1
|
Hsu CY, Chandramoorthy HC, Mohammed JS, Al-Hasnaawei S, Yaqob M, Kundlas M, Samikan K, Sahoo S, Sunori SK, Abbas ZA. Exosomes as key mediators in immune and cancer cell interactions: insights in melanoma progression and therapy. Arch Dermatol Res 2025; 317:729. [PMID: 40252131 DOI: 10.1007/s00403-025-04237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Exosomes (30-150 nm) are small extracellular vesicles that are secreted by cells into the extracellular environment and are known to mediate cell-to-cell communication. Exosomes contain proteins, lipids, and RNA molecules in relative abundance, capable of modifying the activity of target cells. Melanoma-derived exosomes (MEXs) promote the transfer of oncogenic signals and immunosuppressive factors into immune cells, resulting in a bias of the immune response towards tumor-promoting processes. MEXs could suppress the activation and proliferation of T cells and dendritic cells and induce differentiation of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). They can induce apoptosis of antigen-specific CD8 + T cells and promote the transfer of tumor antigens, resulting in immune evasion. Specifically, MEXs can shuttle cytokines like interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) to immune cells or express programmed death-ligand 1 (PD-L1 or CD274), creating an immune-suppressive microenvironment that promotes tumorigenesis. Since exosomes preferentially accumulate in melanoma tissues, this targeted delivery could enhance the bioavailability of treatments while limiting side effects. Here, we review the molecular composition of melanoma-derived exosomes, their mechanisms of action, and their potential as therapeutic targets or biomarkers in melanoma. The summarizations of these mechanisms to appropriately influence exosome-mediated interactions could yield new tactics to elicit anti-melanoma immunity or augment the therapeutic effects of current therapies.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, 85004, USA.
| | - Harish C Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine and Central Research Laboratories, King Khalid University, Abha, Saudi Arabia
| | | | - Shaker Al-Hasnaawei
- College of Pharmacy, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Mohammed Yaqob
- Department of Biology, Mazaya University College, Dhiqar, Iraq
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Krishnakumar Samikan
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - S K Sunori
- Graphic Era Hill University, Bhimtal, Uttarakhand, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Zainab Ahmed Abbas
- College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Li S, Zhou X, Duan Q, Niu S, Li P, Feng Y, Zhang Y, Xu X, Gong SP, Cao H. Autophagy and Its Association with Macrophages in Clonal Hematopoiesis Leading to Atherosclerosis. Int J Mol Sci 2025; 26:3252. [PMID: 40244103 PMCID: PMC11989900 DOI: 10.3390/ijms26073252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by lipid accumulation and immune cell infiltration, is linked to plaque formation and cardiovascular events. While traditionally associated with lipid metabolism and endothelial dysfunction, recent research highlights the roles of autophagy and clonal hematopoiesis (CH) in its pathogenesis. Autophagy, a cellular process crucial for degrading damaged components, regulates macrophage homeostasis and inflammation, both of which are pivotal in atherosclerosis. In macrophages, autophagy influences lipid metabolism, cytokine regulation, and oxidative stress, helping to prevent plaque instability. Defective autophagy exacerbates inflammation, impairs cholesterol efflux, and accelerates disease progression. Additionally, autophagic processes in endothelial cells and smooth muscle cells further contribute to atherosclerotic pathology. Recent studies also emphasize the interplay between autophagy and CH, wherein somatic mutations in genes like TET2, JAK2, and DNMT3A drive immune cell expansion and enhance inflammatory responses in atherosclerotic plaques. These mutations modify macrophage function, intensifying the inflammatory environment and accelerating atherosclerosis. Chaperone-mediated autophagy (CMA), a selective form of autophagy, also plays a critical role in regulating macrophage inflammation by degrading pro-inflammatory cytokines and oxidized low-density lipoprotein (ox-LDL). Impaired CMA activity leads to the accumulation of these substrates, activating the NLRP3 inflammasome and worsening inflammation. Preclinical studies suggest that pharmacologically activating CMA may mitigate atherosclerosis progression. In animal models, reduced CMA activity accelerates plaque instability and increases inflammation. This review highlights the importance of autophagic regulation in macrophages, focusing on its role in inflammation, plaque formation, and the contributions of CH. Building upon current advances, we propose a hypothesis in which autophagy, programmed cell death, and clonal hematopoiesis form a critical intrinsic axis that modulates the fundamental functions of macrophages, playing a complex role in the development of atherosclerosis. Understanding these mechanisms offers potential therapeutic strategies targeting autophagy and inflammation to reduce the burden of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Shuanhu Li
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Engineering Research Center of Brain Health Industry of Chinese Medicine, Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, University Government Committee of Shaanxi Province, Xianyang 712046, China;
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; (Q.D.); or (X.X.)
| | - Shukun Niu
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Pengquan Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Yihan Feng
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Ye Zhang
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; (Q.D.); or (X.X.)
| | - Shou-Ping Gong
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Huiling Cao
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Engineering Research Center of Brain Health Industry of Chinese Medicine, Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, University Government Committee of Shaanxi Province, Xianyang 712046, China;
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| |
Collapse
|
3
|
Liu Y, Zhang H, Li X, He T, Zhang W, Ji C, Wang J. Molecular mechanisms and pathological implications of unconventional protein secretion in human disease: from cellular stress to therapeutic targeting. Mol Biol Rep 2025; 52:236. [PMID: 39955475 DOI: 10.1007/s11033-025-10316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Unconventional protein secretion (UcPS) encompasses diverse non-canonical cellular export mechanisms that operate independently of the classical secretory pathway, representing a crucial cellular response to various physiological and pathological conditions. This comprehensive review synthesizes current understanding of UcPS mechanisms, particularly focusing on their roles in disease pathogenesis and progression. Recent advances in proteomics and cellular biology have revealed that UcPS facilitates the secretion of various biomedically significant proteins, including inflammatory mediators, growth factors, and disease-associated proteins, through multiple pathways such as membrane translocation, secretory lysosomes, and membrane-bound organelles. Notably, dysregulation of UcPS mechanisms has been implicated in various pathological conditions, including chronic inflammation, neurodegenerative disorders, and malignant transformation. We critically evaluate the molecular machinery governing UcPS, its regulation under cellular stress, and its contribution to disease mechanisms. Furthermore, we examine emerging therapeutic strategies targeting UcPS pathways, highlighting both opportunities and challenges in developing novel interventional approaches.
Collapse
Affiliation(s)
- Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
4
|
Xiao H, He Q, Hu Y, Li C, Tian H, Chen F, Song W. A novel DNA damage-related gene index for predicting prognosis in gastric cancer. 3 Biotech 2025; 15:32. [PMID: 39763491 PMCID: PMC11700079 DOI: 10.1007/s13205-024-04166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
Gastric cancer is one of the major cancers with high cancer mortality and shows significant heterogeneity. The development of precise prognostic models is crucial for advancing treatment strategies. Recognizing the pivotal role of DNA damage in tumor progression, we conducted a consensus clustering analysis of DNA damage-related genes to categorize gastric cancer patients from the TCGA clinical cohort into distinct subtypes. Prognostic models were then constructed utilizing machine learning algorithms following Cox regression with differentially expressed genes. Validation was performed using the GSE gastric cancer cohort. Additionally, we investigated other characteristic responses of patients through gene mapping and drug sensitivity analysis. This study 12 differentially prognostic signature genes between the 2 DNA damage subtypes identified were used to calculate risk scores for the patients. This score predicts the prognosis of patients with gastric cancer and their overall survival time. Higher risk scores mean less drug sensitivity, lower survival, and possibly a poorer response to immunotherapy. Our findings provide the basis for future studies targeting DNA damage and its immune microenvironment to improve prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Haipeng Xiao
- Department of General Surgery, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Qianjin He
- Department of Hepatobiliary Surgery/Hernia Surgical Ward, Huanggang Central Hospital of Yangtze University, No.6 Qi ‘an Avenue, Huangzhou District, Huanggang, 438000 Hubei China
| | - Yang Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, 341000 China
| | - Chang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Han Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Chen
- Department of Hepatobiliary Surgery/Hernia Surgical Ward, Huanggang Central Hospital of Yangtze University, No.6 Qi ‘an Avenue, Huangzhou District, Huanggang, 438000 Hubei China
| | - Wenchong Song
- Department of Gastroenterology, Huanggang Central Hospital of Yangtze University, No.6 Qi ‘an Avenue, Huangzhou District, Huanggang, 438000 Hubei China
| |
Collapse
|
5
|
Fujimura T, Yoshino K, Kato H, Fukushima S, Ishizuki S, Otsuka A, Matsushita S, Amagai R, Muto Y, Yamazaki E, Kambayashi Y, Yahata T, Miyata T, Fujisawa Y, Asano Y. A phase II multicentre study of plasminogen activator inhibitor-1 inhibitor (TM5614) plus nivolumab for treating anti-programmed cell death 1 antibody-refractory malignant melanoma: TM5614-MM trial. Br J Dermatol 2024; 191:691-697. [PMID: 38833158 DOI: 10.1093/bjd/ljae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Anti-programmed cell death 1 antibodies (PD-1 Abs) are widely used for advanced melanoma, but information on the efficacy of anti-PD-1 Abs is limited in the Asian population. There remains an unmet need to improve the therapeutic effects of anti-PD-1 Ab-treatment, particularly in patients with melanoma who are refractory to anti-PD-1 Abs. The aim of this study was to evaluate anti-PD-1 Ab-treatment in combination with TM5614 (a plasminogen activator inhibitor-1 inhibitor) in patients with unresectable melanoma. METHODS The TM5614-MM study was a multicentre, open-label, single-arm, phase II clinical trial to evaluate the efficacy and safety of nivolumab in combination with TM5614 in patients with advanced, unresectable malignant melanoma recruited at seven Japanese institutes between 13 September 2021 and 31 March 2023. Patients with metastatic or unresectable melanoma previously treated with anti-PD-1 Abs were enrolled. Nivolumab 480 mg was administered intravenously every 4 weeks for 8 weeks, while TM5614 was administered orally at a dose of 120 mg (0-4 weeks) and 180 mg once daily (5-8 weeks). The primary endpoint was the overall response rate after 8 weeks of concomitant use of TM5614. RESULTS Thirty-nine patients were enrolled, and 34 patients were included in the anti-PD-1 Ab-refractory cohort. The overall response rate at 8 weeks was 25.9% (95% confidence interval 12.9-44.9%, P = 0.027) in 27 patients who were anti-PD-1 Ab-refractory based on investigator assessment in the protocol per set cohort. Seven patients discontinued treatment owing to progressive disease or adverse events. Treatment-related grade 3 or higher adverse events occurred in 3 of 39 patients (7.7%) in the intention-to-treat cohort. CONCLUSIONS TM5614 in combination with nivolumab is well tolerated and effective in anti-PD-1 Ab-refractory unresectable melanoma.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Koji Yoshino
- Department of Dermato-Oncology/Dermatology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo,Japan
- Department of Dermato-Oncology/Dermatology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shoichiro Ishizuki
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kindai University Hospital, Osaka, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, NHO Kagoshima Medical Center, Kagoshima, Japan
| | - Ryo Amagai
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Yusuke Muto
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Emi Yamazaki
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Takashi Yahata
- Translational Molecular Therapeutic Laboratory, Division of Host Defence Mechanism, Tokai University School of Medicine, Isehara,Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, Tohoku University School of Medicine, Sendai, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Dermatology, Ehime University, Matsuyama, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Tedesco G, Santarosa M, Maestro R. Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review). Int J Oncol 2024; 64:57. [PMID: 38606507 PMCID: PMC11087037 DOI: 10.3892/ijo.2024.5645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Autophagy is a conserved catabolic process that controls organelle quality, removes misfolded or abnormally aggregated proteins and is part of the defense mechanisms against intracellular pathogens. Autophagy contributes to the suppression of tumor initiation by promoting genome stability, cellular integrity, redox balance and proteostasis. On the other hand, once a tumor is established, autophagy can support cancer cell survival and promote epithelial‑to‑mesenchymal transition. A growing number of molecules involved in autophagy have been identified. In addition to their key canonical activity, several of these molecules, such as ATG5, ATG12 and Beclin‑1, also exert autophagy‑independent functions in a variety of biological processes. The present review aimed to summarize autophagy‑independent functions of molecules of the autophagy machinery and how the activity of these molecules can influence signaling pathways that are deregulated in cancer progression.
Collapse
Affiliation(s)
- Giulia Tedesco
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Manuela Santarosa
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| |
Collapse
|
7
|
Thu YM, Suzawa K, Tomida S, Ochi K, Tsudaka S, Takatsu F, Date K, Matsuda N, Iwata K, Nakata K, Shien K, Yamamoto H, Okazaki M, Sugimoto S, Toyooka S. PAI-1 mediates acquired resistance to MET-targeted therapy in non-small cell lung cancer. PLoS One 2024; 19:e0300644. [PMID: 38758826 PMCID: PMC11101109 DOI: 10.1371/journal.pone.0300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 05/19/2024] Open
Abstract
Mechanisms underlying primary and acquired resistance to MET tyrosine kinase inhibitors (TKIs) in managing non-small cell lung cancer remain unclear. In this study, we investigated the possible mechanisms acquired for crizotinib in MET-amplified lung carcinoma cell lines. Two MET-amplified lung cancer cell lines, EBC-1 and H1993, were established for acquired resistance to MET-TKI crizotinib and were functionally elucidated. Genomic and transcriptomic data were used to assess the factors contributing to the resistance mechanism, and the alterations hypothesized to confer resistance were validated. Multiple mechanisms underlie acquired resistance to crizotinib in MET-amplified lung cancer cell lines. In EBC-1-derived resistant cells, the overexpression of SERPINE1, the gene encoding plasminogen activator inhibitor-1 (PAI-1), mediated the drug resistance mechanism. Crizotinib resistance was addressed by combination therapy with a PAI-1 inhibitor and PAI-1 knockdown. Another mechanism of resistance in different subline cells of EBC-1 was evaluated as epithelial-to-mesenchymal transition with the upregulation of antiapoptotic proteins. In H1993-derived resistant cells, MEK inhibitors could be a potential therapeutic strategy for overcoming resistance with downstream mitogen-activated protein kinase pathway activation. In this study, we revealed the different mechanisms of acquired resistance to the MET inhibitor crizotinib with potential therapeutic application in patients with MET-amplified lung carcinoma.
Collapse
Affiliation(s)
- Yin Min Thu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Kosuke Ochi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shimpei Tsudaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumiaki Takatsu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichi Date
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoki Matsuda
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuma Iwata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Nakata
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Li Y, Yu H, Han X, Pan Y. Analyses of hypoxia-related risk factors and clinical relevance in breast cancer. Front Oncol 2024; 14:1350426. [PMID: 38500661 PMCID: PMC10946248 DOI: 10.3389/fonc.2024.1350426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Hypoxia plays an important role in the heterogeneity, relapse, metastasis, and drug resistance of breast cancer. In this study, we explored the hypoxia-related biological signatures in different subtypes of breast cancer and identified the key prognostic factors by bioinformatics methods. Methods Based on The Cancer Genome Atlas (TCGA) Breast Cancer datasets, we divided the samples into immune-activated/suppressed populations by single-sample gene set enrichment analysis (ssGSEA) and then used hierarchical clustering to further identify hypoxic/non-hypoxic populations from the immune-suppressed samples. A hypoxia related risk model of breast cancer was constructed. Results Nuclear factor interleukin-3 regulated (NFIL3), serpin family E member 1 (SERPINE1), FOS, biglycan (BGN), epidermal growth factor receptor (EGFR), and sushi-repeat-containing protein, X-linked (SRPX) were identified as key hypoxia-related genes. Margin status, American Joint Committee on Cancer (AJCC) stage, hypoxia status, estrogen receptor/progesterone receptor (ER/PR) status, NFIL3, SERPINE1, EGFR, and risk score were identified as independent prognostic indicators for breast cancer patients. The 3- and 5-year survival curves of the model and immunohistochemical staining on the breast cancer microarray verified the statistical significance and feasibility of our model. Among the different molecular types of breast cancer, ER/PR+ and HER2+ patients might have higher hypoxia-related risk scores. ER/PR-negative samples demonstrated more activated immune-related pathways and better response to most anticancer agents. Discussion Our study revealed a novel risk model and potential feasible prognostic factors for breast cancer and might provide new perspectives for individual breast cancer treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haiyang Yu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinghua Han
- Department of Clinical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yueyin Pan
- Department of Clinical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
9
|
Mahapatra KK, Patra S, Mishra SR, Behera BP, Patil S, Bhutia SK. Autophagy for secretory protein: Therapeutic targets in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:159-180. [PMID: 36707200 DOI: 10.1016/bs.apcsb.2022.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Autophagy, a classical cellular degradative catabolic process, also involves a functionally discrete non-degradative role in eukaryotic cells. It imparts critical regulatory function on conventional and unconventional protein secretion (degradative and secretory autophagy with distinct lysosomal degradation and extracellular expulsion, respectively) pathways. The N-amino terminal leader sequence containing proteins follows a conventional secretion pathway, while the leader-less proteins opt for secretory autophagy. The secretory autophagic process ensembles core autophagy machinery proteins, specifically ULK1/2, Beclin 1, LC3, and GABARAP, in coordination with Golgi re-assembly and stacking proteins (GRASPs). The secretory omegasomes fuse with the plasma membrane for the expulsion of cytosolic cargos to the extracellular environment. Alternatively, the secretory omegasomes also fuse with multi-vesicular bodies (MVBs) and harmonize ESCRTs (Complex I; TSG101) and Rab GTPase for their release to extracellular space. Autophagy has been associated with the secretion of diverse proteins involved in cellular signaling, inflammation, and carcinogenesis. Secreted proteins play an essential role in cancer by sustaining cell proliferation, inhibiting apoptosis, enhancing angiogenesis and metastasis, immune cell regulation, modulation of cellular energy metabolism, and resistance to anticancer drugs. The complexity of autophagy regulation during tumorigenesis is dependent on protein secretion pathways. Autophagy-regulated TOR-autophagy spatial coupling compartment complex energizes enhanced secretion of pro-inflammatory cytokines and leaderless proteins such as HMGB1. In conclusion, the chapter reviews the role of autophagy in regulating conventional and unconventional protein secretion pathways and its possible role in cancer.
Collapse
Affiliation(s)
- Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States.
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
10
|
Su YH, Wu YZ, Ann DK, Chen JLY, Kuo CY. Obesity promotes radioresistance through SERPINE1-mediated aggressiveness and DNA repair of triple-negative breast cancer. Cell Death Dis 2023; 14:53. [PMID: 36681663 PMCID: PMC9867751 DOI: 10.1038/s41419-023-05576-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Obesity is a risk factor in various types of cancer, including breast cancer. The disturbance of adipose tissue in obesity highly correlates with cancer progression and resistance to standard treatments such as chemo- and radio-therapies. In this study, in a syngeneic mouse model of triple-negative breast cancer (TNBC), diet-induced obesity (DIO) not only promoted tumor growth, but also reduced tumor response to radiotherapy. Serpine1 (Pai-1) was elevated in the circulation of obese mice and was enriched within tumor microenvironment. In vitro co-culture of human white adipocytes-conditioned medium (hAd-CM) with TNBC cells potentiated the aggressive phenotypes and radioresistance of TNBC cells. Moreover, inhibition of both cancer cell autonomous and non-autonomous SERPINE1 by either genetic or pharmacological strategy markedly dampened the aggressive phenotypes and radioresistance of TNBC cells. Mechanistically, we uncovered a previously unrecognized role of SERPINE1 in DNA damage response. Ionizing radiation-induced DNA double-strand breaks (DSBs) increased the expression of SERPINE1 in cancer cells in an ATM/ATR-dependent manner, and promoted nuclear localization of SERPINE1 to facilitate DSB repair. By analyzing public clinical datasets, higher SERPINE1 expression in TNBC correlated with patients' BMI as well as poor outcomes. Elevated SERPINE1 expression and nuclear localization were also observed in radioresistant breast cancer cells. Collectively, we reveal a link between obesity and radioresistance in TNBC and identify SERPINE1 to be a crucial factor mediating obesity-associated tumor radioresistance.
Collapse
Affiliation(s)
- Yong-Han Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Zhen Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - David K Ann
- Department of Diabetes Complications & Metabolism, City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
| | - Jenny Ling-Yu Chen
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Chen T, Zeng C, Li Z, Wang J, Sun F, Huang J, Lu S, Zhu J, Zhang Y, Sun X, Zhen Z. Investigation of chemoresistance to first-line chemotherapy and its possible association with autophagy in high-risk neuroblastoma. Front Oncol 2022; 12:1019106. [PMID: 36338726 PMCID: PMC9632338 DOI: 10.3389/fonc.2022.1019106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
High-risk neuroblastoma (NB) is sensitive to chemotherapy but susceptible to chemoresistance. In this study, we aimed to analyze the incidence of chemoresistance in high-risk NB patients and to explore the role of autophagy in NB chemoresistance. We retrospectively analyzed the incidence of changing the chemotherapy regimen due to disease stabilization or disease progression during induction chemotherapy in high-risk NB patients, which was expressed as the chemoresistance rate. The autophagy levels were probed in tumor cells exposed to first-line chemotherapy agents. The sensitivity of tumor cells to chemotherapy agents and apoptosis rate were observed after inhibiting autophagy by transfection of shRNA or chloroquine (CQ). This study included 247 patients with high-risk NB. The chemoresistance rates of patients treated with cyclophosphamide + adriamycin + vincristine (CAV) alternating with etoposide + cisplatin (EP) (Group 1) and CAV alternating with etoposide + ifosfamide + cisplatin (VIP) (Group 2) was 61.5% and 39.9% (P = 0.0009), respectively. Group 2 had better survival rates than group 1. After exposure to cisplatin, cyclophosphamide, and etoposide, the autophagy-related proteins LC3-I, LC3-II, and Beclin-1 were upregulated, and the incidence of autophagy vesicle formation and the expression of P62 were increased. Chemotherapeutic agents combined with CQ significantly increased the chemotherapeutic sensitivity of tumor cells and increased the cell apoptosis. The downregulated expression of Beclin-1 increased the sensitivity of tumor cells to chemotherapeutics. Our results suggest that increasing the chemotherapy intensity can overcome resistance to NB. Inhibition of autophagy is beneficial to increase the sensitivity of NB to chemotherapy agents.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chenggong Zeng
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhuoran Li
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Juan Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Feifei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Junting Huang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Suying Lu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jia Zhu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yizhuo Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaofei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zijun Zhen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Zijun Zhen,
| |
Collapse
|
12
|
Jin Z, Sun X, Wang Y, Zhou C, Yang H, Zhou S. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Front Immunol 2022; 13:1018903. [PMID: 36300110 PMCID: PMC9589261 DOI: 10.3389/fimmu.2022.1018903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have revolutionized the treatment of patients with advanced and metastatic tumors resistant to traditional therapies. However, the immunosuppressed tumor microenvironment (TME) results in a weak response to immunotherapy. Therefore, to realize the full potential of immunotherapy and obstacle barriers, it is essential to explore how to convert cold TME to hot TME. Autophagy is a crucial cellular process that preserves cellular stability in the cellular components of the TME, contributing to the characterization of the immunosuppressive TME. Targeted autophagy ignites immunosuppressive TME by influencing antigen release, antigen presentation, antigen recognition, and immune cell trafficking, thereby enhancing the effectiveness of cancer immunotherapy and overcoming resistance to immunotherapy. In this review, we summarize the characteristics and components of TME, explore the mechanisms and functions of autophagy in the characterization and regulation of TME, and discuss autophagy-based therapies as adjuvant enhancers of immunotherapy to improve the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Zhicheng Jin
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Xuefeng Sun
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yaoyao Wang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Chao Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- Department of Radiation Oncology, Xi’an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| |
Collapse
|
13
|
Thornton J, Chhabra G, Singh CK, Guzmán-Pérez G, Shirley CA, Ahmad N. Mechanisms of Immunotherapy Resistance in Cutaneous Melanoma: Recognizing a Shapeshifter. Front Oncol 2022; 12:880876. [PMID: 35515106 PMCID: PMC9066268 DOI: 10.3389/fonc.2022.880876] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 12/21/2022] Open
Abstract
Melanoma is one of the seven most common cancers in the United States, and its incidence is still increasing. Since 2011, developments in targeted therapies and immunotherapies have been essential for significantly improving overall survival rates. Prior to the advent of targeted and immunotherapies, metastatic melanoma was considered a death sentence, with less than 5% of patients surviving more than 5 years. With the implementation of immunotherapies, approximately half of patients with metastatic melanoma now survive more than 5 years. Unfortunately, this also means that half of the patients with melanoma do not respond to current therapies and live less than 5 years after diagnosis. One major factor that contributes to lower response in this population is acquired or primary resistance to immunotherapies via tumor immune evasion. To improve the overall survival of melanoma patients new treatment strategies must be designed to minimize the risk of acquired resistance and overcome existing primary resistance. In recent years, many advances have been made in identifying and understanding the pathways that contribute to tumor immune evasion throughout the course of immunotherapy treatment. In addition, results from clinical trials focusing on treating patients with immunotherapy-resistant melanoma have reported some initial findings. In this review, we summarize important mechanisms that drive resistance to immunotherapies in patients with cutaneous melanoma. We have focused on tumor intrinsic characteristics of resistance, altered immune function, and systemic factors that contribute to immunotherapy resistance in melanoma. Exploring these pathways will hopefully yield novel strategies to prevent acquired resistance and overcome existing resistance to immunotherapy treatment in patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Jessica Thornton
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | | | - Carl A Shirley
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, United States.,William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| |
Collapse
|
14
|
Fujimura T. Stromal Factors as a Target for Immunotherapy in Melanoma and Non-Melanoma Skin Cancers. Int J Mol Sci 2022; 23:ijms23074044. [PMID: 35409404 PMCID: PMC8999844 DOI: 10.3390/ijms23074044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death 1 (PD1) antibodies (Abs) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) Abs, have been widely administered for not only advanced melanoma, but also various non-melanoma skin cancers. Since profiles of tumor-infiltrating leukocytes (TILs) play important roles in immunotherapy using ICIs, it is important to evaluate cancer stromal cells such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), as well as stromal extracellular matrix protein, to predict the efficacy of ICIs. This review article focuses particularly on TAMs and related factors. Among TILs, TAMs and their related factors could be the optimal biomarkers for immunotherapy such as anti-PD1 Ab therapy. According to the studies presented, TAM-targeting therapies for advanced melanoma and non-melanoma skin cancer will develop in the future.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
15
|
Bustos SO, Leal Santos N, Chammas R, Andrade LNDS. Secretory Autophagy Forges a Therapy Resistant Microenvironment in Melanoma. Cancers (Basel) 2022; 14:234. [PMID: 35008395 PMCID: PMC8749976 DOI: 10.3390/cancers14010234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most aggressive skin cancer characterized by high mutational burden and large heterogeneity. Cancer cells are surrounded by a complex environment, critical to tumor establishment and progression. Thus, tumor-associated stromal components can sustain tumor demands or impair cancer cell progression. One way to manage such processes is through the regulation of autophagy, both in stromal and tumor cells. Autophagy is a catabolic mechanism that provides nutrients and energy, and it eliminates damaged organelles by degradation and recycling of cellular elements. Besides this primary function, autophagy plays multiple roles in the tumor microenvironment capable of affecting cell fate. Evidence demonstrates the existence of novel branches in the autophagy system related to cytoplasmic constituent's secretion. Hence, autophagy-dependent secretion assembles a tangled network of signaling that potentially contributes to metabolism reprogramming, immune regulation, and tumor progression. Here, we summarize the current awareness regarding secretory autophagy and the intersection with exosome biogenesis and release in melanoma and their role in tumor resistance. In addition, we present and discuss data from public databases concerning autophagy and exosome-related genes as important mediators of melanoma behavior. Finally, we will present the main challenges in the field and strategies to translate most of the pre-clinical findings to clinical practice.
Collapse
Affiliation(s)
- Silvina Odete Bustos
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 01246-000, Brazil; (N.L.S.); (R.C.)
| | | | | | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 01246-000, Brazil; (N.L.S.); (R.C.)
| |
Collapse
|
16
|
Ohuchi K, Kambayashi Y, Hidaka T, Fujimura T. Plasminogen Activating Inhibitor-1 Might Predict the Efficacy of Anti-PD1 Antibody in Advanced Melanoma Patients. Front Oncol 2021; 11:798385. [PMID: 34912726 PMCID: PMC8666429 DOI: 10.3389/fonc.2021.798385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023] Open
Abstract
Plasminogen activating inhibitor-1 (PAI-1) plays crucial roles in the development of various cancers, including melanomas. Indeed, various pro-tumorigenic functions of PAI-1 in cancer progression and metastasis have been widely reported. Among them, PAI-1 is also reported as a key regulator of PD-L1 expression on melanoma cells through endocytosis, leading to abrogating the efficacy of anti-PD1 antibodies (Abs). These findings suggested that PAI-1 expression might predict the efficacy of anti-PD1 Abs. In this report, the expression and production of PAI-1 in melanoma patients were evaluated, and the immunomodulatory effects of PAI-1 on tumor-associated macrophages were investigated in vitro. Immunohistochemical staining of PAI-1 showed that PAI-1 expression on melanoma cells was significantly decreased in responders compared to non-responders. Moreover, baseline serum levels of PAI-1 were significantly decreased in responders compared to non-responders. Notably, PAI-1 decreased the production of various chemokines from monocyte-derived M2 macrophages in vitro, suggesting that PAI-1 might decrease tumor-infiltrating lymphocytes to hamper the anti-tumor effects of anti-PD1 Abs. These results suggest that baseline serum levels of PAI-1 may be useful as a biomarker for identifying patients with advanced cutaneous melanoma most likely to benefit from anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Kentaro Ohuchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Zhang Y, Liu Q, Wei W, Zhang G, Yan S, Dai R, Sun Y, Su D, Lv S, Xia Y, Li J, Li C. Bortezomib potentiates antitumor activity of mitoxantrone through dampening Wnt/β-catenin signal pathway in prostate cancer cells. BMC Cancer 2021; 21:1101. [PMID: 34645397 PMCID: PMC8515742 DOI: 10.1186/s12885-021-08841-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Bortezomib (BZM), alone or in combination with other chemotherapies, has displayed strong anticancer effects in several cancers. The efficacy of the combination of BZM and mitoxantrone (MTX) in treating prostate cancer remains unknown. METHODS Anticancer effects of combination of BZM and MTX were determined by apoptosis and proliferation assay in vivo and in vitro. Expression of β-Catenin and its target genes were characterized by western blot and Real-time PCR. RESULTS BZM significantly enhanced MTX-induced antiproliferation in vivo and in vitro. Mice administered a combination of BZM and MTX displayed attenuated tumor growth and prolonged survival. BZM significantly attenuated MTX-induced apoptosis. Moreover, the combination of BZM and MTX contributed to inhibition of the Wnt/β-Catenin signaling pathway compared to monotherapy. CONCLUSIONS This study demonstrates that BZM enhances MTX-induced anti-tumor effects by inhibiting the Wnt/β-Catenin signaling pathway in prostate cancer cells.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Qiuzi Liu
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Wei Wei
- Center for Experimental Medicine, School of Public Health, Jining Medical University, Jining, 272067, China
| | - Guoan Zhang
- Institute of Cancer Pathology Research, Jining Medical University, Jining, 272067, China
| | - Siyuan Yan
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Rongrong Dai
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Ying Sun
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Dubo Su
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Shun Lv
- Laboratory animal center, Jining Medical University, Jining, 272067, China
| | - Yong Xia
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Jing Li
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Changlin Li
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|