbiota impacts the immune system, infection control, and steady-state hematopoiesis. METHODS We analyzed the gut microbiota of 227 MPN patients and healthy controls (HCs) using next-generation sequencing. We expanded our previous results in PV and ET patients with additional PV, pre-MF, and MF patients which allowed us to compare MPN patients collectively, MPN sub-diagnoses, and MPN mutations (separately and combined) vs. HCs (N = 42) and compare within MPN sub-diagnoses and MPN mutation. RESULTS MPN patients had a higher observed richness (median, 245 [range, 49-659]) compared with HCs (191.5 [range, 111-300; p = .003]) and a lower relative abundance of taxa within the Firmicutes phylum; for example, Faecalibacterium (6% vs. 14%, p < .001). The microbiota of CALR-positive patients (N = 30) resembled that of HCs more than that of patients with JAK2V617F (N = 177). In JAK2V617F-positive patients, only minor differences in the gut microbiota were observed between MPN sub-diagnoses, illustrating the importance of this mutation. CONCLUSION The gut microbiota in MPN patients differs from HCs and is driven by JAK2V617F, whereas the gut microbiota in CALR patients resembles HCs more.
Collapse
Affiliation(s)
- Christina Schjellerup Eickhardt-Dalbøge
- The Regional Department of Clinical Microbiology, University Hospital of Region Zealand, Slagelse, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik V Nielsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kurt Fuursted
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Lee O' Brien Andersen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Berit Lilje
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Kranker Larsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Christina Ellervik
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Data and Data Support, Region Zealand, Sorø, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jens Jørgen Elmer Christensen
- The Regional Department of Clinical Microbiology, University Hospital of Region Zealand, Slagelse, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Xiaohui Chen Nielsen
- The Regional Department of Clinical Microbiology, University Hospital of Region Zealand, Slagelse, Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Cäcilia Ingham
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
6
|
Xiong H, Zhang H, Bai J, Li Y, Li L, Zhang L. Associations of the circulating levels of cytokines with the risk of myeloproliferative neoplasms: a bidirectional mendelian-randomization study. BMC Cancer 2024; 24:531. [PMID: 38671390 PMCID: PMC11046808 DOI: 10.1186/s12885-024-12301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE In the pathogenesis of myeloproliferative neoplasms (MPN), inflammation plays an important role. However, it is unclear whether there is a causal link between inflammation and MPNs. We used a bidirectional, two-sample Mendelian randomization (MR) approach to investigate the causal relationship between systemic inflammatory cytokines and myeloproliferative neoplasms. METHODS A genome-wide association study (GWAS) of 8293 European participants identified genetic instrumental variables for circulating cytokines and growth factors. Summary statistics of MPN were obtained from a GWAS including 1086 cases and 407,155 controls of European ancestry. The inverse-variance-weighted method was mainly used to compute odds ratios (OR) and 95% confidence intervals (Cl). RESULTS Our results showed that higher Interleukin-2 receptor, alpha subunit (IL-2rα) levels, and higher Interferon gamma-induced protein 10 (IP-10) levels were associated with an increased risk of MPN (OR = 1.36,95%CI = 1.03-1.81, P = 0.032; OR = 1.55,95%CI = 1.09-2.22, P = 0.015; respectively).In addition, Genetically predicted MPN promotes expression of the inflammatory cytokines interleukin-10 (IL-10) (BETA = 0.033, 95% CI = 0.003 ~ 0.064, P = 0.032) and monokine induced by interferon-gamma (MIG) (BETA = 0.052, 95% CI = 0.002-0.102, P = 0.043) and, on activation, normal T cells express and secrete RANTES (BETA = 0.055, 95% CI = 0.0090.1, P = 0.018). CONCLUSION Our findings suggest that cytokines are essential to the pathophysiology of MPN. More research is required if these biomarkers can be used to prevent and treat MPN.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huitao Zhang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Bai
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Liansheng Zhang
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Hermouet S. Mutations, inflammation and phenotype of myeloproliferative neoplasms. Front Oncol 2023; 13:1196817. [PMID: 37284191 PMCID: PMC10239955 DOI: 10.3389/fonc.2023.1196817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Knowledge on the myeloproliferative neoplasms (MPNs) - polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) - has accumulated since the discovery of the JAK/STAT-activating mutations associated with MPNs: JAK2V617F, observed in PV, ET and PMF; and the MPL and CALR mutations, found in ET and PMF. The intriguing lack of disease specificity of these mutations, and of the chronic inflammation associated with MPNs, triggered a quest for finding what precisely determines that MPN patients develop a PV, ET or PMF phenoptype. The mechanisms of action of MPN-driving mutations, and concomitant mutations (ASXL1, DNMT3A, TET2, others), have been extensively studied, as well as the role played by these mutations in inflammation, and several pathogenic models have been proposed. In parallel, different types of drugs have been tested in MPNs (JAK inhibitors, interferons, hydroxyurea, anagrelide, azacytidine, combinations of those), some acting on both JAK2 and inflammation. Yet MPNs remain incurable diseases. This review aims to present current, detailed knowledge on the pathogenic mechanisms specifically associated with PV, ET or PMF that may pave the way for the development of novel, curative therapies.
Collapse
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire d'Hématologie, CHU Nantes, Nantes, France
| |
Collapse
|
8
|
IL-13/IL-4 signaling contributes to fibrotic progression of the myeloproliferative neoplasms. Blood 2022; 140:2805-2817. [PMID: 36283106 DOI: 10.1182/blood.2022017326] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 01/17/2023] Open
Abstract
Myelofibrosis (MF) is a disease associated with high unmet medical needs because allogeneic stem cell transplantation is not an option for most patients, and JAK inhibitors are generally effective for only 2 to 3 years and do not delay disease progression. MF is characterized by dysplastic megakaryocytic hyperplasia and progression to fulminant disease, which is associated with progressively increasing marrow fibrosis. Despite evidence that the inflammatory milieu in MF contributes to disease progression, the specific factors that promote megakaryocyte growth are poorly understood. Here, we analyzed changes in the cytokine profiles of MF mouse models before and after the development of fibrosis, coupled with the analysis of bone marrow populations using single-cell RNA sequencing. We found high interleukin 13 (IL-13) levels in the bone marrow of MF mice. IL-13 promoted the growth of mutant megakaryocytes and induced surface expression of transforming growth factor β and collagen biosynthesis. Similarly, analysis of samples from patients with MF revealed elevated levels of IL-13 in the plasma and increased IL-13 receptor expression in marrow megakaryocytes. In vivo, IL-13 overexpression promoted disease progression, whereas reducing IL-13/IL-4 signaling reduced several features of the disease, including fibrosis. Finally, we observed an increase in the number of marrow T cells and mast cells, which are known sources of IL-13. Together, our data demonstrate that IL-13 is involved in disease progression in MF and that inhibition of the IL-13/IL-4 signaling pathway might serve as a novel therapeutic target to treat MF.
Collapse
|
9
|
Rai S, Grockowiak E, Hansen N, Luque Paz D, Stoll CB, Hao-Shen H, Mild-Schneider G, Dirnhofer S, Farady CJ, Méndez-Ferrer S, Skoda RC. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm. Nat Commun 2022; 13:5346. [PMID: 36100613 PMCID: PMC9470591 DOI: 10.1038/s41467-022-32927-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2022] [Indexed: 12/17/2022] Open
Abstract
Interleukin-1β (IL-1β) is a master regulator of inflammation. Increased activity of IL-1β has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1β serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1β overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1β in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1β in JAK2-V617F mutant mice by anti-IL-1β antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1β with anti-IL-1β antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.
Collapse
Affiliation(s)
- Shivam Rai
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Elodie Grockowiak
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Damien Luque Paz
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Cedric B Stoll
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Gabriele Mild-Schneider
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Stefan Dirnhofer
- Department of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | | | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
10
|
Bhuria V, Baldauf CK, Schraven B, Fischer T. Thromboinflammation in Myeloproliferative Neoplasms (MPN)-A Puzzle Still to Be Solved. Int J Mol Sci 2022; 23:ijms23063206. [PMID: 35328626 PMCID: PMC8954909 DOI: 10.3390/ijms23063206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs), a group of malignant hematological disorders, occur as a consequence of somatic mutations in the hematopoietic stem cell compartment and show excessive accumulation of mature myeloid cells in the blood. A major cause of morbidity and mortality in these patients is the marked prothrombotic state leading to venous and arterial thrombosis, including myocardial infarction (MI), deep vein thrombosis (DVT), and strokes. Additionally, many MPN patients suffer from inflammation-mediated constitutional symptoms, such as fever, night sweats, fatigue, and cachexia. The chronic inflammatory syndrome in MPNs is associated with the up-regulation of various inflammatory cytokines in patients and is involved in the formation of the so-called MPN thromboinflammation. JAK2-V617F, the most prevalent mutation in MPNs, has been shown to activate a number of integrins on mature myeloid cells, including granulocytes and erythrocytes, which increase adhesion and drive venous thrombosis in murine knock-in/out models. This review aims to shed light on the current understanding of thromboinflammation, involvement of neutrophils in the prothrombotic state, plausible molecular mechanisms triggering the process of thrombosis, and potential novel therapeutic targets for developing effective strategies to reduce the MPN disease burden.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Conny K. Baldauf
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-15338; Fax: +49-391-67-15852
| | - Thomas Fischer
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
11
|
Bhuria V, Baldauf CK, Schraven B, Fischer T. Thromboinflammation in Myeloproliferative Neoplasms (MPN)-A Puzzle Still to Be Solved. Int J Mol Sci 2022. [PMID: 35328626 DOI: 10.3390/ijms23063206.pmid:35328626;pmcid:pmc8954909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs), a group of malignant hematological disorders, occur as a consequence of somatic mutations in the hematopoietic stem cell compartment and show excessive accumulation of mature myeloid cells in the blood. A major cause of morbidity and mortality in these patients is the marked prothrombotic state leading to venous and arterial thrombosis, including myocardial infarction (MI), deep vein thrombosis (DVT), and strokes. Additionally, many MPN patients suffer from inflammation-mediated constitutional symptoms, such as fever, night sweats, fatigue, and cachexia. The chronic inflammatory syndrome in MPNs is associated with the up-regulation of various inflammatory cytokines in patients and is involved in the formation of the so-called MPN thromboinflammation. JAK2-V617F, the most prevalent mutation in MPNs, has been shown to activate a number of integrins on mature myeloid cells, including granulocytes and erythrocytes, which increase adhesion and drive venous thrombosis in murine knock-in/out models. This review aims to shed light on the current understanding of thromboinflammation, involvement of neutrophils in the prothrombotic state, plausible molecular mechanisms triggering the process of thrombosis, and potential novel therapeutic targets for developing effective strategies to reduce the MPN disease burden.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Conny K Baldauf
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Thomas Fischer
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
12
|
Torres DG, Paes J, da Costa AG, Malheiro A, Silva GV, Mourão LPDS, Tarragô AM. JAK2 Variant Signaling: Genetic, Hematologic and Immune Implication in Chronic Myeloproliferative Neoplasms. Biomolecules 2022; 12:291. [PMID: 35204792 PMCID: PMC8961666 DOI: 10.3390/biom12020291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The JAK2V617F variant constitutes a genetic alteration of higher frequency in BCR/ABL1 negative chronic myeloproliferative neoplasms, which is caused by a substitution of a G ˃ T at position 1849 and results in the substitution of valine with phenylalanine at codon 617 of the polypeptide chain. Clinical, morphological and molecular genetic features define the diagnosis criteria of polycythemia vera, essential thrombocythemia and primary myelofibrosis. Currently, JAK2V617F is associated with clonal hematopoiesis, genomic instability, dysregulations in hemostasis and immune response. JAK2V617F clones induce an inflammatory immune response and lead to a process of immunothrombosis. Recent research has shown great interest in trying to understand the mechanisms associated with JAK2V617F signaling and activation of cellular and molecular responses that progressively contribute to the development of inflammatory and vascular conditions in association with chronic myeloproliferative neoplasms. Thus, the aim of this review is to describe the main genetic, hematological and immunological findings that are linked to JAK2 variant signaling in chronic myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Dania G. Torres
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Jhemerson Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Allyson G. da Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - George V. Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane (Fiocruz), Manaus 69027-070, AM, Brazil
- Fundação Centro de Controle de Oncologia do Amazonas (FCECON), Manaus 69040-010, AM, Brazil
| | - Lucivana P. de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Andréa M. Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| |
Collapse
|
13
|
Progression of Myeloproliferative Neoplasms (MPN): Diagnostic and Therapeutic Perspectives. Cells 2021; 10:cells10123551. [PMID: 34944059 PMCID: PMC8700229 DOI: 10.3390/cells10123551] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematologic malignancies, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), as well as post-PV-MF and post-ET-MF. Progression to more symptomatic disease, such as overt MF or acute leukemia, represents one of the major causes of morbidity and mortality. There are clinically evident but also subclinical types of MPN progression. Clinically evident progression includes evolution from ET to PV, ET to post-ET-MF, PV to post-PV-MF, or pre-PMF to overt PMF, and transformation of any of these subtypes to myelodysplastic neoplasms or acute leukemia. Thrombosis, major hemorrhage, severe infections, or increasing symptom burden (e.g., pruritus, night sweats) may herald progression. Subclinical types of progression may include increases in the extent of bone marrow fibrosis, increases of driver gene mutational allele burden, and clonal evolution. The underlying causes of MPN progression are diverse and can be attributed to genetic alterations and chronic inflammation. Particularly, bystander mutations in genes encoding epigenetic regulators or splicing factors were associated with progression. Finally, comorbidities such as systemic inflammation, cardiovascular diseases, and organ fibrosis may augment the risk of progression. The aim of this review was to discuss types and mechanisms of MPN progression and how their knowledge might improve risk stratification and therapeutic intervention. In view of these aspects, we discuss the potential benefits of early diagnosis using molecular and functional imaging and exploitable therapeutic strategies that may prevent progression, but also highlight current challenges and methodological pitfalls.
Collapse
|
14
|
Sobas M, Podolak-Dawidziak M, Lewandowski K, Bator M, Wróbel T. Primary Immune Thrombocytopenia and Essential Thrombocythemia: So Different and yet Somehow Similar-Cases Series and a Review of the Literature. Int J Mol Sci 2021; 22:10918. [PMID: 34681577 PMCID: PMC8539407 DOI: 10.3390/ijms222010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
This article collects several published cases in which immune thrombocytopenic purpura (ITP) is followed by essential thrombocythemia (ET) and vice versa. This surprising clinical condition is possible, but very rare and difficult to diagnose and manage. We have made an attempt to analyse the possible causes of the sequential appearance of ITP and ET taking into consideration the following: alteration of the thrombopoietin (TPO) receptor, the role of autoimmunity and inflammation, and cytokine modulation. A better understanding of these interactions may provide opportunities to determine predisposing factors and aid in finding new treatment modalities both for ITP and ET patients.
Collapse
Affiliation(s)
- Marta Sobas
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteura 4, 50-367 Wroclaw, Poland; (M.P.-D.); (M.B.); (T.W.)
| | - Maria Podolak-Dawidziak
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteura 4, 50-367 Wroclaw, Poland; (M.P.-D.); (M.B.); (T.W.)
| | - Krzysztof Lewandowski
- Hematology and Bone Marrow Transplantation Department, University of Medical Sciences, 60-569 Poznan, Poland;
| | - Michał Bator
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteura 4, 50-367 Wroclaw, Poland; (M.P.-D.); (M.B.); (T.W.)
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteura 4, 50-367 Wroclaw, Poland; (M.P.-D.); (M.B.); (T.W.)
| |
Collapse
|
15
|
Guo C, Gao YY, Ju QQ, Wang M, Zhang CX, Gong M, Li ZL. MAPK14 over-expression is a transcriptomic feature of polycythemia vera and correlates with adverse clinical outcomes. J Transl Med 2021; 19:233. [PMID: 34059095 PMCID: PMC8166116 DOI: 10.1186/s12967-021-02913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022] Open
Abstract
Background The transcriptomic signature has not been fully elucidated in PV, as well as mRNA markers for clinical variables (thrombosis, leukemic transformation, survival, etc.). We attempted to reveal and validate crucial co-expression modules and marker mRNAs correlating with polycythemia vera (PV) by weighted gene co-expression network analysis (WGCNA). Material and methods The GSE57793/26014/61629 datasets were downloaded from Gene Expression Omnibus (GEO) database and integrated into one fused dataset. By R software and ‘WGCNA’ package, the PV-specific co-expression module was identified, the pathway enrichment profile of which was obtained by over-representation analysis (ORA). Protein–protein interaction (PPI) network and hub gene analysis identified MAPK14 as our target gene. Then the distribution of MAPK14 expression in different disease/mutation types, were depicted based on external independent datasets. Genome-scale correlation analysis revealed the association of MAPK14 and JAK/STAT family genes. Then gene set enrichment analysis (GSEA) was performed to detect the activated and suppressed pathways associating with MAPK14 expression. Moreover, GSE47018 dataset was utilized to compare clinical variables (thrombosis, leukemic transformation, survival, etc.) between MAPK14-high and MAPK14-low groups. Results An integrated dataset including 177 samples (83 PV, 35 ET, 17 PMF and 42 normal donors) were inputted into WGCNA. The ‘tan’ module was identified as the PV-specific module (R2 = 0.56, p = 8e−16), the genes of which were dominantly enriched in pro-inflammatory pathways (Toll-like receptor (TLR)/TNF signaling, etc.). MAPK14 is identified as the top hub gene in PV-related PPI network with the highest betweenness. External datasets validated that the MAPK14 expression was significantly higher in PV than that of essential thrombocytosis (ET)/primary myelofibrosis (PMF) patients and normal donors. JAK2 homozygous mutation carriers have higher level of MAPK14 than that of other mutation types. The expression of JAK/STAT family genes significantly correlated with MAPK14, which also contributed to the activation of oxidated phosphorylation, interferon-alpha (IFNα) response and PI3K-Akt-mTOR signaling, etc. Moreover, MAPK14-high group have more adverse clinical outcomes (splenectomy, thrombosis, disease aggressiveness) and inferior survival than MAPK14-low group. Conclusion MAPK14 over-expression was identified as a transcriptomic feature of PV, which was also related to inferior clinical outcomes. The results provided novel insights for biomarkers and therapeutic targets for PV. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02913-3.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ya-Yue Gao
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Qian-Qian Ju
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Min Wang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Chun-Xia Zhang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China.
| |
Collapse
|