1
|
Wang J, Liu ZX, Huang ZH, Wen J, Rao ZZ. Long non-coding RNA in the regulation of cell death in hepatocellular carcinoma. World J Clin Oncol 2025; 16:104061. [DOI: 10.5306/wjco.v16.i4.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/02/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer, accounting for 90% of all cases. Currently, early diagnosis of HCC can be achieved through serum alpha-fetoprotein detection, B-ultrasound, and computed tomography scanning; however, their specificity and sensitivity are suboptimal. Despite significant advancements in HCC biomarker detection, the prognosis for patients with HCC remains unfavorable due to tumor heterogeneity and limited understanding of its pathogenesis. Therefore, it is crucial to explore more sensitive HCC biomarkers for improved diagnosis, monitoring, and management of the disease. Long non-coding RNA (lncRNA) serves as an auxiliary carrier of genetic information and also plays diverse intricate regulatory roles that greatly contribute to genome complexity. Moreover, investigating gene expression regulation networks from the perspective of lncRNA may provide insights into the diagnosis and prognosis of HCC. We searched the PubMed database for literature, comprehensively classified regulated cell death mechanisms and systematically reviewed research progress on lncRNA-mediated cell death pathways in HCC cells. Furthermore, we prospectively summarize its potential implications in diagnosing and treating HCC.
Collapse
Affiliation(s)
- Jiang Wang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zi-Xuan Liu
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhi-Hong Huang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhou-Zhou Rao
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410003, Hunan Province, China
| |
Collapse
|
2
|
Deng H, Wu D, He Y, Yu X, Liu J, Zhang Y, Leng B, Yuan X, Xiao L. E2F1-driven EXOSC10 transcription promotes hepatocellular carcinoma growth and stemness: a potential therapeutic target. Hereditas 2025; 162:60. [PMID: 40221814 PMCID: PMC11992873 DOI: 10.1186/s41065-025-00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND E2F Transcription Factor 1 (E2F1) is a transcription factor that plays a crucial role in the growth of many cancers, including hepatocellular carcinoma (HCC). Herein, this study probed the functions and underlying mechanisms of E2F1 in HCC tumorigenesis. METHODS The expression profiles of E2F1 and Exosome Component 10 (EXOSC10) were detected using qRT-PCR and western blotting. Functional experiments were carried out using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, tube formation, and sphere formation assays in vitro, as well as xenograft experiments in vivo, respectively. Stemness-related proteins were assayed using western blotting. The interaction between E2F1 and EXOSC10 was verified using bioinformatics analysis and dual-luciferase reporter assay. RESULTS E2F1 was highly expressed in HCC tissues and cells, and was associated with advanced TNM stage, distant metastasis, and short survival rate. Functionally, knockdown of E2F1 suppressed HCC cell proliferation, angiogenesis, and stemness, and induced cell apoptosis. Mechanistically, E2F1 directly bound to the promoter region of EXOSC10 to up-regulate its expression. EXOSC10 silencing impaired HCC cell proliferation, angiogenesis, and stemness. Moreover, the anticancer effects of E2F1 knockdown were reversed by EXOSC10 elevation. In vivo assay, E2F1 deficiency suppressed HCC tumor growth and eliminated cancer stemness, while these effects were abolished by EXOSC10 up-regulation. CONCLUSION E2F1 promotes EXOSC10 transcription and then facilitates HCC growth and cancer stemness, revealing a potential target for HCC therapy.
Collapse
Affiliation(s)
- Haoyue Deng
- Department of Pathology, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Dingyong Wu
- Department of Oncology, Songshan General Hospital, Chongqing, 401120, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Inaffiliationidualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Xiaolei Yu
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Jifei Liu
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Yanrui Zhang
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Bing Leng
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Xiaofeng Yuan
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China.
| | - Liguo Xiao
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China.
| |
Collapse
|
3
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2025; 63:1014-1062. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Deng H, Zhou P, Wang J, Zeng J, Yu C. CircRNA expression profiling of the rat thalamus in temporomandibular joint chronic inflammatory pain. Gene 2025; 934:149024. [PMID: 39433265 DOI: 10.1016/j.gene.2024.149024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Orofacial pain (OFP) induced by temporomandibular disorders (TMDs) is prevalent, affecting approximately 4.6 % of the population. One specific type of TMD is temporomandibular osteoarthritis (TMJOA), a common degenerative disease that significantly impacts patients' quality of life. Differentially expressed circular RNAs (DEcircRNAs) in the thalamus, which serves as a relay station in the orofacial pain transmission pathway, may play a crucial role and serve as potential target markers for inflammation and the progression of inflammatory pain in TMJOA. The aim of this study was to investigate the expression profile of circRNAs in the thalamus of TMJOA. We obtained the circRNA expression profile from the thalamus of a rat model of TMJOA through high-throughput sequencing (HT-seq) and further validated their expression using reverse transcription real-time polymerase chain reaction (RT-qPCR), followed by bioinformatics analysis of the expression data. A total of 425 circRNAs (DESeq2 p- value < 0.05, |log2FoldChange| > 0.0) were identified as significantly differentially expressed by RNA-Seq, comprising 188 up-regulated and 237 down-regulated circRNAs. After validation via RT-qPCR, we employed miRanda software to predict the binding sites of miRNAs for the identified circRNAs to further explore the functions of DEcircRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that DEcircRNAs were primarily enriched in pathways and functions related to synapse development, protein signaling and modification, 'Circadian entertainment', the 'MAPK signaling pathway', and 'Glutamatergic synapse'. These findings suggest that DEcircRNAs in the thalamus play a significant role in the progression of TMJOA and may serve as promising candidate molecular targets for gene therapy.
Collapse
Affiliation(s)
- Haixia Deng
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Pan Zhou
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jing Wang
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
5
|
Abudoureyimu M, Sun N, Chen W, Lin X, Pan F, Wang R. Aurora-A promotes lenvatinib resistance experimentally through hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma. Int J Immunopathol Pharmacol 2025; 39:3946320251316692. [PMID: 39895095 PMCID: PMC11789117 DOI: 10.1177/03946320251316692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVE This study aimed to investigate whether the dysregulation of Aurora-A is involved in lenvatinib resistance in hepatocellular carcinoma. METHODS Bioinformatics tools and drug sensitivity assays were used to investigate the association between Aurora-A expression level and lenvatinib resistance in hepatocellular carcinoma cell lines. Cell function experiments had performed after treatment with lenvatinib and/or a selective Aurora-A inhibitor (MLN-8237). CircRNA microarray, RIP, RNA pull-down, and dual-luciferace reporter assay were performed to identify the downstream molecular mechanism of Aurora-A dysregulation. RESULTS Aurora-A expression was positively correlated with lenvatinib resistance in hepatocellular carcinoma cells. The Aurora-A selective inhibitor MLN-8237, in combination with lenvatinib, synergistically inhibited hepatocellular carcinoma cell proliferation in vitro and vivo, suggesting the Aurora-A might be a potential therapeutic target for lenvatinib resistance. Mechanistically, Aurora-A induced FGFR1 expression through the hsa-circ-0058046/miR-424-5p/FGFR1 axis. Aurora-A promotes lenvatinib resistance through hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma cells. The simultaneous inhibition of FGFR1 by the Aurora-A inhibitor MLN-8237 and lenvatinib overcame lenvatinib resistance in hepatocellular carcinoma cells. CONCLUSION Collectively, our findings indicate that Aurora-A promotes lenvatinib resistance through the hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma (HCC) cells. These results suggest that Aurora-A may serve as a therapeutic target for HCC patients exhibiting lenvatinib resistance. Furthermore, the combination of lenvatinib and MLN-8237 shows potential for clinical trials aimed at overcoming lenvatinib resistance.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Humans
- Phenylurea Compounds/pharmacology
- Quinolines/pharmacology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Drug Resistance, Neoplasm/drug effects
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Cell Line, Tumor
- Aurora Kinase A/metabolism
- Aurora Kinase A/genetics
- Aurora Kinase A/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Animals
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Mice, Nude
- Mice
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Ni Sun
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Weiwei Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Fan Pan
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Hu Y, Zhang Y, Wang S, Wang R, Yuan Q, Zhu L, Xia F, Xue M, Wang Y, Li Y, Yuan C. LINC00667: A Novel Vital Oncogenic LincRNA. Curr Med Chem 2025; 32:678-687. [PMID: 37855347 DOI: 10.2174/0109298673248494231010044348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/14/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) have a variety of properties that differ from those of messenger RNAs (mRNAs) encoding proteins. Long intergenic nonprotein coding RNA 667 (LINC00667) is a non-coding transcript located on chromosome 18p11.31. Recently, many studies have found that LINC00667 can enhance the progression of various cancers and play a key part in a lot of diseases, such as tumorigenesis. Therefore, LINC00667 can be recognized as a potential biomarker and therapeutic target. So, we reviewed the biological functions, relevant mechanisms, as well as clinical significance of LINC00667 in several human cancers in detail.
Collapse
Affiliation(s)
- Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Leiqi Zhu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Fangqi Xia
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Mengzhen Xue
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yuanyang Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
7
|
Lin C, Wu J, Wang Z, Xiang Y. Long non-coding RNA LNC-POTEM-4 promotes HCC progression via the LNC-POTEM-4/miR-149-5p/Wnt4 signaling axis. Cell Signal 2024; 124:111412. [PMID: 39278454 DOI: 10.1016/j.cellsig.2024.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Information on the potential role of the long non-coding RNA LNC-POTEM-4 in cancer progression is limited. Our preliminary study found that LNC-POTEM-4 was overexpressed in hepatocellular carcinoma (HCC) tissues, which led us to further investigate the biological function and molecular mechanism of LNC-POTEM-4 in HCC development. LNC-POTEM-4 expression in HCC tissues was examined using transcriptome sequencing and quantitative reverse transcription PCR. The relationships between LNC-POTEM-4 and the stage and prognosis of HCC in patient data from the TCGA database were analyzed. The effects of LNC-POTEM-4 on proliferation, invasion/migration, and epithelial-mesenchymal transition marker expression in HCC cells were evaluated in vitro using gain- and loss-of-function assays, while its effects on tumor growth and metastasis were explored through animal experiments. A LNC-POTEM-4/microRNA (miR)-149-5p/Wnt4 regulatory signaling axis was identified using bioinformatics analysis, and dual luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Co-transfection of LNC-POTEM-4 and Wnt4 expression plasmids was employed to confirm the new signaling pathway. We found that LNC-POTEM-4 was overexpressed in HCC tissues and was linked to poor staging and prognosis. LNC-POTEM-4 promoted proliferation, invasion, migration, and the epithelial-mesenchymal transition of HCC cells in vitro. Silencing of LNC-POTEM-4 inhibited HCC growth and distant metastasis in vivo. Mechanically, LNC-POTEM-4 was found to function as a competitive endogenous RNA, upregulating Wnt4 by sponging miR-149-5p to promote HCC progression. Wnt4 overexpression may have counteracted the tumor-inhibition effect of LNC-POTEM-4 silencing. In conclusion, LNC-POTEM-4 upregulated Wnt4 to activate the Wnt signaling pathway and stimulate the malignancy tendency of HCC by sponging miR-149-5p, providing a prospective target for the detection and therapy of HCC. However, the effects of LNC-POTEM-4 on the miR-149-5p/Wnt4 signaling axis should be further studied in animal experiments.
Collapse
Affiliation(s)
- Chao Lin
- Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jiacheng Wu
- Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Zhixuan Wang
- Intensive Care Medicine, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Yien Xiang
- Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
8
|
Hussain MS, Sharma S, Kumari A, Kamran A, Bahl G, Bisht AS, Sultana A, Ashique S, Ramalingam PS, Arumugam S. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: pathogenesis and therapeutic potential. Epigenomics 2024; 16:1453-1464. [PMID: 39601046 PMCID: PMC11622780 DOI: 10.1080/17501911.2024.2430170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Neurofibromatosis (NF) is identified as genetic disorder characterized by multiple tumors on nerve tissues. NF1 is the most prevalent form, identified by neurofibromas and skin changes. NF1 is the most prevalent neurofibromatosis disorder, distinct from the rarer NF2 and schwannomatosis (SWN) conditions. NF2, including NF2-related SWN (NF2-SWN), predominantly involves schwannoma formation and differs from NF1 in its genetic basis and clinical presentation. Despite the established genetic basis of NF, effective treatments remain scarce. Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression, impacting pathways vital to tumor biology. This review explores the lncRNAs role in NF pathogenesis along with their potential as therapeutic targets. LncRNAs such as ANRIL and H19 show dysregulated expression in NF, influencing signaling pathways like Ras/MAPK and JAK/STAT, thereby contributing to tumor development. Understanding these interactions sheds light on the molecular mechanisms underlying NF and highlights lncRNAs as potential biomarkers of diagnosis and prognosis of NF. Additionally, therapeutic strategies targeting lncRNAs with antisense oligonucleotides (ASOs) or CRISPR-Cas9 offer promising treatment options. The present review emphasizes crucial role of lncRNAs in NF pathogenesis and their promise to create innovative treatments, aiming to improve patient outcomes and meet the urgent need for effective NF therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Somya Sharma
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Chandigarh, India
| | | | - Gurusha Bahl
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University (Deemed to be University), Mangalore, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, India
| | | | - Sivakumar Arumugam
- Protein Engineering lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
10
|
Maqbool M, Hussain MS, Bisht AS, Kumari A, Kamran A, Sultana A, Kumar R, Khan Y, Gupta G. Connecting the dots: LncRNAs in the KRAS pathway and cancer. Pathol Res Pract 2024; 262:155570. [PMID: 39226802 DOI: 10.1016/j.prp.2024.155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as important participants in several biological functions, particularly their complex interactions with the KRAS pathway, which provide insights into the significant roles lncRNAs play in cancer development. The KRAS pathway, a central signaling cascade crucial for cell proliferation, survival, and differentiation, stands out as a key therapeutic target due to its aberrant activation in many human cancers. Recent investigations have unveiled a myriad of lncRNAs, such as H19, ANRIL, and MEG3, intricately modulating the KRAS pathway, influencing both its activation and repression through various mechanisms, including epigenetic modifications, transcriptional regulation, and post-transcriptional control. These lncRNAs function as fine-tuners, delicately orchestrating the balance required for normal cellular function. Their dysregulation has been linked to the development and progression of multiple malignancies, including lung, pancreatic, and colorectal carcinomas, which frequently harbor KRAS mutations. This scrutiny delves into the functional diversity of specific lncRNAs within the KRAS pathway, elucidating their molecular mechanisms and downstream effects on cancer phenotypes. Additionally, it underscores the diagnostic and prognostic potential of these lncRNAs as indicators for cancer detection and assessment. The complex regulatory network that lncRNAs construct within the context of the KRAS pathway offers important insights for the creation of focused therapeutic approaches, opening new possibilities for precision medicine in oncology. However, challenges such as the dual roles of lncRNAs in different cancer types and the difficulty in therapeutically targeting these molecules highlight the ongoing debates and need for further research. As ongoing studies unveil the complexities of lncRNA-mediated KRAS pathway modulation, the potential for innovative cancer interventions becomes increasingly promising.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Gharaun, Punjab 140413, India
| | - Almaz Kamran
- HIMT College of Pharmacy, Plot No. 08, Knowledge Park - 1, Greater Noida, Uttar Pradesh 201310, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University, Deralakatte, Mangalore, Karnataka, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
11
|
Ma R, Wang A, Yang M, Huang Z, Liu G, Wei Q, Lu Y, Wei H, Wang J, Tang Q, Pu J. Hsa_circ_0000092 up-regulates IL24 by SMC1A to induce macrophages M2 polarization. Heliyon 2024; 10:e36517. [PMID: 39296099 PMCID: PMC11408814 DOI: 10.1016/j.heliyon.2024.e36517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) as the malignant cancers with high morbidity. The EMT of HCC has closely linked to the metastasis and recurrence. Moreover, tumor-associated macrophages (TAMs) can interact with HCC cells in the immune microenvironment; the M2 polarization of TAMs enhance the HCC cells EMT. The mechanism between HCC cells and TAMs is still unclear and our study was aimed to uncover it. Methods We performed RT-qPCR and western to detach the RNA and protein expression. The relationship among has_circ_0000092, U2AF2, SMC1A and IL24 were revealed through mechanism experiments. Rescue assays were implemented to determine how circ_0000092 modulates M2 polarization of TAMs. Results As detected by RT-qPCR, has_circ_0000092 was with high expression in HCC cells and could recruit U2AF2 to promote transcription of SMC1A. Moreover, circ_0000092 could control macrophage M2 polarization via promoting IL24 expression in HCC cells. Conclusion To conclude, hsa_circ_0000092 can up-regulates IL24 by SMC1A to induce macrophages M2 polarization.
Collapse
Affiliation(s)
- Rihai Ma
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Anmin Wang
- Graduate College of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Meng Yang
- Graduate College of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Zihua Huang
- Graduate College of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Guoman Liu
- Graduate College of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Qing Wei
- Graduate College of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| |
Collapse
|
12
|
Zhang YT, Zhao LJ, Zhou T, Zhao JY, Geng YP, Zhang QR, Sun PC, Chen WC. The lncRNA CADM2-AS1 promotes gastric cancer metastasis by binding with miR-5047 and activating NOTCH4 translation. Front Pharmacol 2024; 15:1439497. [PMID: 39309008 PMCID: PMC11412803 DOI: 10.3389/fphar.2024.1439497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background Multi-organ metastasis has been the main cause of death in patients with Gastric cancer (GC). The prognosis for patients with metastasized GC is still very poor. Long noncoding RNAs (lncRNAs) always been reported to be closely related to cancer metastasis. Methods In this paper, the aberrantly expressed lncRNA CADM2-AS1 was identified by lncRNA-sequencing in clinical lymph node metastatic GC tissues. Besides, the role of lncRNA CADM2-AS1 in cancer metastasis was detected by Transwell, Wound healing, Western Blot or other assays in vitro and in vivo. Further mechanism study was performed by RNA FISH, Dual-luciferase reporter assay and RT-qPCR. Finally, the relationship among lncRNA CADM2-AS1, miR-5047 and NOTCH4 in patient tissues was detected by RT-qPCR. Results In this paper, the aberrantly expressed lncRNA CADM2-AS1 was identified by lncRNA-sequencing in clinical lymph node metastatic GC tissues. Besides, the role of lncRNA CADM2-AS1 in cancer metastasis was detected in vitro and in vivo. The results shown that overexpression of the lncRNA CADM2-AS1 promoted GC metastasis, while knockdown inhibited it. Further mechanism study proved that lncRNA CADM2-AS1 could sponge and silence miR-5047, which targeting mRNA was NOTCH4. Elevated expression of lncRNA CADM2-AS1 facilitate GC metastasis by up-regulating NOTCH4 mRNA level consequently. What's more, the relationship among lncRNA CADM2-AS1, miR-5047 and NOTCH4 was further detected and verified in metastatic GC patient tissues. Conclusions LncRNA CADM2-AS1 promoted metastasis in GC by targeting the miR-5047/NOTCH4 signaling axis, which may be a potential target for GC metastasis.
Collapse
Affiliation(s)
- Yu-Tong Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li-Juan Zhao
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Teng Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yin-Ping Geng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiu-Rong Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei-Chun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen-Chao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Ding W, Xi S, Gao K, Weng D, Xu S, Huang G, Yu M, Yue H, Wang J. Clinical significance of LINC02532 in hepatitis B virus-associated hepatocellular carcinoma and its regulatory effect on tumor progression. Clin Res Hepatol Gastroenterol 2024; 48:102403. [PMID: 38901567 DOI: 10.1016/j.clinre.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIM Long non-coding RNAs (lncRNAs) play an important role in tumor progression, including in hepatocellular carcinoma (HCC) induced by hepatitis B virus (HBV). Therefore, the aim of this study was to investigate the role of LINC02532 in HCC, mainly for diagnostic prognostic value and cellular function, as well as mechanistic aspects. METHODS Initially, GEO and VirBase databases were used to screen for aberrant lncRNAs in HBV-HCC.Then, HBV-HCC persons followed up in our center were retrospectively studied to investigate the diagnostic, prognostic value of LINC02532 in HBV-HCC. Subsequently, the role of LINC02532 in HBV-HCC was measured using cellular function assay methods and possible mechanisms were analyzed in conjunction with bioinformatic predictive science. RESULTS LINC02532 was a lncRNA abnormally expressed in HBV-HCC. LINC02532 was significantly up-regulated in the expression level in HBV-HCC tissues compared with normal tissues from patients. Moreover, LINC02532 could distinguish HBV-HCC and predict the prognosis of HBV-HCC. In vitro experiments showed that LINC02532 could regulate miR-455-3p and promote the malignant characterization of HBV-HCC cells. CHEK2 was a target gene of miR-455-3p. CONCLUSIONS The prognosis and diagnosis of HBV-HCC can rely on the expression of LINC02532. LINC02532 was important for further progression of HBV-HCC, by moderating miR-455-3p/CHEK2.
Collapse
Affiliation(s)
- Wei Ding
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Sujuan Xi
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Kewei Gao
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Danping Weng
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Sheng Xu
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Guoping Huang
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Min Yu
- Department of Radiotherapy, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Haiyan Yue
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China.
| | - Jianguo Wang
- Department of Radiotherapy, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China.
| |
Collapse
|
14
|
Yang X, Xu C, Liu C, Wu X, Chen X, Hou J, Wang L. TGF-β1-Induced LINC01094 promotes epithelial-mesenchymal transition in hepatocellular carcinoma through the miR-122-5p/TGFBR2-SAMD2-SMAD3 Axis. Funct Integr Genomics 2024; 24:123. [PMID: 38992207 DOI: 10.1007/s10142-024-01403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis. It has been proven that long non-coding RNAs (lncRNAs) play an essential role in regulating HCC progression. However, the involvement of LINC01094 in regulating epithelial-mesenchymal transition (EMT) in HCC remains unclear. LINC01094 expression in HCC patients was retrieved from the Cancer Genome Atlas database. Overexpressing and downregulating LINC01094 were conducted to investigate its biological functions using Hep3B, SNU-387, and HuH-7 cells. Western blotting and morphological observation were performed to study the EMT in HCC cells. Transwell assay was adopted to determine the migration and invasion of HCC cells. The underlying mechanism of competitive endogenous RNAs (ceRNAs) was investigated using bioinformatics analysis, quantitative reverse-transcription polymerase chain reaction, and rescue experiments. Elevated LINC01094 expression was observed in HCC and associated with a poor prognosis. Knockdown of LINC01094 expression in SNU-387 and HuH-7 cells could inhibit migration, invasion, and EMT markers. Overexpression of LINC01094 indicated that LINC01094 promoted EMT via the TGF-β/SMAD signaling pathway. The bioinformatics analysis revealed that miR-122-5p was a target of LINC01094. The miRWalk database analysis showed that TGFBR2, SMAD2, and SMAD3 were downstream targets of miR-122-5p. Mechanically, LINC01094 acted as a ceRNA that facilitated HCC metastasis by sponging miR-122-5p to regulate the expression of TGFBR2, SMAD2, and SMAD3. Further, TGF-β1 could enhance the expression of LINC01094, forming a positive feedback loop. TGF-β1-induced LINC01094 expression promotes HCC cell migration and invasion by targeting the miR-122-5p/TGFBR2-SMAD2-SMAD3 axis. LINC01094 may be a potential prognostic biomarker and therapeutic target for HCC metastasis.
Collapse
Affiliation(s)
- Xiaofeng Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
| | - Cuicui Xu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
| | - Chenghao Liu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China.
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
15
|
Guo J, Zhang J, Xiang Y, Zhou S, Yang Y, Zheng J. Long noncoding RNA SNHG3 interacts with microRNA-502-3p to mediate ITGA6 expression in liver hepatocellular carcinoma. Cancer Sci 2024; 115:2286-2300. [PMID: 38680094 PMCID: PMC11247603 DOI: 10.1111/cas.16190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
SNHG3, a long noncoding RNA (lncRNA), has been linked to poor outcomes in patients with liver hepatocellular carcinoma (LIHC). In this study, we found that SNHG3 was overexpressed in LIHC and associated with poor outcomes in patients with LIHC. Functional assays, including colony formation, spheroid formation, and in vivo assays showed that SNHG3 promoted stemness of cancer stem cells (CSC) and tumor growth in vivo by interacting with microRNA-502-3p (miR-502-3p). miR-502-3p inhibitor repressed the tumor-suppressing effects of SNHG3 depletion. Finally, by RNA pull-down, dual-luciferase reporter assay, m6A methylation level detection, and m6A-IP-qPCR assays, we found that miR-502-3p targeted YTHDF3 to regulate the translation of integrin alpha-6 (ITGA6) and targeted HBXIP to inhibit the m6A modification of ITGA6 through methyltransferase-like 3 (METTL3). Our study revealed that SNHG3 controls the YTHDF3/ITGA6 and HBXIP/METTL3/ITGA6 pathways by repressing miR-502-3p expression to sustain the self-renewal properties of CSC in LIHC.
Collapse
Affiliation(s)
- Juncheng Guo
- Postdoctoral Workstation, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Jianquan Zhang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Yang Xiang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Shuai Zhou
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Yijun Yang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Haikou, Hainan, China
| |
Collapse
|
16
|
Dong FL, Xu ZZ, Wang YQ, Li T, Wang X, Li J. Exosome-derived circUPF2 enhances resistance to targeted therapy by redeploying ferroptosis sensitivity in hepatocellular carcinoma. J Nanobiotechnology 2024; 22:298. [PMID: 38811968 PMCID: PMC11137910 DOI: 10.1186/s12951-024-02582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Advanced hepatocellular carcinoma (HCC) can be treated with sorafenib, which is the primary choice for targeted therapy. Nevertheless, the effectiveness of sorafenib is greatly restricted due to resistance. Research has shown that exosomes and circular RNAs play a vital role in the cancer's malignant advancement. However, the significance of exosomal circular RNAs in the development of resistance to sorafenib in HCC remains uncertain. METHODS Ultracentrifugation was utilized to isolate exosomes (Exo-SR) from the sorafenib-resistant HCC cells' culture medium. Transcriptome sequencing and differential expression gene analysis were used to identify the targets of Exo-SR action in HCC cells. To identify the targets of Exo-SR action in HCC cells, transcriptome sequencing and analysis of differential expression genes were employed. To evaluate the impact of exosomal circUPF2 on resistance to sorafenib in HCC, experiments involving gain-of-function and loss-of-function were conducted. RNA pull-down assays and mass spectrometry analysis were performed to identify the RNA-binding proteins interacting with circUPF2. RNA immunoprecipitation (RIP), RNA pull-down, electrophoretic mobility shift assay (EMSA), immunofluorescence (IF) -fluorescence in situ hybridization (FISH), and rescue assays were used to validate the interactions among circUPF2, IGF2BP2 and SLC7A11. Finally, a tumor xenograft assay was used to examine the biological functions and underlying mechanisms of Exo-SR and circUPF2 in vivo. RESULTS A novel exosomal circRNA, circUPF2, was identified and revealed to be significantly enriched in Exo-SR. Exosomes with enriched circUPF2 enhanced sorafenib resistance by promoting SLC7A11 expression and suppressing ferroptosis in HCC cells. Mechanistically, circUPF2 acts as a framework to enhance the creation of the circUPF2-IGF2BP2-SLC7A11 ternary complex contributing to the stabilization of SLC7A11 mRNA. Consequently, exosomal circUPF2 promotes SLC7A11 expression and enhances the function of system Xc- in HCC cells, leading to decreased sensitivity to ferroptosis and resistance to sorafenib. CONCLUSIONS The resistance to sorafenib in HCC is facilitated by the exosomal circUPF2, which promotes the formation of the circUPF2-IGF2BP2-SLC7A11 ternary complex and increases the stability of SLC7A11 mRNA. Focusing on exosomal circUPF2 could potentially be an innovative approach for HCC treatment.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Humans
- Exosomes/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Sorafenib/pharmacology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Ferroptosis/drug effects
- Drug Resistance, Neoplasm
- Cell Line, Tumor
- Animals
- Mice
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Mice, Nude
- Amino Acid Transport System y+/metabolism
- Amino Acid Transport System y+/genetics
- Antineoplastic Agents/pharmacology
- Gene Expression Regulation, Neoplastic
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Feng-Lin Dong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zong-Zhen Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Ying-Qiao Wang
- Department of Hematology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Tao Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xin Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Jie Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China.
| |
Collapse
|
17
|
Wu Y, Tang H, Cui S, Liao Q, Zeng L, Tu Y. Hsa_circ_0051908 Promotes Hepatocellular Carcinoma Progression by Regulating the Epithelial-Mesenchymal Transition Process. Anal Cell Pathol (Amst) 2024; 2024:8645534. [PMID: 38715919 PMCID: PMC11074858 DOI: 10.1155/2024/8645534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 06/04/2024] Open
Abstract
Materials and Methods Hsa_circ_0051908 expression was determined using RT-qPCR. HCC cell proliferation, apoptosis, invasion, and migration were assessed using CCK-8 assay, EdU staining, TUNEL staining, flow cytometry, and transwell assay. The molecular mechanism was analyzed using western blotting. In addition, the role of hsa_circ_0051908 in tumor growth was evaluated in vivo. Results Hsa_circ_0051908 expression was increased in both HCC tissues and cell lines. The proliferation, migration, and invasion of HCC cells were significantly decreased after hsa_circ_0051908 knockdown, while cell apoptosis was notably increased. Furthermore, we found that hsa_circ_0051908 silencing downregulated vimentin and Snail and upregulated E-cadherin. In vivo, hsa_circ_0051908 silencing significantly inhibited the growth of the tumor. Conclusions Our data provide evidence that hsa_circ_0051908 promotes HCC progression partially by mediating the epithelial-mesenchymal transition process, and it may be used for HCC treatment.
Collapse
Affiliation(s)
- Yinbing Wu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Huafei Tang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shuzhong Cui
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Quanxing Liao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lisi Zeng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yinuo Tu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Tang Y, Ni A, Sun L, Li S, Li G. Analysis of the Upregulated Expression Mechanism of Apoptotic Chromatin Condensation Inducer 1 in Hepatocellular Carcinoma Based on Bioinformatics. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:307-315. [PMID: 39128105 PMCID: PMC11114172 DOI: 10.5152/tjg.2024.23454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/25/2023] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS A large number of differentially expressed molecules exist in hepatocellular carcinoma (HCC), and the mechanism by which they upregulate or downregulate expression is still unclear. The purpose of this study is to explore the possible mechanism of differential expression of apoptotic chromatin condensation inducer 1 (Acin1) in HCC. MATERIALS AND METHODS A mouse HCC model was constructed, and the expression of Acin1 in HCC was analyzed by whole transcriptome sequencing, bioinformatics analysis, and reverse transcription-quantitative polymerase chain reaction, and differentially expressed Acin1-related genes were screened to construct a protein-protein interaction and competing endogenous RNA (ceRNA) network. The microRNA (miRNAs) targeting Acin1 were further predicted using online databases and finally compared with sequencing data. RESULTS The expression of Acin1 was significantly up-regulated in HCC compared to the paracancerous and healthy control groups (P<.001). The top 10 upregulated genes closely related to Acin1 (Slc3a2, Wiz, Srrm2, Akt1, Hnrnpu, Sap18b, Pabpn1, Ddx39b, Eif4a3, and Rnps1) were mainly involved in pathways such as messenger RNA (mRNA) surveillance, RNA transport, spliceosome, Janus kinase/ signal transducers and activators of transcription signaling, apoptosis, and ubiquitin-mediated proteolysis. The ceRNA network identified several molecules (2 long noncoding RNAs, 50 miRNAs, and 49 mRNAs) interacting with Acin1, among which miR-674-5p was highly expressed in all sample tissues, and higher than that of other differentially expressed miRNAs, and significantly downregulated in HCC. Multiple online databases such as miRWalk also predicted that miR-674-5p targets Acin1. This shows that miR-674-5p may be an important molecule for targeting Acin1. CONCLUSION Acin1 is overexpressed in HCC, and the overexpressed Acin1 is most likely regulated by miR-674-5p and other ceRNA molecules.
Collapse
Affiliation(s)
- Yulian Tang
- Youjiang Medical University for Nationalities School of Laboratory Medicine, Baise, Guangxi, China
| | - Anni Ni
- Youjiang Medical University for Nationalities Graduate School, Baise, Guangxi, China
| | - Lishuang Sun
- Youjiang Medical University for Nationalities Graduate School, Baise, Guangxi, China
| | - Shu Li
- Youjiang Medical University for Nationalities Graduate School, Baise, Guangxi, China
| | - Genliang Li
- Youjiang Medical University for Nationalities School of Basic Medical Sciences, Baise, Guangxi, China
| |
Collapse
|
19
|
Huang B, Ou G, Zhang N. Identification of key regulatory molecules in the early development stage of Alzheimer's disease. J Cell Mol Med 2024; 28:e18151. [PMID: 38429903 PMCID: PMC10907834 DOI: 10.1111/jcmm.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 03/03/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, the incidence of which increases with age, and the pathological changes in the brain are irreversible. Recent studies have highlighted the essential role of long noncoding RNAs (lncRNAs) in AD by acting as competing endogenous RNAs (ceRNAs). Our aim was to construct lncRNA-associated ceRNA regulatory networks composed of potential biomarkers for the early stage of AD. AD related datasets come from AlzData and GEO databases. The R package 'Limma' identifies differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases for functional enrichment analysis. Protein-protein interactions (PPIs) in DEGs were constructed in the STRING database, and Cytoscape software identified DEGs. Convergent functional genomics (CFG) analysis of differentially expressed hub genes (referred to as early-DEGs) in the brain before the development of AD pathology. The AlzData database analyses the expression levels of early-DEGs in different nerve cells. The lncRNA-miRNA-mRNA regulatory network was established according to the ceRNA hypothesis. We identified four lncRNAs (XIST, NEAT1, KCNQ1OT1 and HCG18) and four miRNAs (hsa-let-7c-5p, hsa-miR-107, hsa-miR-129-2-3p and hsa-miR-214-3p) were preliminarily identified as potential biomarkers for early AD, competitively regulating Atp6v0b, Atp6v1e1 Atp6v1f and Syt1. This study indicates that NEAT1, XIST, HCG18 and KCNQ1OT1 act as ceRNAs in competitive binding with miRNAs to regulate the expression of Atp6v0b, Atp6v1e1, Atp6v1f and Syt1 before the occurrence of pathological changes in AD.
Collapse
Affiliation(s)
- Bin Huang
- Clinical LaboratoryFifth Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Guan‐yong Ou
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Ni Zhang
- Department of PhysiologyShantou University Medical CollegeShantouChina
| |
Collapse
|
20
|
Chang X, Li H, Huang Z, Song C, Zhang Z, Pan W. Matrine suppresses hepatocellular carcinoma tumorigenesis by modulating circ_0055976/miR-1179/lactate dehydrogenase A axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:1481-1493. [PMID: 37994612 DOI: 10.1002/tox.24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Matrine has been identified to have anticancer activity in hepatocellular carcinoma (HCC). Circ_0055976 was highly expressed in HCC. Here, we investigated the function and relationship of Matrine and circ_0055976 in HCC tumorigenesis. METHODS Cell proliferation and invasion were detected using Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation and transwell assays, respectively. Cell aerobic glycolysis was evaluated by detecting glucose consumption, lactate production, and the ratios of ATP/ADP. Levels of genes and proteins were detected by quantitative real-time polymerase chain reaction and Western blotting. The target relationship between miR-1179 and circ_0055976 or lactate dehydrogenase A (LDHA) was analyzed by dual-luciferase reporter assay. The mouse xenograft model was established to conduct the in vivo assay. RESULTS Matrine suppressed HCC cell proliferation, invasion and anaerobic glycolysis in vitro. Circ_0055976 was highly expressed in HCC tissues and cells, and was reduced by Matrine treatment. Moreover, overexpression of circ_0055976 reversed the anticancer effects of Matrine in HCC cells. Mechanistically, circ_0055976/miR-1179/LDHA formed an axis. Circ_0055976 knockdown or miR-1179 overexpression impaired HCC cell proliferation, invasion, and anaerobic glycolysis, which were reversed by miR-1179 inhibition or LDHA overexpression. Meanwhile, forced expression of LDHA abolished the regulatory effects of Matrine on HCC cells. In the clinic, Matrine impeded HCC tumor growth in vivo, and this effect was boosted after circ_0055976 silencing. CONCLUSION Matrine suppressed HCC cell proliferation, invasion, and anaerobic glycolysis via circ_0055976/miR-1179/LDHA axis, providing a new insight into the clinical application of Matrine in HCC treatment.
Collapse
Affiliation(s)
- Xinfeng Chang
- Department of human anatomy, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Hongwei Li
- Department of human anatomy, Gannan Medical University, Ganzhou, China
| | - Zhengchun Huang
- Department of human anatomy, Gannan Medical University, Ganzhou, China
| | - Chunhua Song
- Department of surgery, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Zhihua Zhang
- Graduate Department, Gannan Medical University, Ganzhou, China
| | - Wen Pan
- Department of Physiology, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
21
|
Zhu S, Cao S, Che J, Zhao L, Su Z, Li D, Pei R, Xu L, Ding Y, Zhou W. SCARB1-encoded circ _0029343 induces p73 splicing to promote growth and metastasis of hepatocellular carcinoma via miR-486-5p/SRSF3 axis. J Biochem Mol Toxicol 2024; 38:e23646. [PMID: 38345168 DOI: 10.1002/jbt.23646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/26/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Circular RNAs (circRNAs) exhibit essential regulation in the malignant development of hepatocellular carcinoma (HCC). This study aims to investigate the physiological mechanisms of circ_0029343 encoded by scavenger receptor class B member 1 (SCARB1) involved in the growth and metastasis of HCC. Differentially expressed mRNAs in HCC were obtained, followed by the prediction of target genes of differentially expressed miRNAs and gene ontology and kyoto encyclopedia of genes and genomes analysis on the differentially expressed mRNAs. Moreover, the regulatory relationship between circRNAs encoded by SCARB1 and differentially expressed miRNAs was predicted. In vitro cell experiments were performed to verify the effects of circ_0029343, miR-486-5p, and SRSF3 on the malignant features of HCC cells using the gain- or loss-of-function experiments. Finally, the effects of circ_0029343 on the growth and metastasis of HCC cells in xenograft mouse models were also explored. It was found that miR-486-5p might interact with seven circRNAs encoded by SCARB1, and its possible downstream target gene was SRSF3. Moreover, SRSF3 was associated with the splicing of various RNA. circ_0029343 could sponge miR-486-5p to up-regulate SRSF3 and activate PDGF-PDGFRB (platelet-derived growth factor and its receptor, receptor beta) signaling pathway by inducing p73 splicing, thus promoting the proliferation, migration, and invasion and inhibiting apoptosis of HCC cells. In vivo, animal experiments further confirmed that overexpression of circ_0029343 could promote the growth and metastasis of HCC cells in nude mice. circ_0029343 encoded by SCARB1 may induce p73 splicing and activate the PDGF-PDGFRB signaling pathway through the miR-486-5p/SRSF3 axis, thus promoting the growth and metastasis of HCC cells.
Collapse
MESH Headings
- Humans
- Animals
- Mice
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mice, Nude
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Cell Line, Tumor
- Cell Proliferation/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Gene Expression Regulation, Neoplastic
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
- Serine-Arginine Splicing Factors/genetics
- Serine-Arginine Splicing Factors/metabolism
Collapse
Affiliation(s)
- Shuo Zhu
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou, China
| | - Shengya Cao
- Department of Clinical Laboratory, Xuzhou City Cancer Hospital, Xuzhou, China
| | - Jinhui Che
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou, China
| | - Le Zhao
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou, China
| | - Zhan Su
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou, China
| | - Deqiang Li
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou, China
| | - Ruifeng Pei
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou, China
| | - Lu Xu
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou, China
| | - Yiren Ding
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou, China
| | - Wuyuan Zhou
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Xuzhou, China
| |
Collapse
|
22
|
Gao D, Cui C, Jiao Y, Zhang H, Li M, Wang J, Sheng X. Circular RNA and its potential diagnostic and therapeutic values in breast cancer. Mol Biol Rep 2024; 51:258. [PMID: 38302635 DOI: 10.1007/s11033-023-09172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women and still poses a significant threat to women worldwide. Recurrence of BC in situ, metastasis to distant organs, and resistance to chemotherapy are all attached to high mortality in patients with BC. Non-coding RNA (ncRNA) of the type known as "circRNA" links together from one end to another to create a covalently closed, single-stranded circular molecule. With characteristics including plurality, evolutionary conservation, stability, and particularity, they are extensively prevalent in various species and a range of human cells. CircRNAs are new and significant contributors to several kinds of disorders, including cardiovascular disease, multiple organ inflammatory responses and malignancies. Recent studies have shown that circRNAs play crucial roles in the occurrence of breast cancer by interacting with miRNAs to regulate gene expression at the transcriptional or post-transcriptional levels. CircRNAs offer the potential to be therapeutic targets for breast cancer treatment as well as prospective biomarkers for early diagnosis and prognosis of BC. Here, we are about to present an overview of the functions of circRNAs in the proliferation, invasion, migration, and resistance to medicines of breast cancer cells and serve as a promising resource for future investigations on the pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Di Gao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Can Cui
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yaoxuan Jiao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Han Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Min Li
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Junjie Wang
- Department of Pathophysiology, Jiangsu University School of Medicine, Zhenjiang, 212013, Jiangsu, China
| | - Xiumei Sheng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
23
|
Zahir M, Tavakoli B, Zaki-Dizaji M, Hantoushzadeh S, Majidi Zolbin M. Non-coding RNAs in Recurrent implantation failure. Clin Chim Acta 2024; 553:117731. [PMID: 38128815 DOI: 10.1016/j.cca.2023.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Recurrent implantation failure (RIF), defined as the inability to achieve conception following multiple consecutive in-vitro fertilization (IVF) attempts, represents a complex and multifaceted challenge in reproductive medicine. The emerging role of non-coding RNAs in RIF etiopathogenesis has only gained prominence over the last decade, illustrating a new dimension to our understanding of the intricate network underlying RIF. Successful embryo implantation demands a harmonious synchronization between an adequately decidualized endometrium, a competent blastocyst, and effective maternal-embryonic interactions. Emerging evidence has clarified the involvement of a sophisticated network of non-coding RNAs, including microRNAs, circular RNAs, and long non-coding RNAs, in orchestrating these pivotal processes. Disconcerted expression of these molecules can disrupt the delicate equilibrium required for implantation, amplifying the risk of RIF. This comprehensive review presents an in-depth investigation of the complex role played by non-coding RNAs in the pathogenesis of RIF. Furthermore, it underscores the vast potential of non-coding RNAs as diagnostic biomarkers and therapeutic targets, with the ultimate goal of enhancing implantation success rates in IVF cycles. As ongoing research continues to unravel the intercalated web of molecular interactions, exploiting the power of non-coding RNAs may offer promising avenues for mitigating the challenges posed by RIF and improving the outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Mazyar Zahir
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Tavakoli
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Maragheh University, Maragheh, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Sedigheh Hantoushzadeh
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Meccariello R, Bellenchi GC, Pulcrano S, D’Addario SL, Tafuri D, Mercuri NB, Guatteo E. Neuronal dysfunction and gene modulation by non-coding RNA in Parkinson's disease and synucleinopathies. Front Cell Neurosci 2024; 17:1328269. [PMID: 38249528 PMCID: PMC10796818 DOI: 10.3389/fncel.2023.1328269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Over the last few decades, emerging evidence suggests that non-coding RNAs (ncRNAs) including long-non-coding RNA (lncRNA), microRNA (miRNA) and circular-RNA (circRNA) contribute to the molecular events underlying progressive neuronal degeneration, and a plethora of ncRNAs have been identified significantly misregulated in many neurodegenerative diseases, including Parkinson's disease and synucleinopathy. Although a direct link between neuropathology and causative candidates has not been clearly established in many cases, the contribution of ncRNAs to the molecular processes leading to cellular dysfunction observed in neurodegenerative diseases has been addressed, suggesting that they may play a role in the pathophysiology of these diseases. Aim of the present Review is to overview and discuss recent literature focused on the role of RNA-based mechanisms involved in different aspects of neuronal pathology in Parkinson's disease and synucleinopathy models.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, CNR, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Sebastian Luca D’Addario
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Domenico Tafuri
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola B. Mercuri
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ezia Guatteo
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
25
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
26
|
Alharthi NS, Al-Zahrani MH, Hazazi A, Alhuthali HM, Gharib AF, Alzahrani S, Altalhi W, Almalki WH, Khan FR. Exploring the lncRNA-VEGF axis: Implications for cancer detection and therapy. Pathol Res Pract 2024; 253:154998. [PMID: 38056133 DOI: 10.1016/j.prp.2023.154998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Cancer is a complicated illness that spreads indefinitely owing to epigenetic, genetic, and genomic alterations. Cancer cell multidrug susceptibility represents a severe barrier in cancer therapy. As a result, creating effective therapies requires a better knowledge of the mechanisms driving cancer development, progress, and resistance to medications. The human genome is predominantly made up of long non coding RNAs (lncRNAs), which are currently identified as critical moderators in a variety of biological functions. Recent research has found that changes in lncRNAs are closely related to cancer biology. The vascular endothelial growth factor (VEGF) signalling system is necessary for angiogenesis and vascular growth and has been related to an array of health illnesses, such as cancer. LncRNAs have been identified to alter a variety of cancer-related processes, notably the division of cells, movement, angiogenesis, and treatment sensitivity. Furthermore, lncRNAs may modulate immune suppression and are being investigated as possible indicators for early identification of cancer. Various lncRNAs have been associated with cancer development and advancement, serving as cancer-causing or suppressing genes. Several lncRNAs have been demonstrated through research to impact the VEGF cascade, resulting in changes in angiogenesis and tumor severity. For example, the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to foster the formation of oral squamous cell carcinoma and the epithelial-mesenchymal transition by stimulating the VEGF-A and Notch systems. Plasmacytoma variant translocation 1 (PVT1) promotes angiogenesis in non-small-cell lung cancer by affecting miR-29c and boosting the VEGF cascade. Furthermore, lncRNAs regulate VEGF production and angiogenesis by interacting with multiple downstream signalling networks, including Wnt, p53, and AKT systems. Identifying how lncRNAs engage with the VEGF cascade in cancer gives beneficial insights into tumor biology and possible treatment strategies. Exploring the complicated interaction between lncRNAs and the VEGF pathway certainly paves avenues for novel ways to detect better accurately, prognosis, and cure cancers. Future studies in this area could open avenues toward the creation of innovative cancer therapy regimens that enhance the lives of patients.
Collapse
Affiliation(s)
- Nahed S Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudia Arabia
| | | | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Hayaa Moeed Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shatha Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Altalhi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences AlQuwayiyah, Shaqra University, Saudi Arabia.
| |
Collapse
|
27
|
Lu Y, Pan K, Zhang Y, Peng J, Cao D, Li X. The mechanism of lncRNA SNHG1 in osteogenic differentiation via miR-497-5p/ HIF1AN axis. Connect Tissue Res 2024; 65:63-72. [PMID: 37966352 DOI: 10.1080/03008207.2023.2281321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
The pivotal role of lncRNAs in osteoporosis progression and development necessitates a comprehensive exploration of the functional and precise molecular mechanisms underlying lncRNA SNHG1's regulation of osteoblast differentiation and calcification. The study involved inducing BMSCs cells to differentiate into osteoblasts, followed by transfections of miR-497-5p inhibitors, pcDNA3.1-SNHG1, sh-HIF1AN, miR-497-5p mimics, and respective negative controls into BMSCs. Quantitative PCR (qPCR) was employed to assess the expression of SNHG1 and miR-497-5p. Western Blotting was conducted to measure the levels of short stature-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), and HIF1AN. Alkaline phosphatase (ALP) activity was determined using appropriate assay kits. Calcium nodule staining was performed through Alizarin red staining. Dual luciferase reporter gene assays were executed to validate the interaction between SNHG1 and miR-497-5p, as well as HIF1AN. Throughout osteogenic differentiation, there was a down-regulation of SNHG1 and HIF1AN, in contrast to an elevation in miR-497-5p levels. Direct interactions between miR-497-5p and both SNHG1 and HIF1AN were observed. Notably, SNHG1 exhibited the ability to modulate HIF1AN by influencing miR-497-5p, thereby inhibiting osteogenic differentiation. Functioning as a competitive endogenous RNA, lncRNA SNHG1 exerts an inhibitory influence on osteogenic differentiation via the miR-497-5p/HIF1AN axis. This highlights the potential for lncRNA SNHG1 to emerge as a promising therapeutic target for osteoporosis. The study's findings pave the way for a novel target strategy in the future treatment of osteoporosis.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Kaihua Pan
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Yunqing Zhang
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Jiang Peng
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Daning Cao
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Xiaoming Li
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| |
Collapse
|
28
|
Kishi S, Mori S, Fujiwara-Tani R, Ogata R, Sasaki R, Ikemoto A, Goto K, Sasaki T, Miyake M, Sasagawa S, Kawaichi M, Luo Y, Bhawal UK, Fujimoto K, Nakagawa H, Kuniyasu H. ERVK13-1/miR-873-5p/GNMT Axis Promotes Metastatic Potential in Human Bladder Cancer though Sarcosine Production. Int J Mol Sci 2023; 24:16367. [PMID: 38003554 PMCID: PMC10671720 DOI: 10.3390/ijms242216367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-glycine (sarcosine) is known to promote metastatic potential in some cancers; however, its effects on bladder cancer are unclear. T24 cells derived from invasive cancer highly expressed GNMT, and S-adenosyl methionine (SAM) treatment increased sarcosine production, promoting proliferation, invasion, anti-apoptotic survival, sphere formation, and drug resistance. In contrast, RT4 cells derived from non-invasive cancers expressed low GNMT, and SAM treatment did not produce sarcosine and did not promote malignant phenotypes. In T24 cells, the expression of miR-873-5p, which suppresses GNMT expression, was suppressed, and the expression of ERVK13-1, which sponges miR-873-5p, was increased. The growth of subcutaneous tumors, lung metastasis, and intratumoral GNMT expression in SAM-treated nude mice was suppressed in T24 cells with ERVK13-1 knockdown but promoted in RT4 cells treated with miR-873-5p inhibitor. An increase in mouse urinary sarcosine levels was observed to correlate with tumor weight. Immunostaining of 86 human bladder cancer cases showed that GNMT expression was higher in cases with muscle invasion and metastasis. Additionally, urinary sarcosine concentrations increased in cases of muscle invasion. Notably, urinary sarcosine concentration may serve as a marker for muscle invasion in bladder cancer; however, further investigation is necessitated.
Collapse
Grants
- 22K09341 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K16621 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara 634-8522, Japan; (M.M.); (K.F.)
| | - Satoru Sasagawa
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Masashi Kawaichi
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Yi Luo
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China;
| | - Ujjal Kumar Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan;
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara 634-8522, Japan; (M.M.); (K.F.)
| | - Hidemitsu Nakagawa
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| |
Collapse
|
29
|
Rodríguez-Esparragón F, Torres-Mata LB, Cazorla-Rivero SE, Serna Gómez JA, González Martín JM, Cánovas-Molina Á, Medina-Suárez JA, González-Hernández AN, Estupiñán-Quintana L, Bartolomé-Durán MC, Rodríguez-Pérez JC, Varas BC. Analysis of ANRIL Isoforms and Key Genes in Patients with Severe Coronary Artery Disease. Int J Mol Sci 2023; 24:16127. [PMID: 38003316 PMCID: PMC10671206 DOI: 10.3390/ijms242216127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), also named CDKN2B-AS1, is a long non-coding RNA with outstanding functions that regulates genes involved in atherosclerosis development. ANRIL genotypes and the expression of linear and circular isoforms have been associated with coronary artery disease (CAD). The CDKN2A and the CDKN2B genes at the CDKN2A/B locus encode the Cyclin-Dependent Kinase inhibitor protein (CDKI) p16INK4a and the p53 regulatory protein p14ARF, which are involved in cell cycle regulation, aging, senescence, and apoptosis. Abnormal ANRIL expression regulates vascular endothelial growth factor (VEGF) gene expression, and upregulated Vascular Endothelial Growth Factor (VEGF) promotes angiogenesis by activating the NF-κB signaling pathway. Here, we explored associations between determinations of the linear, circular, and linear-to-circular ANRIL gene expression ratio, CDKN2A, VEGF and its receptor kinase insert domain-containing receptor (KDR) and cardiovascular risk factors and all-cause mortality in high-risk coronary patients before they undergo coronary artery bypass grafting surgery (CABG). We found that the expression of ANRIL isoforms may help in the prediction of CAD outcomes. Linear isoforms were correlated with a worse cardiovascular risk profile while the expression of circular isoforms of ANRIL correlated with a decrease in oxidative stress. However, the determination of the linear versus circular ratio of ANRIL did not report additional information to that determined by the evaluation of individual isoforms. Although the expressions of the VEFG and KDR genes correlated with a decrease in oxidative stress, in binary logistic regression analysis it was observed that only the expression of linear isoforms of ANRIL and VEGF significantly contributed to the prediction of the number of surgical revascularizations.
Collapse
Affiliation(s)
- Francisco Rodríguez-Esparragón
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, 38296 San Cristobal de La Laguna, Tenerife, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura B. Torres-Mata
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Department of Specific Didactics, University of Las Palmas de Gran Canaria, 35004 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Sara E. Cazorla-Rivero
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Department of Internal Medicine, University of La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Jaime A. Serna Gómez
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Deparment of Cardiovascular Surgery, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Jesús M. González Martín
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángeles Cánovas-Molina
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - José A. Medina-Suárez
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Department of Specific Didactics, University of Las Palmas de Gran Canaria, 35004 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Ayose N. González-Hernández
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Deparment of Neurology and Clinical Neurophysiology, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Lidia Estupiñán-Quintana
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - María C. Bartolomé-Durán
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - José C. Rodríguez-Pérez
- Vice Chancellor of Research, Universidad Fernando Pessoa Canarias, 35002 Santa María de Guía de Gran Canaria, Gran Canaria, Spain;
| | - Bernardino Clavo Varas
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, 38296 San Cristobal de La Laguna, Tenerife, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Universitary Institute for Research in Biomedicine and Health (iUIBS), Molecular and Translational Pharmacology Group, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Spanish Group of Clinical Research in Radiation Oncology (GICOR), 28290 Madrid, Spain
| |
Collapse
|
30
|
Chen J, Liu Z, Zhong Y, Chen H, Xie L. Circ_0124208 Promotes the Progression of Hepatocellular Carcinoma by Regulating the miR-338-3p/LAMC1 Axis. Mol Biotechnol 2023; 65:1750-1763. [PMID: 36780058 DOI: 10.1007/s12033-023-00686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/29/2023] [Indexed: 02/14/2023]
Abstract
Hundreds of circular RNAs (circRNAs) have been identified as key regulators in biological processes; however, only few of these circRNAs have been functionally described to participate in the development of hepatocellular carcinoma (HCC). The present study aimed to reveal the function and molecular mechanisms of circ_0124208 in HCC. Real-time quantitative PCR revealed the upregulation of circ_0124208 in HCC tissues and cells. Based on cell functional experiments, silencing circ_0124208 attenuated proliferation and migration, but boosted the apoptosis of Hep 3B and Huh7 cells in vitro. The in vivo experiment further validated the repression of tumor growth via circ_0124208 knockdown. RNA immunoprecipitation and dual-luciferase reporter assays showed that circ_0124208 sponged miR-338-3p and reduced its expression. miR-338-3p inhibition was found to partially reverse the tumor-suppressive effects caused by circ_0124208 in Hep 3B and Huh7 cells. Furthermore, miR-338-3p directly targeted laminin subunit gamma 1 (LAMC1). The malignancy of Hep 3B and Huh7 cell was decreased by LAMC1 knockdown, and this effect was mitigated by miR-338-3p suppression. Overall, circ_0124208 was demonstrated for the first time to play a crucial role as an oncogene in HCC, implying that it could be a useful biomarker for HCC diagnosis. Furthermore, the circ_0124208/miR-338-3p/LAMC1 axis can be used as a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jianyu Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Zhi Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Yang Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Hui Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Liang Xie
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China.
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
31
|
Kang MK, Kim G, Park JG, Jang SY, Lee HW, Tak WY, Kweon YO, Park SY, Lee YR, Hur K. Tissue Circular RNA_0004018 and 0003570 as Novel Prognostic Biomarkers for Hepatitis B-Related Hepatocellular Carcinoma. Genes (Basel) 2023; 14:1963. [PMID: 37895312 PMCID: PMC10606672 DOI: 10.3390/genes14101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The clinical significance of hsa_circ_0004018 and hsa_circ_0003570 in patients with hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) is unclear. We aimed to explore the clinical significance and prognostic utility of these two circular RNAs (circRNAs) in patients with HBV-HCC. Based on 86 paired tissue samples of HCC and adjacent non-HCC, the relative expression profiles of hsa_circ_0004018 and hsa_circ_0003570 were determined using quantitative real-time polymerase chain reactions. The cut-off values were the median expression of each of the two circRNAs in 86 patients with HBV-HCC. The combination group comprised patients with high levels of the two circRNAs. Clinicopathological features, body composition profiles at the L3 level, and survival rates were investigated. The expression of hsa_circ_0004018 and hsa_circ_0003570 was downregulated in HCC tissues compared with non-HCC tissues. High expression levels of hsa_circ_0003570 (hazard ratio (HR), 0.437; p = 0.009) and hsa_circ_0004018 (HR, 0.435; p = 0.005) were inversely independent risk factors for overall and progression-free survival in patients with HBV-HCC, whereas the combination group was also an inversely independent risk factor for overall (HR, 0.399; p = 0.005) and progression-free survival (HR, 0.422; p = 0.003) in patients with HBV-HCC. The combination of hsa_circ_0003570 and hsa_circ_0004018 may be a potential prognostic biomarker for HBV-HCC.
Collapse
Affiliation(s)
- Min-Kyu Kang
- Department of Internal Medicine, College of Medicine, Yeungnam University, 170 Hyunchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| | - Gyeonghwa Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Jung Gil Park
- Department of Internal Medicine, College of Medicine, Yeungnam University, 170 Hyunchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| | - Se Young Jang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Hye Won Lee
- Department of Pathology, School of Medicine, Keimyung University, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu 41944, Republic of Korea
| | - Won Young Tak
- Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Young Oh Kweon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
32
|
Lu X, Mao J, Wang Y, Huang Y, Gu M. Water extract of frankincense and myrrh inhibits liver cancer progression and epithelial‑mesenchymal transition through Wnt/β‑catenin signaling. Mol Clin Oncol 2023; 19:77. [PMID: 37719039 PMCID: PMC10502803 DOI: 10.3892/mco.2023.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023] Open
Abstract
Wnt/β-catenin signaling is associated with epithelial-mesenchymal transformation (EMT), which serves an important role in hepatocellular carcinoma (HCC) invasion and metastasis. Frankincense and myrrh (FM) are antitumor agents commonly used in clinical practice. The present study aimed to investigate the effect and mechanism of water extract of FM on the progression of liver cancer cells. FM was applied to study its effects on HCC cell proliferation. Cell migration and invasion were evaluated by wound healing and Transwell assays. In addition, western blot was used to study the protein levels associated with EMT and Wnt/β-catenin signaling. The nuclear translocation of β-catenin was detected by immunofluorescence assay. A non-toxic dose of FM significantly inhibited invasion and metastasis of liver cancer cells. Furthermore, FM promoted expression of EMT marker E-cadherin, while decreasing expression of vimentin and N-cadherin. Finally, the protein and the nuclear staining levels of Disheveled 2 and β-catenin were both suppressed by water extract of FM. The water extract of FM inhibited the migration and invasion of liver cancer cells and inhibited EMT by suppressing activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xian Lu
- Department of Hepatic Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215300, P.R. China
| | - Jialei Mao
- Department of Oncology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215300, P.R. China
| | - Yaodong Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215300, P.R. China
| | - Yonggang Huang
- Department of Hepatic Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215300, P.R. China
| | - Maolin Gu
- Department of Hepatic Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215300, P.R. China
| |
Collapse
|
33
|
Chang X, Huang Z, Zhang Z, Pan W, Song C. Matrine inhibits hepatocellular carcinoma cell malignancy through the circ_0013290/miR-139-5p/MMP16 pathway. Histol Histopathol 2023; 38:1179-1192. [PMID: 36594718 DOI: 10.14670/hh-18-574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Previous studies have shown the anticancer effect of Matrine on hepatocellular carcinoma (HCC); however, the underlying mechanism is still indistinct. METHODS The expression of circular RNA_0013290 (circ_0013290), microRNA-139-5p (miR-139-5p), matrix metallopeptidase 16 (MMP16), CyclinD1 and N-cadherin was analyzed by quantitative real-time polymerase chain reaction, Western blotting or immunohistochemistry assay. Cell viability, proliferation, apoptosis, invasion and tube formation were analyzed by cell counting kit-8, 5-Ethynyl-2'-deoxyuridine, flow cytometry analysis, transwell invasion and tube formation assays, respectively. The associations among circ_0013290, miR-139-5p and MMP16 were predicted by starbase online database, and identified by dual-luciferase reporter and RNA pull-down assays. A xenograft mouse model assay was conducted to disclose the effects of circ_0013290 and Matrine on tumor tumorigenesis in vivo. RESULTS Circ_0013290 and MMP16 expression were significantly upregulated, while miR-139-5p was downregulated in HCC tissues and cells compared with the matched normal liver tissues and cells. Matrine treatment inhibited HCC cell proliferation, invasion and tube formation but induced cell apoptosis, accompanied by the decrease of CyclinD1 and N-cadherin expression; however, these effects were counteracted when circ_0013290 expression was increased. MiR-139-5p depletion or MMP16 introduction relieved Matrine-induced effects in HCC cells. The regulation of circ_0013290 toward HCC cell processes involved MMP16. With respect to the mechanism, circ_0013290 acted as a miR-139-5p sponge, and miR-139-5p targeted MMP16 in HCC cells. Besides, circ_0013290 regulated MMP16 expression through miR-139-5p. Further, circ_0013290 depletion enhanced the inhibitory effects of Matrine on tumor tumorigenesis. CONCLUSION Matrine inhibited HCC cell malignancy through the circ_0013290/miR-139-5p/MMP16 pathway, suggesting that Matrine is a potential therapeutic agent for HCC.
Collapse
Affiliation(s)
- Xinfeng Chang
- Department of Human Anatomy, Jiangsu Vocational College of Medicine, Jiangsu Province, China
| | - Zhengchun Huang
- Department of Human Anatomy, Gannan Medical University, Jiangsu Province, China
| | - Zhihua Zhang
- Department of Graduate, Gannan Medical University, Jiangsu Province, China
| | - Wen Pan
- Department of Physiology, Jiangsu Vocational College of Medicine, Jiangsu Province, China
| | - Chunhua Song
- Department of Surgery, Jiangsu Vocational College of Medicine, Jiangsu Province, China.
| |
Collapse
|
34
|
Pitea M, Canale FA, Porto G, Verduci C, Utano G, Policastro G, Alati C, Santoro L, Imbalzano L, Martino M. The Role of MicroRNA in Graft-Versus-Host-Disease: A Review. Genes (Basel) 2023; 14:1796. [PMID: 37761936 PMCID: PMC10530280 DOI: 10.3390/genes14091796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a clinically challenging modality for the treatment of many hematologic diseases such as leukemia, lymphoma, and myeloma. Graft-versus-host disease (GVHD) is a common complication after allo-HSCT and remains a major cause of morbidity and mortality, limiting the success of a potentially curative transplant. Several microRNAs (miRNAs) have recently been shown to impact the biology of GVHD. They are molecular regulators involved in numerous processes during T-cell development, homeostasis, and activation, and contribute to the pathological function of T-cells during GvHD. Here, we review the key role of miRNAs contributing to the GvHD; their detection might be an interesting possibility in the early diagnosis and monitoring of disease.
Collapse
Affiliation(s)
- Martina Pitea
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Filippo Antonio Canale
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Gaetana Porto
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Chiara Verduci
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Giovanna Utano
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Giorgia Policastro
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Caterina Alati
- Hematology Unit, Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Ludovica Santoro
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Lucrezia Imbalzano
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Massimo Martino
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| |
Collapse
|
35
|
Rajendran P, Sekar R, Zahra HA, Jayaraman S, Rajagopal P, Abdallah BM, Ali EM, Abdelsalam SA, Veeraraghavan V. Salivaomics to decode non-coding RNAs in oral cancer. A narrative review. Noncoding RNA Res 2023; 8:376-384. [PMID: 37250455 PMCID: PMC10220469 DOI: 10.1016/j.ncrna.2023.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
Oral cancer is the most debilitating disease which affects the orderly life of a human. With so much advancement in research and technology, the average life expectancy of an individual with oral cancer appears to be about 5 years. The changing trend in incidence of oral cancer among young individuals and women without tobacco habits are ascending. Non habit related oral cancer are taking centre stage and multiple factors which induce complex biology are associated in such scenarios. To decipher the aetiology and to understand the process, these cancerous conditions are to be studied at molecular level. Saliva, the most non-invasively obtained body fluid are assessed for biomarkers exclusively in liquid biopsy. This fluid gives a huge platform to study number of molecules associated with oral cancer. Non coding RNAs are transcripts with no protein coding function. They are gaining more importance in recent times. Long noncoding RNA, microRNA are major types of noncoding transcriptome that influences in progression of oral cancer. They seem to play an important role in health and disease. Apart from these, circulating tumour cells, exosomes, extracellular vesicles, antigens and other proteins can be studied from saliva. This review is aimed to update the knowledge on current biomarkers in saliva associated with oral cancer and their epigenetic role in disease progression as well recent advances in detecting these markers to identify the stage of the disease, which will help in deciding the treatment protocol.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Vishnupriya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
36
|
Gouzouasis V, Tastsoglou S, Giannakakis A, Hatzigeorgiou AG. Virus-Derived Small RNAs and microRNAs in Health and Disease. Annu Rev Biomed Data Sci 2023; 6:275-298. [PMID: 37159873 DOI: 10.1146/annurev-biodatasci-122220-111429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that can regulate all steps of gene expression (induction, transcription, and translation). Several virus families, primarily double-stranded DNA viruses, encode small RNAs (sRNAs), including miRNAs. These virus-derived miRNAs (v-miRNAs) help the virus evade the host's innate and adaptive immune system and maintain an environment of chronic latent infection. In this review, the functions of the sRNA-mediated virus-host interactions are highlighted, delineating their implication in chronic stress, inflammation, immunopathology, and disease. We provide insights into the latest viral RNA-based research-in silico approaches for functional characterization of v-miRNAs and other RNA types. The latest research can assist toward the identification of therapeutic targets to combat viral infections.
Collapse
Affiliation(s)
- Vasileios Gouzouasis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
| | - Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Athens, Greece
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
37
|
Guz M, Jeleniewicz W, Cybulski M. Interactions between circRNAs and miR-141 in Cancer: From Pathogenesis to Diagnosis and Therapy. Int J Mol Sci 2023; 24:11861. [PMID: 37511619 PMCID: PMC10380543 DOI: 10.3390/ijms241411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The function of non-coding RNAs (ncRNAs) in the pathogenesis and development of cancer is indisputable. Molecular mechanisms underlying carcinogenesis involve the aberrant expression of ncRNAs, including circular RNAs (circRNAs), and microRNAs (miRNAs). CircRNAs are a class of single-stranded, covalently closed RNAs responsible for maintaining cellular homeostasis through their diverse functions. As a part of the competing endogenous RNA (ceRNAs) network, they play a central role in the regulation of accessibility of miRNAs to their mRNA targets. The interplay between these molecular players is based on the primary role of circRNAs that act as miRNAs sponges, and the circRNA/miRNA imbalance plays a central role in different pathologies including cancer. Herein, we present the latest state of knowledge about interactions between circRNAs and miR-141, a well-known member of the miR-200 family, in malignant transformation, with emphasis on the biological role of circRNA/miR-141/mRNA networks as a future target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
38
|
Tao M, Han J, Shi J, Liao H, Wen K, Wang W, Mui S, Li H, Yan Y, Xiao Z. Application and Resistance Mechanisms of Lenvatinib in Patients with Advanced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1069-1083. [PMID: 37457652 PMCID: PMC10348321 DOI: 10.2147/jhc.s411806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Lenvatinib, a multitargeted tyrosine kinase inhibitor (TKI), is one of the preferred targeted drugs for the treatment of advanced hepatocellular carcinoma (aHCC). Since the REFLECT study showed that lenvatinib was noninferior to sorafenib in overall survival (OS), lenvatinib monotherapy has been widely used for aHCC. Moreover, lenvatinib combination therapy, especially lenvatinib combined with immune checkpoint inhibitors (ICIs), has shown more encouraging clinical results. However, drug development and comprehensive treatment have not significantly improved the prognosis, and lenvatinib resistance is often encountered in treatment. The underlying molecular mechanism of lenvatinib resistance is still unclear, and studies to solve drug resistance are ongoing. The molecular mechanisms of lenvatinib resistance in patients with aHCC include the regulation of signaling pathways, the regulation of noncoding RNAs, the impact of the immune microenvironment, tumor stem cell activation and other mechanisms. This review aims to (1) summarize the progress of lenvatinib in treating aHCC, (2) delineate the known lenvatinib resistance mechanisms of current therapy, and (3) describe the development of therapeutic methods intended to overcome these resistance mechanisms.
Collapse
Affiliation(s)
- Meng Tao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Jing Han
- Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Sintim Mui
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| |
Collapse
|
39
|
Gu A, Jaijyan DK, Yang S, Zeng M, Pei S, Zhu H. Functions of Circular RNA in Human Diseases and Illnesses. Noncoding RNA 2023; 9:38. [PMID: 37489458 PMCID: PMC10366867 DOI: 10.3390/ncrna9040038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Collapse
Affiliation(s)
- Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
40
|
Abdelwhab A, Alaa El-Din Y, Sabry D, Aggour RL. The Effects of Umbilical Cord Mesenchymal Stem Cells -Derived Exosomes in Oral Squamous Cell Carcinoma (In vitro Study). Asian Pac J Cancer Prev 2023; 24:2531-2542. [PMID: 37505788 PMCID: PMC10676480 DOI: 10.31557/apjcp.2023.24.7.2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) derived exosomes offers several advantages as a cell-free therapeutic agents. In this study, Umbilical cord mesenchymal stem cells exosomes (UC-MSCs-exos) effects on oral squamous cell carcinoma (OSCC) cell line was evaluated. METHODS UC-MSCs-exos were isolated and co-cultured with OSCC cells and their impact on OSCC was explored by various tests. Comet assay and western blot for cleaved caspase-3 and immunocytochemistry for caspase-8 were used for apoptosis assessment. HO-1 and Nrf2 were used to determine antioxidant levels. Tumor necrosis factor-α and interleukin-6 were assessed as inflammatory biomarkers. HOX transcript antisense intergenic long noncoding RNA (HOTAIR) expression was also evaluated. RESULTS In a dose-dependent manner, UC-MSCs-exos reduced the levels of pro-inflammatory cytokines (IL-6 and TNF-α) and induced apoptosis of OSCC in vitro. Meanwhile, we found that UC-MSCs-exos downregulate HOTAIR. CONCLUSION UC-MSCs-exos conferred a suppressive role on OSCC in vitro, highlighting a promising therapeutic role. However, the exact potentially involved molecules and molecular mechanisms need to be investigated in further studies.
Collapse
Affiliation(s)
- Amira Abdelwhab
- Lecturer of Oral Medicine, Diagnosis and Periodontology, Faculty of Dentistry, October 6 University, Cairo, Egypt.
| | - Yasmine Alaa El-Din
- Lecturer of Oral and Maxillofacial Pathology, Faculty of Dentistry, October 6 University, Cairo, Egypt.
| | - Dina Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt.
- Department of Medical Biochemistry, Faculty of Medicine, Badr University in Cairo, Egypt.
| | - Reham Lotfy Aggour
- Lecturer of Oral Medicine, Diagnosis and Periodontology, Faculty of Dentistry, October 6 University, Cairo, Egypt.
| |
Collapse
|
41
|
He ZY, Zhuo RG, Yang SP, Zhou P, Xu JY, Zhou J, Wu SG. CircNCOR1 regulates breast cancer radiotherapy efficacy by regulating CDK2 via hsa-miR-638 binding. Cell Signal 2023:110787. [PMID: 37391048 DOI: 10.1016/j.cellsig.2023.110787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Despite aggressive local and regional therapy, triple-negative breast cancer (TNBC) is characterized by an increased risk of locoregional recurrence. RNA-sequencing data has identified a large number of circRNAs in primary breast cancers, but the role of specific circRNAs in regulating the radiosensitivity of TNBC is not fully understood. This research aimed to investigate the function of circNCOR1 in the radiosensitivity of TNBC. METHODS CircRNA high-throughput sequencing was conducted on two breast cancer MDA-MB-231 and BT549 cell lines after 6 Gy radiation. The relationship between circNCOR1, hsa-miR-638, and CDK2 was determined by RNA immunoprecipitation (RIP), FISH and luciferase assays. The proliferation and apoptosis of breast cancer cells were measured by CCK8, flow cytometry, colony formation assays, and western blot. RESULTS Differential expression of circRNAs was closely related to the proliferation of breast cancer cells after irradiation. Overexpression of circNCOR1 facilitated the proliferation of MDA-MB-231 and BT549 cells and impaired the radiosensitivity of breast cancer cells. Additionally, circNCOR1 acted as a sponge for hsa-miR-638 to regulate the downstream target protein CDK2. Overexpression of hsa-miR-638 promoted apoptosis of breast cancer cells, while overexpression of CDK2 alleviated apoptosis and increased proliferation and clonogenicity. In vivo, overexpression of circNCOR1 partially reversed radiation-induced loosening of tumor structures and enhanced tumor cell proliferation. CONCLUSION Our results demonstrated that circNCOR1 bounds to hsa-miR-638 and targets CDK2, thereby regulating the radiosensitivity of TNBC.
Collapse
Affiliation(s)
- Zhen-Yu He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, People's Republic of China
| | - Ren-Gong Zhuo
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen 361102, People's Republic of China
| | - Shi-Ping Yang
- Department of Radiation Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, People's Republic of China
| | - Ping Zhou
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, People's Republic of China
| | - Jing-Ying Xu
- Department of Obstetrics and Gynecology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China.
| | - San-Gang Wu
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, People's Republic of China.
| |
Collapse
|
42
|
Wang B, Liu Y, Liao Z, Wu H, Zhang B, Zhang L. EZH2 in hepatocellular carcinoma: progression, immunity, and potential targeting therapies. Exp Hematol Oncol 2023; 12:52. [PMID: 37268997 PMCID: PMC10236851 DOI: 10.1186/s40164-023-00405-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/15/2023] [Indexed: 06/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death. The accumulation of genetic and epigenetic changes is closely related to the occurrence and development of HCC. Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase) is suggested to be one of the principal factors that mediates oncogenesis by acting as a driver of epigenetic alternation. Recent studies show that EZH2 is widely involved in proliferation and metastasis of HCC cells. In this review, the functions of EZH2 in HCC progression, the role of EZH2 in tumor immunity and the application of EZH2-related inhibitors in HCC therapy are summarized.
Collapse
Affiliation(s)
- Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Hepatobiliary Surgery, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Key Laboratory of Hepatobiliary and Pancreatic Diseases of Shanxi Province (Preparatory), Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| |
Collapse
|
43
|
Sevcikova A, Fridrichova I, Nikolaieva N, Kalinkova L, Omelka R, Martiniakova M, Ciernikova S. Clinical Significance of microRNAs in Hematologic Malignancies and Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15092658. [PMID: 37174123 PMCID: PMC10177548 DOI: 10.3390/cancers15092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
44
|
Li S, Meng W, Guo Z, Liu M, He Y, Li Y, Ma Z. The miR-183 Cluster: Biogenesis, Functions, and Cell Communication via Exosomes in Cancer. Cells 2023; 12:1315. [PMID: 37174715 PMCID: PMC10177187 DOI: 10.3390/cells12091315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is one of the leading causes of human death. MicroRNAs have been found to be closely associated with cancer. The miR-183 cluster, comprising miR-183, miR-96, and miR-182, is transcribed as a polycistronic miRNA cluster. Importantly, in most cases, these clusters promote cancer development through different pathways. Exosomes, as extracellular vesicles, play an important role in cellular communication and the regulation of the tissue microenvironment. Interestingly, the miR-183 cluster can be detected in exosomes and plays a functional regulatory role in tumor development. Here, the biogenesis and functions of the miR-183 cluster in highly prevalent cancers and their relationship with other non-coding RNAs are summarized. In addition, the miR-183 cluster in exosomes has also been discussed. Finally, we discuss the miR-183 cluster as a promising target for cancer therapy. This review is expected to provide a new direction for cancer treatment.
Collapse
Affiliation(s)
- Shuhui Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Meng
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ziyi Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Min Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanyun He
- Experimental Center of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
45
|
Liu C, Xu K, Liu J, He C, Liu P, Fu Q, Zhang H, Qin T. LncRNA RP11-620J15.3 promotes HCC cell proliferation and metastasis by targeting miR-326/GPI to enhance glycolysis. Biol Direct 2023; 18:15. [PMID: 37020316 PMCID: PMC10077620 DOI: 10.1186/s13062-023-00370-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Accumulating studies have demonstrated that the Warburg effect plays a central role in the occurrence and development of hepatocellular carcinoma (HCC), albeit the role of non-coding RNA (lncRNA) in its association remains unclear. METHODS The Zhengzhou University People's Hospital kindly provided 80 pairs of HCC tissues and their matched paracancerous tissues for this study. Bioinformatics analysis, real-time quantitative polymerase chain reaction, Western blotting, and oncology functional assays were performed to determine the contribution of RP11-620J15.3 to the development of HCC. The mechanism of co-immunoprecipitation and a luciferase reporter gene was employed to ascertain how RP11-620J15.3 interacts with important molecular targets. RESULTS Our results revealed that a lncRNA termed RP11-620J15.3 was overexpressed in HCC and was substantially associated with the tumor size. A high expression of RP11-620J15.3 mRNA was found to be significantly associated with worsening prognosis in HCC patients. We discovered that RP11-620J15.3 stimulated the glycolytic pathway in HCC cells by RNA-sequencing (RNA-seq) and metabolomics analyses. Mechanistically, RP11-620J15.3 acted as a competitive endogenous RNA to regulate the GPI expression by sponging miR-326 in HCC. In addition, TBP acted as a transcription factor for RP11-620J15.3, which contributed to the high expression of RP11-620J15.3 in HCC cells. CONCLUSION Based on our findings, lncRNA RP11-620J15.3 is a novel LncRNA that positively regulates tumor progression. Specifically, RP11-620J15.3/miR-326/GPI pathway promotes HCC malignant progression by regulating glycolysis, thereby providing novel targets for HCC treatment and drug development.
Collapse
Affiliation(s)
- Chuanjiang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, People's Republic of China
| | - Kequan Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, People's Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jiayin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, People's Republic of China
| | - Chao He
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, People's Republic of China
| | - Pan Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, People's Republic of China
| | - Qiang Fu
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, People's Republic of China
| | - Hongwei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, People's Republic of China.
| | - Tao Qin
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, People's Republic of China.
| |
Collapse
|
46
|
Meng H, Jiang L, Jia P, Niu R, Bu F, Zhu Y, Pan X, Li J, Liu J, Zhang Y, Huang C, Lv X, Li J. Inhibition of circular RNA ASPH reduces the proliferation and promotes the apoptosis of hepatic stellate cells in hepatic fibrosis. Biochem Pharmacol 2023; 210:115451. [PMID: 36758707 DOI: 10.1016/j.bcp.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Circular RNAs (circRNAs) are a newly identified form of non-coding RNA that play a crucial role in various pathological processes. However, the expression profile and function of circRNAs in hepatic fibrosis (HF) remain largely unknown. In this study, we showed that a novel circRNA ASPH (circASPH) mediates HF by targeting the miR-139-5p/Notch1 axis. We investigated the expression profile of circRNAs in hepatocyte exosomes of mice with HF using circRNA-sequencing and found significant upregulation of circASPH. Loss- and gain-of-function analysis of circASPH was performed to assess its role in HF. Furthermore, we performed luciferase reporter assay, RNA pull-down, and fluorescence in situ hybridization analyses and confirmed that circASPH directly binds to miR-139-5p. We also found that circASPH was upregulated in liver fibrogenesis. Downregulation of circASPH expression inhibited hepatic stellate cell (HSC) activation and proliferation, induced apoptosis, and attenuated mouse liver fibrogenic injury. Mechanistically, circASPH directly targeted miR-139-5p to regulate the expression of Notch1 in HF. Thus, downregulation of circASPH may suppress the activation of HSCs and HF through the circASPH/miR-139-5p/Notch1 axis. Our findings indicated that circASPH may be a potential biomarker for HF diagnosis and therapy.
Collapse
Affiliation(s)
- Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lingfeng Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengcheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ruowen Niu
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fangtian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xueyin Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juanjuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yilong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
47
|
Wang Y, Zeng J, Chen W, Fan J, Hylemon PB, Zhou H. Long Noncoding RNA H19: A Novel Oncogene in Liver Cancer. Noncoding RNA 2023; 9:19. [PMID: 36960964 PMCID: PMC10037657 DOI: 10.3390/ncrna9020019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related death globally, with limited treatment options. Recent studies have demonstrated the critical role of long noncoding RNAs (lncRNAs) in the pathogenesis of liver cancers. Of note, mounting evidence has shown that lncRNA H19, an endogenous noncoding single-stranded RNA, functions as an oncogene in the development and progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumors in adults. H19 can affect many critical biological processes, including the cell proliferation, apoptosis, invasion, and metastasis of liver cancer by its function on epigenetic modification, H19/miR-675 axis, miRNAs sponge, drug resistance, and its regulation of downstream pathways. In this review, we will focus on the most relevant molecular mechanisms of action and regulation of H19 in the development and pathophysiology of HCC and CCA. This review aims to provide valuable perspectives and translational applications of H19 as a potential diagnostic marker and therapeutic target for liver cancer disease.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| |
Collapse
|
48
|
Xu K, Xia P, Chen X, Ma W, Yuan Y. ncRNA-mediated fatty acid metabolism reprogramming in HCC. Trends Endocrinol Metab 2023; 34:278-291. [PMID: 36890041 DOI: 10.1016/j.tem.2023.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
The challenges of hepatocellular carcinoma (HCC) pathogenesis, diagnosis, treatment, and prognosis evaluation are obvious. Hepatocyte-specific fatty acid (FA) metabolic reprogramming is an important marker of liver carcinogenesis and progression; elucidating its mechanism will help unravel the complexity of HCC pathogenesis. Noncoding RNAs (ncRNAs) play important roles in HCC development. Moreover, ncRNAs are important mediators of FA metabolism and are directly involved in the reprogramming of FA metabolism in HCC cells. Here we review significant new advances in understanding the mechanisms regulating HCC metabolism by focusing on ncRNA-mediated post-translational modifications of metabolic enzymes, metabolism-related transcription factors, and other proteins in associated signaling pathways. We also discuss the great therapeutic potential of targeting ncRNA-mediated FA metabolism reprogramming in HCC.
Collapse
Affiliation(s)
- Kequan Xu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
49
|
Liu J, Liu B. CircTNPO3 promotes hepatocellular carcinoma progression by sponging miR-199b-5p and regulating STRN expression. Kaohsiung J Med Sci 2023; 39:221-233. [PMID: 36524450 DOI: 10.1002/kjm2.12631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/12/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor, which seriously threatens human health. CircTNPO3 was up-regulated in HCC tissues. However, the regulatory mechanism of circTNPO3 in HCC was still unclear. We aimed to investigate the circTNPO3 function in the development of HCC. qRT-PCR and Western blot examined gene and protein levels. CCK8, EdU, flow cytometry, and Transwell assays were used to detect cell viability, proliferation, apoptosis, and invasion abilities. Dual-luciferase reporter and RIP assays determined the relationship between circTNPO3, miR-199b-5p, and striatin (STRN). The effect of CircTNPO3 on HCC progress was investigated in vivo. CircTNPO3 and STRN were significantly increased, while miR-199b-5p was repressed in HCC tissues or cells. Afterward, miR-199b-5p was negatively correlated with STRN. circTNPO3 was positively correlated with STRN. Knockdown of circTNPO3 inhibited cell viability, proliferation, invasion, and promoted apoptosis, while circTNPO3 overexpression had the opposite results. Furthermore, miR-199b-5p inhibition could eliminate the regulatory effect of sh-circTNPO3 on the proliferation and apoptosis in HCC cells. CircTNPO3 positively regulated STRN expression by targeting miR-199b-5p. MiR-199b-5p suppressed HCC progression by inhibiting STRN expression. Tumor formation in nude mice showed that knockdown of circTNPO3 significantly inhibited tumor growth and suppressed ki-67 levels. CircTNPO3 promoted HCC progression through regulating STRN expression by sponging miR-199b-5p, which provided a strategy for HCC treatment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Infection Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - BingJie Liu
- Department of Infection Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
50
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|