1
|
Yang L, Geng J, Yang H, Zhao M, Yuan H, Yan Y, Wu L, Cao F, Xing L, Sun X. Closer proximity of pre-treatment CD4 + T cells to CD8 + T cells favor response to neoadjuvant immunotherapy in patients with PD-L1 low-expressing non-small cell lung cancer. Transl Lung Cancer Res 2025; 14:810-823. [PMID: 40248717 PMCID: PMC12000951 DOI: 10.21037/tlcr-24-886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/13/2025] [Indexed: 04/19/2025]
Abstract
Background Neoadjuvant chemo-immunotherapy improves non-small cell lung cancer (NSCLC) outcomes, but remission rates vary, emphasizing the need for biomarkers. This study aimed to investigate the impact of the baseline intratumoral CD4+ T-cell-adjacent microenvironment on the efficacy of neoadjuvant immunotherapy in NSCLC and its correlation with hypoxia-inducible factor-1α (HIF-1α), microvessel density (MVD), and cancer-associated fibroblasts (CAFs). Methods Tumor samples from 49 NSCLC patients before neoadjuvant immunotherapy were retrospectively collected and subjected to multiplex immunohistochemistry staining (panel 1: DAPI/CK/CD4/CD8/CD68; Panel 2: DAPI/CK/CD4/HIF-1α/CD31/α-SMA) to characterize CD4+ T cells, CD8+ T cells CD68+ macrophages, HIF-1α+ cells, HIF-1α+CD4+ cells, MVD, and CAF. Mann-Whitney U test and receiver operating characteristic (ROC) curve were used to assess the relationship between the number and spatial distribution of each metric and the efficacy of the treatment, and Spearman's rank correlation was used to assess the correlation of each metric. Results In 49 NSCLC patients, responders (54.2%) and non-responders (45.8%). Single-indicator analysis revealed a positive correlation between high infiltration of CD8+ T cells in the stromal area and response to treatment in overall and programmed cell death-ligand 1 (PD-L1) low-expressing patients [CD8+ T (str) density: overall patient, 38 vs. 16, P=0.03; tumor proportion score (TPS) 1-49% subgroup, 37 vs. 14, P=0.04], with an area under curve (AUC) 0.684 and 0.746, respectively. CD4+ T cells combined with CD8+ T cells or CD68+ macrophages were analyzed and found to be more efficacious than CD4+ThiCD8+Thi compared to CD4+TloCD8+Tlo in patients with low expression of PD-L1 (P=0.03). Assessment of the nearest neighbor distance (NND) of CD4+ T cells and their adjacent cells revealed that the closer the CD4+ T cells and CD8+ T cells in the overall compartment, the better the efficacy in NSCLC patients, especially in patients with low PD-L1 expression [CD4+ T to CD8+ T (all) NND: overall patients, 34 vs. 47 μm, P=0.03; TPS 1-49% subgroup, 34 vs. 69 μm, P=0.006], and the AUC was 0.670 and 0.830, respectively. Notably, this favorable spatial interaction may not be dependent on direct contact between CD4+ T cells and CD8+ T cells within 10/20/30 μm (P>0.05). Furthermore, in overall and PD-L1 low-expressing patients, the closer the distance between CD4+ T cells and CD8+ T cells, the higher the MVD (overall patients, r=-0.39, P=0.008; TPS 1-49% subgroup, r=-0.49, P=0.01). Conclusions The baseline intratumoral CD4+ T-cell-adjacent microenvironment in NSCLC is associated with the efficacy of neoadjuvant immunotherapy for NSCLC, with the closer proximity of pre-treatment CD4+ T cells and CD8+ T cells, the better the treatment efficacy in NSCLC patients (even especially in the low-expressing PD-L1 population), and is associated with high MVD.
Collapse
Affiliation(s)
- Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiaxiao Geng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, China
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Yang
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongtu Yuan
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yushan Yan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Li Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Fanghan Cao
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Pal R, Krishnamoorthy M, Matsui A, Kang H, Morita S, Taniguchi H, Kobayashi T, Morita A, Choi HS, Duda DG, Kumar AT. Fluorescence Lifetime Imaging Enables In Vivo Quantification of PD-L1 Expression and Intertumoral Heterogeneity. Cancer Res 2025; 85:618-632. [PMID: 39514403 PMCID: PMC11967911 DOI: 10.1158/0008-5472.can-24-0880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Patient selection for cancer immunotherapy requires precise, quantitative readouts of biomarker expression in intact tumors that can be reliably compared across multiple subjects over time. The current clinical standard biomarker for assessing immunotherapy response is PD-L1 expression, typically quantified using IHC. This method, however, only provides snapshots of PD-L1 expression status in microscopic regions of ex vivo specimens. Although various targeted probes have been investigated for in vivo imaging of PD-L1, nonspecific probe accumulation within the tumor microenvironment has hindered accurate quantification, limiting the utility for preclinical and clinical studies. Here, we demonstrated that in vivo time-domain fluorescence imaging of an anti-PD-L1 antibody tagged with the near-infrared fluorophore IRDye 800CW (αPDL1-800) can yield quantitative estimates of baseline tumor PD-L1 heterogeneity across untreated mice, as well as variations in PD-L1 expression in mice undergoing clinically relevant anti-PD-1 treatment. The fluorescence lifetime (FLT) of PD-L1-bound αPDL1-800 was significantly longer than the FLT of nonspecifically accumulated αPDL1-800 in the tumor microenvironment. This FLT contrast allowed quantification of PD-L1 expression across mice both in superficial breast tumors using planar FLT imaging and in deep-seated liver tumors (>5 mm depth) using the asymptotic time-domain algorithm for fluorescence tomography. These findings suggest that FLT imaging can accelerate the preclinical investigation and clinical translation of new immunotherapy treatments by enabling robust quantification of receptor expression across subjects. Significance: Fluorescence lifetime imaging can quantify PD-L1 expression across multiple mice undergoing anti-PD-1 treatment, providing a critically needed noninvasive imaging method to quantify immunotherapy targets in vivo.
Collapse
Affiliation(s)
- Rahul Pal
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Murali Krishnamoorthy
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Aya Matsui
- Department of Vascular Physiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Homan Kang
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Satoru Morita
- Department of Radiation Oncology, E. L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hajime Taniguchi
- Department of Radiation Oncology, E. L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Tohoku Graduate School of Medicine, Sendai, Japan
| | - Tatsuya Kobayashi
- Department of Radiation Oncology, E. L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Atsuyo Morita
- Department of Radiation Oncology, E. L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan G. Duda
- Department of Radiation Oncology, E. L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anand T.N. Kumar
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
La Salvia A, Meyer ML, Hirsch FR, Kerr KM, Landi L, Tsao MS, Cappuzzo F. Rediscovering immunohistochemistry in lung cancer. Crit Rev Oncol Hematol 2024; 200:104401. [PMID: 38815876 DOI: 10.1016/j.critrevonc.2024.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
Several observations indicate that protein expression analysis by immunohistochemistry (IHC) remains relevant in individuals with non-small-cell lung cancer (NSCLC) when considering targeted therapy, as an early step in diagnosis and for therapy selection. Since the advent of next-generation sequencing (NGS), the role of IHC in testing for NSCLC biomarkers has been forgotten or ignored. We discuss how protein-level investigations maintain a critical role in defining sensitivity to lung cancer therapies in oncogene- and non-oncogene-addicted cases and in patients eligible for immunotherapy, suggesting that IHC testing should be reconsidered in clinical practice. We also argue how a panel of IHC tests should be considered complementary to NGS and other genomic assays. This is relevant to current clinical diagnostic practice but with potential future roles to optimize the selection of patients for innovative therapies. At the same time, strict validation of antibodies, assays, scoring systems, and intra- and interobserver reproducibility is needed.
Collapse
Affiliation(s)
- Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome 00161, Italy
| | - May-Lucie Meyer
- Center for Thoracic Oncology/Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology/Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith M Kerr
- Aberdeen University School of Medicine & Aberdeen Royal Infirmary, Aberdeen, UK
| | - Lorenza Landi
- Medical Oncology, Istituto Nazionale Tumori IRCCS "Regina Elena", Rome, Italy
| | - Ming-Sound Tsao
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Federico Cappuzzo
- Medical Oncology, Istituto Nazionale Tumori IRCCS "Regina Elena", Rome, Italy.
| |
Collapse
|
4
|
Zdrenka M, Kowalewski A, Ahmadi N, Sadiqi RU, Chmura Ł, Borowczak J, Maniewski M, Szylberg Ł. Refining PD-1/PD-L1 assessment for biomarker-guided immunotherapy: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:14-29. [PMID: 37877810 PMCID: PMC10787614 DOI: 10.17305/bb.2023.9265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 10/26/2023]
Abstract
Anti-programmed cell death ligand 1 (anti-PD-L1) immunotherapy is an increasingly crucial in cancer treatment. To date, the Federal Drug Administration (FDA) has approved four PD-L1 immunohistochemistry (IHC) staining protocols, commercially available in the form of "kits", facilitating testing for PD-L1 expression. These kits comprise four PD-L1 antibodies on two separate IHC platforms, each utilizing distinct, non-interchangeable scoring systems. Several factors, including tumor heterogeneity and the size of the tissue specimens assessed, can lead to PD-L1 status misclassification, potentially hindering the initiation of therapy. Therefore, the development of more accurate predictive biomarkers to distinguish between responders and non-responders prior to anti-PD-1/PD-L1 therapy warrants further research. Achieving this goal necessitates refining sampling criteria, enhancing current methods of PD-L1 detection, and deepening our understanding of the impact of additional biomarkers. In this article, we review potential solutions to improve the predictive accuracy of PD-L1 assessment in order to more precisely anticipate patients' responses to anti-PD-1/PD-L1 therapy, monitor disease progression and predict clinical outcomes.
Collapse
Affiliation(s)
- Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Navid Ahmadi
- Department of Cardiothoracic Surgery, Royal Papworth Hospital, Cambridge, UK
| | | | - Łukasz Chmura
- Department of Pathomorphology, Jagiellonian University Medical College, Kraków, Poland
| | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
5
|
Pal R, K M, Matsui A, Kang H, Morita S, Taniguchi H, Kobayashi T, Morita A, Choi HS, Duda DG, Kumar ATN. In vivo quantification of programmed death-ligand-1 expression heterogeneity in tumors using fluorescence lifetime imaging. RESEARCH SQUARE 2023:rs.3.rs-3222037. [PMID: 37961361 PMCID: PMC10635296 DOI: 10.21203/rs.3.rs-3222037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cancer patient selection for immunotherapy is often based on programmed death-ligand-1 (PD-L1) expression as a biomarker. PD-L1 expression is currently quantified using immunohistochemistry, which can only provide snapshots of PD-L1 expression status in microscopic regions of ex vivo specimens. In vivo imaging using targeted agents can capture dynamic variations of PD-L1 expression in entire tumors within and across multiple subjects. Towards this goal, several PD-L1 targeted molecular imaging probes have been evaluated in murine models and humans. However, clinical translation of these probes has been limited due to a significant non-specific accumulation of the imaging probes and the inability of conventional imaging modalities to provide quantitative readouts that can be compared across multiple subjects. Here we report that in vivo time-domain (TD) fluorescence imaging can provide quantitative estimates of baseline tumor PD-L1 heterogeneity across untreated mice and variations in PD-L1 expression across mice undergoing clinically relevant anti-PD1 treatment. This approach relies on a significantly longer fluorescence lifetime (FLT) of PD-L1 specific anti-PD-L1 antibody tagged to IRDye 800CW (αPDL1-800) compared to nonspecific αPDL1-800. Leveraging this unique FLT contrast, we show that PD-L1 expression can be quantified across mice both in superficial breast tumors using planar FLT imaging, and in deep-seated liver tumors (>5 mm depth) using the asymptotic TD algorithm for fluorescence tomography. Our results suggest that FLT contrast can accelerate the preclinical investigation and clinical translation of novel molecular imaging probes by providing robust quantitative readouts of receptor expression that can be readily compared across subjects.
Collapse
Affiliation(s)
- Rahul Pal
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Murali K
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aya Matsui
- Department of Vascular Physiology, Graduate School of Medical Science, Kanazawa University, Japan
| | - Homan Kang
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Satoru Morita
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hajime Taniguchi
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Tohoku Graduate School of Medicine, Sendai, Japan
| | - Tatsuya Kobayashi
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Atsuyo Morita
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan G Duda
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anand T N Kumar
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Sang X, Xue X, Mi Z, Wang Z, Yu X, Sun L, Ma S, Wang Z, Liu H, Zhang F. Induction of IL-32 in the immune response of keratinocytes to Mycobacterium marinum infection. Exp Dermatol 2023; 32:1451-1458. [PMID: 37309674 DOI: 10.1111/exd.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Keratinocytes are the predominant cell type in the skin epidermis, and they not only protect the skin from the influence of external physical factors but also function as an immune barrier against microbial invasion. However, little is known regarding the immune defence mechanisms of keratinocytes against mycobacteria. Here, we performed single-cell RNA sequencing (scRNA-seq) on skin biopsy samples from patients with Mycobacterium marinum infection and bulk RNA sequencing (bRNA-seq) on M. marinum-infected keratinocytes in vitro. The combined analysis of scRNA-seq and bRNA-seq data revealed that several genes were upregulated in M. marinum-infected keratinocytes. Further in vitro validation of these genes by quantitative polymerase chain reaction and western blotting assay confirmed the induction of IL-32 in the immune response of keratinocytes to M. marinum infection. Immunohistochemistry also showed the high expression of IL-32 in patients' lesions. These findings suggest that IL-32 induction is a possible mechanism through which keratinocytes defend against M. marinum infection; this could provide new targets for the immunotherapy of chronic cutaneous mycobacterial infections.
Collapse
Affiliation(s)
- Xu Sang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xueping Yu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Ma
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Humphries MP, Bingham V, Abdullah Sidi F, Craig S, Lara B, El-Daly H, O'Doherty N, Maxwell P, Lewis C, McQuaid S, Lyness J, James J, Snead DRJ, Salto-Tellez M. Technical note on the exploration of COVID-19 in autopsy material. J Clin Pathol 2023; 76:418-423. [PMID: 36717223 DOI: 10.1136/jcp-2022-208525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 02/01/2023]
Abstract
Interrogation of immune response in autopsy material from patients with SARS-CoV-2 is potentially significant. We aim to describe a validated protocol for the exploration of the molecular physiopathology of SARS-CoV-2 pulmonary disease using multiplex immunofluorescence (mIF).The application of validated assays for the detection of SARS-CoV-2 in tissues, originally developed in our laboratory in the context of oncology, was used to map the topography and complexity of the adaptive immune response at protein and mRNA levels.SARS-CoV-2 is detectable in situ by protein or mRNA, with a sensitivity that could be in part related to disease stage. In formalin-fixed, paraffin-embedded pneumonia material, multiplex immunofluorescent panels are robust, reliable and quantifiable and can detect topographic variations in inflammation related to pathological processes.Clinical autopsies have relevance in understanding diseases of unknown/complex pathophysiology. In particular, autopsy materials are suitable for the detection of SARS-CoV-2 and for the topographic description of the complex tissue-based immune response using mIF.
Collapse
Affiliation(s)
- Matthew Phillip Humphries
- Precision Medicine Center of Excellence, Queen's University Belfast, Belfast, UK.,National Pathology Imaging Cooperative, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Victoria Bingham
- Precision Medicine Center of Excellence, Queen's University Belfast, Belfast, UK
| | - Fatima Abdullah Sidi
- Precision Medicine Center of Excellence, Queen's University Belfast, Belfast, UK
| | - Stephanie Craig
- Precision Medicine Center of Excellence, Queen's University Belfast, Belfast, UK
| | - Beatrize Lara
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Hesham El-Daly
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | - Perry Maxwell
- Northern Ireland Molecular Pathology Laboratory, Queen's University Belfast, Belfast, UK
| | - Claire Lewis
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Northern Ireland Biobank, Belfast, UK
| | - Stephen McQuaid
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Northern Ireland Biobank, Belfast, UK
| | - James Lyness
- Northern Ireland State Pathologist's Department, Belfast, UK
| | - Jacqueline James
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Northern Ireland Biobank, Belfast, UK
| | - David R J Snead
- Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Manuel Salto-Tellez
- Precision Medicine Center of Excellence, Queen's University Belfast, Belfast, UK .,Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
8
|
Brunner A, Willenbacher E, Willenbacher W, Zelger B, Zelger P, Huck CW, Pallua JD. Visible- and near-infrared hyperspectral imaging for the quantitative analysis of PD-L1+ cells in human lymphomas: Comparison with fluorescent multiplex immunohistochemistry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121940. [PMID: 36208576 DOI: 10.1016/j.saa.2022.121940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION We analyzed the expression of PD-L1 in human lymphomas using hyperspectral imaging (HSI) compared to visual assessment (VA) and conventional digital image analysis (DIA) to strengthen further the value of HSI as a tool for the evaluation of brightfield-based immunohistochemistry (IHC). In addition, fluorescent multiplex immunohistochemistry (mIHC) was used as a second detection method to analyze the impact of a different detection method. MATERIAL AND METHODS 18 cases (6 follicular lymphomas and 12 diffuse large B-cell lymphomas) were stained for PD-L1 by IHC and for PD-L1, CD3, and CD8 by fluorescent mIHC. The percentage of positively stained cells was evaluated with VA, HSI, and DIA for IHC and VA and DIA for mIHC. Results were compared between the different methods of detection and analysis. RESULTS An overall high concordance was found between VA, HSI, and DIA in IHC (Cohens Kappa = 0.810VA/HSI, 0.710 VA/DIA, and 0.516 HSI/DIA) and for VAmIHCversus DIAmIHC (Cohens Kappa = 0.894). Comparing IHC and mIHC general agreement differed depending on the methods compared but reached at most a moderate agreement (Coheńs Kappa between 0.250 and 0.483). This is reflected by the significantly higher percentage of PD-L1+ cells found with mIHC (pFriedman = 0.014). CONCLUSION Our study shows a good concordance for the different analysis methods. Compared to VA and DIA, HSI proved to be a reliable tool for assessing IHC. Understanding the regulation of PD-L1 expression will further enlighten the role of PD-L1 as a biomarker. Therefore it is necessary to develop an instrument, such as HSI, which can offer a reliable and objective evaluation of PD-L1 expression.
Collapse
Affiliation(s)
- A Brunner
- Innsbruck Medical University, Institute of Pathology, Neuropathology and Molecular Pathology, Innsbruck, Austria
| | - E Willenbacher
- Innsbruck Medical University, Internal Medicine. V, Hematology & Oncology, Innsbruck, Austria
| | - W Willenbacher
- Innsbruck Medical University, Internal Medicine. V, Hematology & Oncology, Innsbruck, Austria; Syndena GmbH, Connect to Cure, Karl-Kapferer-Straße 5, 6020 Innsbruck, Austria
| | - B Zelger
- Innsbruck Medical University, Institute of Pathology, Neuropathology and Molecular Pathology, Innsbruck, Austria
| | - P Zelger
- Innsbruck Medical University, University Clinic for Hearing, Voice and Speech Disorders, Anichstrasse 35, Innsbruck, Austria
| | - C W Huck
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - J D Pallua
- Innsbruck Medical University, Department of Traumatology and Orthopaedics, Innsbruck, Austria.
| |
Collapse
|
9
|
Kuczkiewicz-Siemion O, Sokół K, Puton B, Borkowska A, Szumera-Ciećkiewicz A. The Role of Pathology-Based Methods in Qualitative and Quantitative Approaches to Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14153833. [PMID: 35954496 PMCID: PMC9367614 DOI: 10.3390/cancers14153833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Immunotherapy has become the filar of modern oncological treatment, and programmed death-ligand 1 expression is one of the primary immune markers assessed by pathologists. However, there are still some issues concerning the evaluation of the marker and limited information about the interaction between the tumour and associated immune cells. Recent studies have focused on cancer immunology to try to understand the complex tumour microenvironment, and multiplex imaging methods are more widely used for this purpose. The presented article aims to provide an overall review of a different multiplex in situ method using spectral imaging, supported by automated image-acquisition and software-assisted marker visualisation and interpretation. Multiplex imaging methods could improve the current understanding of complex tumour-microenvironment immunology and could probably help to better match patients to appropriate treatment regimens. Abstract Immune checkpoint inhibitors, including those concerning programmed cell death 1 (PD-1) and its ligand (PD-L1), have revolutionised the cancer therapy approach in the past decade. However, not all patients benefit from immunotherapy equally. The prediction of patient response to this type of therapy is mainly based on conventional immunohistochemistry, which is limited by intraobserver variability, semiquantitative assessment, or single-marker-per-slide evaluation. Multiplex imaging techniques and digital image analysis are powerful tools that could overcome some issues concerning tumour-microenvironment studies. This novel approach to biomarker assessment offers a better understanding of the complicated interactions between tumour cells and their environment. Multiplex labelling enables the detection of multiple markers simultaneously and the exploration of their spatial organisation. Evaluating a variety of immune cell phenotypes and differentiating their subpopulations is possible while preserving tissue histology in most cases. Multiplexing supported by digital pathology could allow pathologists to visualise and understand every cell in a single tissue slide and provide meaning in a complex tumour-microenvironment contexture. This review aims to provide an overview of the different multiplex imaging methods and their application in PD-L1 biomarker assessment. Moreover, we discuss digital imaging techniques, with a focus on slide scanners and software.
Collapse
Affiliation(s)
- Olga Kuczkiewicz-Siemion
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
- Correspondence: (O.K.-S.); (A.S.-C.)
| | - Kamil Sokół
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Beata Puton
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Correspondence: (O.K.-S.); (A.S.-C.)
| |
Collapse
|
10
|
Lee JY, Kannan B, Lim BY, Li Z, Lim AH, Loh JW, Ko TK, Ng CCY, Chan JY. The Multi-Dimensional Biomarker Landscape in Cancer Immunotherapy. Int J Mol Sci 2022; 23:7839. [PMID: 35887186 PMCID: PMC9323480 DOI: 10.3390/ijms23147839] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
The field of immuno-oncology is now at the forefront of cancer care and is rapidly evolving. The immune checkpoint blockade has been demonstrated to restore antitumor responses in several cancer types. However, durable responses can be observed only in a subset of patients, highlighting the importance of investigating the tumor microenvironment (TME) and cellular heterogeneity to define the phenotypes that contribute to resistance as opposed to those that confer susceptibility to immune surveillance and immunotherapy. In this review, we summarize how some of the most widely used conventional technologies and biomarkers may be useful for the purpose of predicting immunotherapy outcomes in patients, and discuss their shortcomings. We also provide an overview of how emerging single-cell spatial omics may be applied to further advance our understanding of the interactions within the TME, and how these technologies help to deliver important new insights into biomarker discovery to improve the prediction of patient response.
Collapse
Affiliation(s)
- Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Boon Yee Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Zhimei Li
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Abner Herbert Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Jui Wan Loh
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Cedric Chuan-Young Ng
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
11
|
Sholl LM. Biomarkers of response to checkpoint inhibitors beyond PD-L1 in lung cancer. Mod Pathol 2022; 35:66-74. [PMID: 34608245 DOI: 10.1038/s41379-021-00932-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Immunotherapy, including use of checkpoint inhibitors against PD-1, PD-L1, and CTLA-4, forms the backbone of oncologic management for the majority of non-small cell lung carcinoma patients. However, response to these therapies varies widely, from patients who have complete resolution of metastatic disease and long-term remission, to those who rapidly progress and succumb to their cancer despite use of the newest checkpoint inhibitors. While PD-L1 protein expression by immunohistochemistry serves as the principle predictive biomarker for immunotherapy response, neither the sensitivity nor the specificity of this approach is optimal, and clinical PD-L1 testing is plagued by concerns around result reproducibility and confusion born from the proliferation of different companion diagnostic assays. At the same time, insights into tumor and host immune-specific factors that inform both prognosis and response prediction are beginning to define better immunotherapy biomarkers. Beyond immune checkpoint expression status, common themes in analyses of immunotherapy response prediction include cancer neoantigen production, the state of the antigen presentation pathway in both tumor and antigen presenting cells, the admixture of effector and suppressor immune cells in the tumor microenvironment, and the genomic drivers and comutations that can influence the all of these variables. This review will address the state of PD-L1 testing in lung cancer, the role for tumor mutation burden as a predictive biomarker, the evolving status of human leukocyte antigen/major histocompatibility complex expression as a marker of antigen presentation, approaches to tumor immune cell quantitation including by multiplex immunofluorescence, and the importance of tumor genomic profiling to ascertain oncogenic driver (EGFR, ALK, KRAS, MET, etc.) and co-mutation (STK11, KEAP1, SMARCA4) status.
Collapse
Affiliation(s)
- Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Yeong J, Suteja L, Simoni Y, Lau KW, Tan AC, Li HH, Lim S, Loh JH, Wee FYT, Nerurkar SN, Takano A, Tan EH, Lim TKH, Newell EW, Tan DSW. Intratumoral CD39 +CD8 + T Cells Predict Response to Programmed Cell Death Protein-1 or Programmed Death Ligand-1 Blockade in Patients With NSCLC. J Thorac Oncol 2021; 16:1349-1358. [PMID: 33975004 DOI: 10.1016/j.jtho.2021.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1) blockade is currently widely used in the treatment of metastatic NSCLC. Despite available biomarker stratification, clinical responses vary. Thus, the search for novel biomarkers with improved response prediction is ongoing. Previously, using mass cytometry or cytometry by time-of-flight (CyTOF), our group demonstrated that CD39+CD8+ immune cells represent tumor antigen-specific, cytotoxic T cells in treatment-naive NSCLC. We hypothesized that accurate quantitation of this T cell subset would predict immunotherapy outcome. METHODS To translate this to a clinical setting, the present study compared CyTOF data with a range of clinically relevant methods, including conventional immunohistochemistry (IHC), multiplex IHC or immunofluorescence (mIHC), and gene expression assay by NanoString. RESULTS Quantification using mIHC but not conventional IHC or NanoString correlated with the CyTOF results. The specificity and sensitivity of mIHC were then evaluated in a separate retrospective NSCLC cohort. CD39+CD8+ T cell proportion, as determined by mIHC, successfully stratified responders and nonresponders to PD-1 or PD-L1 inhibitors (objective response rate of 63.6%, compared with 0% for the negative group). This predictive capability was independent from other confounding factors, such as total CD8+ T cell proportion, CD39+ lymphocyte proportion, PD-L1 positivity, EGFR mutation status, and other clinicopathologic parameters. CONCLUSIONS Our results suggest that the mIHC platform is a clinically relevant method to evaluate CD39+CD8+ T cell proportion and that this marker can serve as a potential biomarker that predicts response to PD-1 or PD-L1 blockade in patients with NSCLC. Further validation in additional NSCLC cohorts is warranted.
Collapse
Affiliation(s)
- Joe Yeong
- Institute of Molecular Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore; Division of Pathology, Singapore General Hospital, Singapore
| | - Lisda Suteja
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Yannick Simoni
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kah Weng Lau
- Institute of Molecular Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore; Division of Pathology, Singapore General Hospital, Singapore
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Hui Hua Li
- Division of Medicine, Singapore General Hospital, Singapore; Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Sherlly Lim
- Institute of Molecular Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Jie Hua Loh
- Division of Pathology, Singapore General Hospital, Singapore
| | - Felicia Y T Wee
- Division of Pathology, Singapore General Hospital, Singapore
| | | | - Angela Takano
- Division of Pathology, Singapore General Hospital, Singapore
| | - Eng Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Tony K H Lim
- Division of Pathology, Singapore General Hospital, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
| |
Collapse
|