1
|
Phillips MJ, Alese OB, Horvat NK, Greene E, Gbolahan OB, Coleman K, Doxie DB, Parihar V, Mahdi ZK, McCook-Veal A, Switchenko JM, Diab M, Herting CJ, Paulos CM, El-Rayes BF, Lesinski GB. XL888 and pembrolizumab modulate the immune landscape of colorectal tumors in a phase Ib/II clinical trial. Oncoimmunology 2025; 14:2475620. [PMID: 40079916 PMCID: PMC11913390 DOI: 10.1080/2162402x.2025.2475620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025] Open
Abstract
We conducted a phase Ib/II clinical trial to evaluate the safety, feasibility, and clinical activity of combining pembrolizumab (anti-PD-1) with XL888 (Hsp90 inhibitor) in patients with advanced colorectal cancer (CRC). We hypothesized that this regimen would modulate soluble and cellular immune mediators and enhance clinical outcomes. The trial employed a 3 + 3 open-label design, with an expansion cohort at the recommended phase II dose (RP2D) in treatment-refractory, mismatch repair-proficient CRC patients. Comprehensive analyses of plasma cytokines, peripheral blood mononuclear cells (PBMCs), and spatial immune cell patterns in liver biopsies were performed to identify unique immune signatures resulting from the combined therapy. The combination of pembrolizumab and XL888 proved to be safe and feasible, with a subset of patients achieving stable disease, although no objective responses were observed in this heavily pre-treated population. Correlative studies revealed immunomodulatory effects in tumors and circulation, including a reduction in IL6+ cells and macrophages (CD68+) within metastatic liver tissue, alterations in blood CD3+ cells, and upregulation of numerous inflammatory plasma cytokines. These findings suggest local and systemic immune activation by the combination of pembrolizumab and XL888. While clinical activity was modest in treatment-refractory CRC patients, there were notable effects on the tumor immune environment and systemic immune modulation.
Collapse
Affiliation(s)
- Maggie J. Phillips
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Olatunji B. Alese
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Natalie K. Horvat
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Emily Greene
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Olumide B. Gbolahan
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | | | - Deon B. Doxie
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Vaunita Parihar
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Zaid K. Mahdi
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Ashley McCook-Veal
- Department of Biostatistics & Bioinformatics, Emory University, Atlanta, GA, USA
| | | | - Maria Diab
- Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Cameron J. Herting
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Chrystal M. Paulos
- Department of Surgery, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Bassel F. El-Rayes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory B. Lesinski
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Xia Y, Wang ZY, Zhuang ZN, Dai XY, He Z, Chen C, Feng J. Biomimetic Sealing of Cisplatin by Cancer Cell Membranes to Achieve Nucleophile Resistance and Tumor Targeting for Improved Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12597-12609. [PMID: 39950428 DOI: 10.1021/acsami.4c20345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Platinum-based anticancer drugs (PBCs), particularly cisplatin, play a key role in over 70% of cancer treatment protocols. PBCs suffer from their strong affinity with numerous nucleophiles present in the body, leading to significant systematic toxicity and rapid drug inactivation. The cell membrane's selective and energy-dependent transport properties, inherent to its unique biological structure, offer a strategic opportunity for employing cell membranes (CMs) in the development of PBC delivery systems that repel nucleophiles. To prove this idea, we harness cancer CMs to develop a dual-package approach for sealing cisplatin in a nanoformulation that is both nucleophile-resistant and tumor-targeted without the need for synthetic materials. The dual-package process begins by conjugating cisplatin to cancer CMs, creating positively charged nanoparticles. These isolated nanoparticles are then recomplexed with cancer CMs. Our strategy, which tightly seals cisplatin within the cancer CMs, ensures that cisplatin is safely sequestered from reactive molecules in the body while simultaneously guiding it specifically to homologous tumors. The resulting nanoformulation demonstrates immune evasion and a prolonged circulation time due to the native-like identity conferred by cancer CMs. The biomimetic sealing of cisplatin within CMs prevented the transmembrane attack of nucleophiles, including not only macromolecular proteins but also small-molecule compounds such as glutathione, thereby ensuring a high level of cytotoxicity when challenged by these nucleophiles. It also displays precise targeting at homologous tumors, ensures sustained drug release, and achieves significant tumor suppression. These features together adumbrate the nanoformulation's potential as a revolutionary tool in cisplatin cancer therapy. Given the prevalence of metal ion-based drugs and their common susceptibility to nucleophile-associated issues, the strategy presented in this study may offer a widely applicable solution to developing nucleophile-resistant metal-ion-based medications.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Zi-Yang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Ze-Nan Zhuang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xin-Yi Dai
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Zhilin He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Cheng Chen
- Radiation Treatment Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
3
|
Wang CW, Liu TC, Lai PJ, Muzakky H, Wang YC, Yu MH, Wu CH, Chao TK. Ensemble transformer-based multiple instance learning to predict pathological subtypes and tumor mutational burden from histopathological whole slide images of endometrial and colorectal cancer. Med Image Anal 2025; 99:103372. [PMID: 39461079 DOI: 10.1016/j.media.2024.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
In endometrial cancer (EC) and colorectal cancer (CRC), in addition to microsatellite instability, tumor mutational burden (TMB) has gradually gained attention as a genomic biomarker that can be used clinically to determine which patients may benefit from immune checkpoint inhibitors. High TMB is characterized by a large number of mutated genes, which encode aberrant tumor neoantigens, and implies a better response to immunotherapy. Hence, a part of EC and CRC patients associated with high TMB may have higher chances to receive immunotherapy. TMB measurement was mainly evaluated by whole-exome sequencing or next-generation sequencing, which was costly and difficult to be widely applied in all clinical cases. Therefore, an effective, efficient, low-cost and easily accessible tool is urgently needed to distinguish the TMB status of EC and CRC patients. In this study, we present a deep learning framework, namely Ensemble Transformer-based Multiple Instance Learning with Self-Supervised Learning Vision Transformer feature encoder (ETMIL-SSLViT), to predict pathological subtype and TMB status directly from the H&E stained whole slide images (WSIs) in EC and CRC patients, which is helpful for both pathological classification and cancer treatment planning. Our framework was evaluated on two different cancer cohorts, including an EC cohort with 918 histopathology WSIs from 529 patients and a CRC cohort with 1495 WSIs from 594 patients from The Cancer Genome Atlas. The experimental results show that the proposed methods achieved excellent performance and outperforming seven state-of-the-art (SOTA) methods in cancer subtype classification and TMB prediction on both cancer datasets. Fisher's exact test further validated that the associations between the predictions of the proposed models and the actual cancer subtype or TMB status are both extremely strong (p<0.001). These promising findings show the potential of our proposed methods to guide personalized treatment decisions by accurately predicting the EC and CRC subtype and the TMB status for effective immunotherapy planning for EC and CRC patients.
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Tzu-Chien Liu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Po-Jen Lai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Hikam Muzakky
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yu-Chi Wang
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, 114202, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Mu-Hsien Yu
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, 114202, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chia-Hua Wu
- Department of Pathology, Tri-Service General Hospital, Taipei, 114202, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, Taipei, 114202, Taiwan; Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
4
|
Torchiaro E, Cortese M, Petti C, Basirico' M, Invrea F, D'Andrea A, Franco L, Sangiolo D, Medico E. Repurposing anti-mesothelin CAR-NK immunotherapy against colorectal cancer. J Transl Med 2024; 22:1100. [PMID: 39627822 PMCID: PMC11616334 DOI: 10.1186/s12967-024-05851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide, with highly variable prognosis and response to treatment. A large subset of patients does not respond to standard treatments or develops resistance. As an alternative, adoptive immunotherapy based on chimeric antigen receptor (CAR)-transduced immune cells has been proposed, however with significant adverse events. We therefore evaluated alternative CAR targets already tested in other tumour types and employed the natural killer cell line NK-92 for CAR transduction because of its more favourable toxicity profile. METHODS As an alternative antigen, we considered mesothelin (MSLN), the most represented target in CAR-based clinical studies for solid tumours. MSLN RNA expression was analysed in large series of CRC tumours (n = 640) and cell lines (n = 150), to evaluate its distribution and to identify MSLN-overexpressing models. NK-92 cells were transduced with anti-MSLN CAR, and subsequently sorted and cloned. Activity of CAR-NK-92 cells against target-expressing ovarian and CRC cells was assessed in vitro and in vivo. Statistical significance of efficacy was evaluated by t-test and log-rank test. RESULTS Large-scale expression analysis highlighted that about 10% of CRCs overexpress MSLN at levels comparable to those of ovarian cancer, a typical target of MSLN-CAR-based therapy. Intriguingly, MSLN overexpression is more frequent in poor prognosis and KRAS/BRAF-mutant CRC. Lentiviral transduction of NK-92 cells with the MSLN-CAR, followed by sorting and cloning, led to the identification of one clone, MSLN.CAR.NK-92.cl45, stably expressing the CAR and retaining the NK phenotype. As expected, the clone demonstrated significant in vitro and in vivo activity against ovarian cancer cells. When repurposed against models of CRC expressing high MSLN levels, it displayed comparable efficacy, both in vitro and in vivo. Specificity of the clone was confirmed by the absence of activity on control models with low or absent MSLN. CONCLUSIONS Our results provide preclinical evidence that a subset of colorectal cancers expressing high mesothelin levels can be effectively targeted by MSLN-CAR-based immunotherapy. The potential therapeutic impact of these findings is enhanced by the fact that frequently MSLN-overexpressing CRCs display worse prognosis and resistance to standard care.
Collapse
Affiliation(s)
- Erica Torchiaro
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
- Department of Oncology, University of Turin, Candiolo, TO, Italy.
| | - Marco Cortese
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
- Department of Oncology, University of Turin, Candiolo, TO, Italy
| | - Consalvo Petti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
- Department of Oncology, University of Turin, Candiolo, TO, Italy
| | | | | | - Alice D'Andrea
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
- Department of Oncology, University of Turin, Candiolo, TO, Italy
| | - Letizia Franco
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Turin, Candiolo, TO, Italy
| | - Enzo Medico
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
- Department of Oncology, University of Turin, Candiolo, TO, Italy.
| |
Collapse
|
5
|
Amodio V, Vitiello PP, Bardelli A, Germano G. DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors. Br J Cancer 2024; 131:1576-1590. [PMID: 39271762 PMCID: PMC11554791 DOI: 10.1038/s41416-024-02848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of cancer death worldwide. Chemotherapy continues to serve as the primary treatment modality, while immunotherapy is largely ineffective for the majority of CRC patients. Seminal discoveries have emphasized that modifying DNA damage response (DDR) mechanisms confers both cell-autonomous and immune-related vulnerabilities across various cancers. In CRC, approximately 15% of tumours exhibit alterations in the mismatch repair (MMR) machinery, resulting in a high number of neoantigens and the activation of the type I interferon response. These factors, in conjunction with immune checkpoint blockades, collectively stimulate anticancer immunity. Furthermore, although less frequently, somatic alterations in the homologous recombination (HR) pathway are observed in CRC; these defects lead to genome instability and telomere alterations, supporting the use of poly (ADP-ribose) polymerase (PARP) inhibitors in HR-deficient CRC patients. Additionally, other DDR inhibitors, such as Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors, have shown some efficacy both in preclinical models and in the clinical setting, irrespective of MMR proficiency. The aim of this review is to elucidate how preexisting or induced vulnerabilities in DNA repair pathways represent an opportunity to increase tumour sensitivity to immune-based therapies in CRC.
Collapse
Affiliation(s)
- V Amodio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - P P Vitiello
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - A Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy.
| | - G Germano
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milano, 20133, Milan, Italy.
| |
Collapse
|
6
|
Su Z, He Y, You L, Chen J, Zhang G, Liu Z. SPP1+ macrophages and FAP+ fibroblasts promote the progression of pMMR gastric cancer. Sci Rep 2024; 14:26221. [PMID: 39482333 PMCID: PMC11528032 DOI: 10.1038/s41598-024-76298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
Immunotherapy has become a primary and secondary treatment for gastric cancer (GC) patients with mismatch repair deficiency (dMMR), and is used in both perioperative and advanced stages. The tumor immune microenvironment (TiME) is crucial for immunotherapy efficacy, yet the impact of MMR status on TiME remains understudied. We employed single-cell RNA sequencing (scRNA-seq) to analyze 33 fresh tissue samples from 25 patients, which included 10 normal tissues, 6 dMMR tumor tissues, and 17 pMMR tumor tissues, aiming to characterize the cellular and molecular components of the TiME. The proficient mismatch repair (pMMR) group displayed a significantly higher prevalence of a specific GC cell type, termed GC2, characterized by increased hypoxia, epithelial-mesenchymal transition (EMT), and angiogenic activities compared to the dMMR group. GC2 cells overexpressed BEX3 and GPC3, and they significantly correlated with poorer survival. The pMMR group also showed increased infiltration of SPP1 + macrophages and FAP + fibroblasts, exhibiting strong hypoxic and pro-angiogenic features. Furthermore, a higher proportion of E2 endothelial cells, involved in extracellular matrix (ECM) remodeling and showing heightened VEGF pathway, HIF pathway, and angiogenesis activity, were identified in pMMR patients. Intercellular communication analyses revealed that GC2 cells, SPP1 + macrophages, FAP + fibroblasts, and E2 endothelial cells interact through VEGF, SPP1, and MIF signals, forming a TiME characterized by hypoxia, pro-angiogenesis, and ECM remodeling. This study uncovered TiME heterogeneity among GC patients with different MMR states, highlighting that the pMMR TiME is distinguished by hypoxia, pro-angiogenesis, and ECM remodeling, driven by the presence of GC2 cells, SPP1 + macrophages, FAP + fibroblasts, and E2 endothelial cells. These findings are pivotal for developing targeted immunotherapies for GC patients with pMMR.
Collapse
Affiliation(s)
- Zhixiong Su
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yufang He
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Lijie You
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Guifeng Zhang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
7
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Kim JH, Hong J, Lee JA, Jung M, Choi E, Cho NY, Kang GH, Kim S. Immune microenvironmental heterogeneity according to tumor DNA methylation phenotypes in microsatellite instability-high colorectal cancers. Cancer Immunol Immunother 2024; 73:215. [PMID: 39235590 PMCID: PMC11377388 DOI: 10.1007/s00262-024-03805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
The detailed association between tumor DNA methylation, including CpG island methylation, and tumor immunity is poorly understood. CpG island methylator phenotype (CIMP) is observed typically in sporadic colorectal cancers (CRCs) with microsatellite instability-high (MSI-H). Here, we investigated the differential features of the tumor immune microenvironment according to CIMP status in MSI-H CRCs. CIMP-high (CIMP-H) or CIMP-low/negative (CIMP-L/0) status was determined using MethyLight assay in 133 MSI-H CRCs. All MSI-H CRCs were subjected to digital pathology-based quantification of CD3 + /CD8 + /CD4 + /FoxP3 + /CD68 + /CD204 + /CD177 + tumor-infiltrating immune cells using whole-slide immunohistochemistry. Programmed death-ligand 1 (PD-L1) immunohistochemistry was evaluated using the tumor proportion score (TPS) and combined positive score (CPS). Representative cases were analyzed using whole-exome and RNA-sequencing. In 133 MSI-H CRCs, significantly higher densities of CD8 + tumor-infiltrating lymphocytes (TILs) were observed in CIMP-H tumors compared with CIMP-L/0 tumors. PD-L1 TPS and CPS in CIMP-H tumors were higher than in CIMP-L/0 tumors. Next-generation sequencing revealed that, compared with CIMP-L/0 tumors, CIMP-H tumors had higher fractions of CD8 + T cells/cytotoxic lymphocytes, higher cytolytic activity scores, and activated immune-mediated cell killing pathways. In contrast to CIMP-L/0 tumors, most CIMP-H tumors were identified as consensus molecular subtype 1, an immunogenic transcriptomic subtype of CRC. However, there were no differences in tumor mutational burden (TMB) between CIMP-H and CIMP-L/0 tumors in MSI-H CRCs. In conclusion, CIMP-H is associated with abundant cytotoxic CD8 + TILs and PD-L1 overexpression independent of TMB in MSI-H CRCs, suggesting that CIMP-H tumors represent a typical immune-hot subtype and are optimal candidates for immunotherapy in MSI-H tumors.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jiyun Hong
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Minsun Jung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunwoo Choi
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
9
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
10
|
Ashique S, Bhowmick M, Pal R, Khatoon H, Kumar P, Sharma H, Garg A, Kumar S, Das U. Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success. ADVANCES IN CANCER BIOLOGY - METASTASIS 2024; 10:100114. [DOI: 10.1016/j.adcanc.2024.100114] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
11
|
Hernando-Calvo A, Rossi A, Vieito M, Voest E, Garralda E. Agnostic drug development revisited. Cancer Treat Rev 2024; 128:102747. [PMID: 38763053 DOI: 10.1016/j.ctrv.2024.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
The advent of molecular profiling and the generalization of next generation sequencing in oncology has enabled the identification of patients who could benefit from targeted agents. Since the tumor-agnostic approval of pembrolizumab for patients with MSI-High tumors in 2017, different molecularly-guided therapeutics have been awarded approvals and progressively incorporated in the treatment landscape across multiple tumor types. As the number of tumor-agnostic targets considered druggable expands in the clinic, novel challenges will reshape the drug development field involving all the stakeholders in oncology. In this review, we provide an overview of current tumor-agnostic approvals and discuss promising candidate therapeutics for tumor-agnostic designation and challenges for their broad implementation.
Collapse
Affiliation(s)
- Alberto Hernando-Calvo
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Alice Rossi
- Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Maria Vieito
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Emile Voest
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Elena Garralda
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain.
| |
Collapse
|
12
|
He T, Hu C, Li S, Fan Y, Xie F, Sun X, Jiang Q, Chen W, Jia Y, Li W. The role of CD8 + T-cells in colorectal cancer immunotherapy. Heliyon 2024; 10:e33144. [PMID: 39005910 PMCID: PMC11239598 DOI: 10.1016/j.heliyon.2024.e33144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Immunotherapy has been an advanced and effective approach to treating various types of solid tumors in recent years, and the most successful strategy is immune checkpoint inhibitors (ICIs), which have shown beneficial effects in patients with colorectal cancer (CRC). Drug resistance to ICIs is usually associated with CD8+ T-cells targeting tumor antigens; thus, CD8+ T-cells play an important role in immunotherapy. Unfortunately, Under continuous antigen stimulation, tumor microenvironment(TME), hypoxia and other problems it leads to insufficient infiltration of CD8+ T-cells, low efficacy and mechanism exhaustion, which have become obstacles to immunotherapy. Thus, this article describes the relationship between CRC and the immune system, focuses on the process of CD8+ T-cells production, activation, transport, killing, and exhaustion, and expounds on related mechanisms leading to CD8+ T-cells exhaustion. Finally, this article summarizes the latest strategies and methods in recent years, focusing on improving the infiltration, efficacy, and exhaustion of CD8+ T-cells, which may help to overcome the barriers to immunotherapy.
Collapse
Affiliation(s)
- Tao He
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Chencheng Hu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Shichao Li
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yao Fan
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Fei Xie
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Xin Sun
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Qingfeng Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Weidong Chen
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yingtian Jia
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Wusheng Li
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| |
Collapse
|
13
|
Popescu I, Dudău AM, Dima S, Herlea V, Croitoru VM, Dinu IM, Miron M, Lupescu I, Croitoru-Cazacu IM, Dumitru R, Croitoru AE. Multimodal Treatment of Metastatic Rectal Cancer in a Young Patient: Case Report and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:696. [PMID: 38792879 PMCID: PMC11123219 DOI: 10.3390/medicina60050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Metastatic colorectal cancer requires a multidisciplinary and individualized approach. Herein, we reported the case of a young woman diagnosed with metastatic rectal cancer who received an individualized multimodal treatment strategy that resulted in a remarkable survival. There were several particular aspects of this case, such as the early onset of the disease, the successful use of conversion therapy, the application of liquid biopsy to guide treatment, and the specific nature of the bone metastasis. To offer more insights for navigating such challenges in patients with metastatic colorectal cancer, we have conducted a literature review to find more data related to the particularities of this case. The incidence of early onset colorectal cancer is on the rise. Data suggests that it differs from older-onset colorectal cancer in terms of its pathological, epidemiological, anatomical, metabolic, and biological characteristics. Conversion therapy and surgical intervention provide an opportunity for cure and improve outcomes in metastatic colorectal cancer. It is important to approach each case individually, as every patient with limited liver disease should be considered as a candidate for secondary resection. Moreover, liquid biopsy has an important role in the individualized management of metastatic colorectal cancer patients, as it offers additional information for treatment decisions.
Collapse
Affiliation(s)
- Ionuț Popescu
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (I.P.); (V.M.C.)
| | - Ana-Maria Dudău
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (I.P.); (V.M.C.)
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Simona Dima
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Vlad Herlea
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Pathology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Vlad M. Croitoru
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (I.P.); (V.M.C.)
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Ioana Mihaela Dinu
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Monica Miron
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Ioana Lupescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Radiology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Irina M. Croitoru-Cazacu
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
| | - Radu Dumitru
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Radiology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Adina Emilia Croitoru
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
| |
Collapse
|
14
|
Wilbur HC, Le DT, Agarwal P. Immunotherapy of MSI Cancer: Facts and Hopes. Clin Cancer Res 2024; 30:1438-1447. [PMID: 38015720 DOI: 10.1158/1078-0432.ccr-21-1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Microsatellite instability (MSI) is a tumor molecular phenotype that evolves from loss of function in the mismatch repair (MMR) proteins through deleterious germline mutations, epigenetic inactivation, or somatic biallelic mutations. This phenotype is characterized by genomic hyper-mutability, increased neoantigen expression, and a favorable, immune-rich tumor microenvironment. These features confer a greater likelihood of response to treatment with the class of agents known as immune checkpoint inhibitors (ICI) and, potentially, other immune-based therapeutics. MSI as a predictive biomarker for response to treatment with ICIs ultimately led to the first tissue-agnostic approval of pembrolizumab for advanced, previously treated MSI or deficient MMR (dMMR) tumors. Nevertheless, response to ICIs in dMMR/MSI tumors is not universal. Identifying predictors of response and elucidating mechanisms of immune escape will be crucial to continued successful treatment of this subset. In this review, we aim to describe the pathogenesis and key immunologic features of dMMR/MSI tumors, provide a brief overview of the currently approved treatments, and discuss promising novel immune-based therapeutics currently under investigation.
Collapse
Affiliation(s)
- H Catherine Wilbur
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Dung T Le
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Parul Agarwal
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Li S, Zhang N, Yang Y, Liu T. Transcriptionally activates CCL28 expression to inhibit M2 polarization of macrophages and prevent immune escape in colorectal cancer cells. Transl Oncol 2024; 40:101842. [PMID: 38035446 PMCID: PMC10698578 DOI: 10.1016/j.tranon.2023.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the potential molecular mechanism of SPDEF in immune evasion of colorectal cancer (CRC) and examine its impact on macrophage M2 polarization using the TCGA and GEO databases. METHODS By combining TCGA and GEO databases, differential gene expression between CRC samples and standard tissue samples was analyzed to screen for immune-related genes (IRGs) associated with the prognosis of CRC patients. A predictive risk model was constructed based on 18 key IRGs, which were then validated using the GEO dataset. The relationship between transcription factors and IRGs was further explored to investigate their regulatory network in CRC. In vivo and in vitro experiments were carried out to validate these regulatory relationships and explore the function of SPDEF and CCL28 in CRC. RESULTS Twelve key IRGs associated with clinical and pathological characteristics of CRC patients were identified. Among them, CCL28 significantly impacted macrophage infiltration in CRC cells and may be a critical factor in immune evasion. In both in vitro and in vivo experiments, overexpression of SPDEF upregulated CCL28 expression, thereby suppressing M2 polarization of macrophages and inhibiting CRC cell proliferation and tumor growth. Notably, interference with CCL28 could reverse the effect of SPDEF overexpression. CONCLUSION SPDEF can suppress immune evasion of CRC cells by activating CCL28, which is achieved through the modulation of M2 polarization of macrophages. This provides a new research direction and potential therapeutic target for immunotherapy in CRC.
Collapse
Affiliation(s)
- Shiquan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Nan Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Yongping Yang
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Tongjun Liu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
16
|
Song B, Wang K, Peng Y, Zhu Y, Cui Z, Chen L, Yu Z, Song B. Combined signature of G protein-coupled receptors and tumor microenvironment provides a prognostic and therapeutic biomarker for skin cutaneous melanoma. J Cancer Res Clin Oncol 2023; 149:18135-18160. [PMID: 38006451 DOI: 10.1007/s00432-023-05486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) have been shown to have an important role in tumor development and metastasis, and abnormal expression of GPCRs is significantly associated with poor prognosis of tumor patients. In this study, we analyzed the GPCRs-related gene (GPRGs) and tumor microenvironment (TME) in skin cutaneous melanoma (SKCM) to construct a prognostic model to help SKCM patients obtain accurate clinical treatment strategies. METHODS SKCM expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression analysis, LASSO algorithm, and univariate and multivariate cox regression analysis were used to screen prognosis-related genes (GPR19, GPR146, S1PR2, PTH1R, ADGRE5, CXCR3, GPR143, and OR2I1P) and multiple prognosis-good immune cells; the data set was analyzed according to above results and build up a GPR-TME classifier. The model was further subjected to immune infiltration, functional enrichment, tumor mutational load, immunotherapy prediction, and scRNA-seq data analysis. Finally, cellular experiments were conducted to validate the functionality of the key gene GPR19 in the model. RESULTS The findings indicate that high expression of GPRGs is associated with a poor prognosis in patients with SKCM, highlighting the significant role of GPRGs and the tumor microenvironment (TME) in SKCM development. Notably, the group characterized by low GPR expression and a high TME exhibited the most favorable prognosis and immunotherapeutic efficacy. Furthermore, cellular assays demonstrated that knockdown of GPR19 significantly reduced the proliferation, migration, and invasive capabilities of melanoma cells in A375 and A2058 cell lines. CONCLUSION This study provides novel insights for the prognosis evaluation and treatment of melanoma, along with the identification of a new biomarker, GPR19.
Collapse
Affiliation(s)
- Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Kai Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Yixuan Peng
- School of Basic Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yuhan Zhu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhiwei Cui
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Lin Chen
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
17
|
Yang L, Atakhanova N, Arellano MTC, Mohamed MY, Hani T, Fahdil AA, Castillo-Acobo RY, Juyal A, Hussein AK, Amin AH, Pecho RDC, Akhavan-Sigari R. Translational research of new developments in targeted therapy of colorectal cancer. Pathol Res Pract 2023; 252:154888. [PMID: 37948996 DOI: 10.1016/j.prp.2023.154888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
A severe global health concern is the rising incidence and mortality rate of colorectal cancer (CRC). Chemotherapy, which is typically used to treat CRC, is known to have limited specificity and can have noticeable side effects. A paradigm shift in cancer treatment has been brought about by the development of targeted therapies, which has led to the appearance of pharmacological agents with improved efficacy and decreased toxicity. Epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), and BRAF are among the molecular targets covered in this review that are used in targeted therapy for CRC. The current discussion also covers advancements in targeted therapeutic approaches, such as antibody-drug conjugates, immune checkpoint inhibitors, and chimeric antigen receptor (CAR) T-cell therapy. A review of the clinical trials and application of these particular therapies in treating CRC is also done. Despite the improvements in targeted therapy for CRC, problems such as drug resistance and patient selection remain to be solved. Despite this, targeted therapies have offered fresh possibilities for identifying and treating CRC, paving the way for the development of personalized medicine and extending the life expectancy and general well-being of CRC patients.
Collapse
Affiliation(s)
- Lei Yang
- Department of Clinical Laboratory, People's Hospital of Chongqing Liangjiang New Area, Chongqing 401121, China
| | - Nigora Atakhanova
- Head of the Department of Oncology, Tashkent Medical Academy, Tashkent 100109, Uzbekistan
| | | | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Iraq
| | | | - Ashima Juyal
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
18
|
Becker AS, Kluge C, Schofeld C, Zimpfer AH, Schneider B, Strüder D, Redwanz C, Ribbat-Idel J, Idel C, Maletzki C. Identifying Predictive Biomarkers for Head and Neck Squamous Cell Carcinoma Response. Cancers (Basel) 2023; 15:5597. [PMID: 38067301 PMCID: PMC10705351 DOI: 10.3390/cancers15235597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 10/27/2024] Open
Abstract
The 5-year survival rate for head and neck squamous cell carcinoma (HNSCC) is approximately 65%. In addition to radio-chemotherapy, immunotherapy is an approach in the treatment of advanced HNSCC. A better understanding of the immune context would allow personalized treatment by identifying patients who are best suited for different treatment options. In our discovery cohort, we evaluated the expression profiles of CMTM6, PD-L1, CTLA-4, and FOXP3 in 177 HNSCCs from Caucasian patients of all tumor stages and different treatment regimens, correlating marker expression in tumor and immune cells with outcomes. Patients with CMTM6high-expressing tumors had a longer overall survival regardless of treatment. This prognostic benefit of CMTM6 in HNSCC was validated in an independent cohort. Focusing on the in the discovery cohort (n = 177), a good predictive effect of CMTM6high expression was seen in patients receiving radiotherapy (p = 0.07; log rank), but not in others. CMTM6 correlated with PD-L1, CTLA-4 and FOXP3 positivity, with patients possessing CMTM6high/FOXP3high tumors showing the longest survival regardless of treatment. In chemotherapy-treated patients, PD-L1 positivity was associated with longer progression-free survival (p < 0.05). In the 27 patients who received immunotherapy, gene expression analysis revealed lower levels of CTLA-4 and FOXP3 with either partial or complete response to this treatment, while no effect was observed for CMTM6 or PD-L1. The combination of these immunomodulatory markers seems to be an interesting prognostic and predictive signature for HNSCC patients with the ability to optimize individualized treatments.
Collapse
Affiliation(s)
- Anne-Sophie Becker
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Cornelius Kluge
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Carsten Schofeld
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Annette Helene Zimpfer
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Daniel Strüder
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Koerner”, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Caterina Redwanz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Julika Ribbat-Idel
- Institute of Pathology, University of Luebeck, University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany;
| | - Christian Idel
- Department of Oto-Rhino-Laryngology & Head and Neck Surgery, University of Lubeck, University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany;
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
19
|
Taïeb J, Bouche O, André T, Le Malicot K, Laurent-Puig P, Bez J, Toullec C, Borg C, Randrian V, Evesque L, Corbinais S, Perrier H, Buecher B, Di Fiore F, Gallois C, Emile JF, Lepage C, Elhajbi F, Tougeron D. Avelumab vs Standard Second-Line Chemotherapy in Patients With Metastatic Colorectal Cancer and Microsatellite Instability: A Randomized Clinical Trial. JAMA Oncol 2023; 9:1356-1363. [PMID: 37535388 PMCID: PMC10401392 DOI: 10.1001/jamaoncol.2023.2761] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023]
Abstract
IMPORTANCE Only 1 randomized clinical trial has shown the superiority of immune checkpoint inhibitors in patients with deficient mismatch repair and/or microsatellite instability (dMMR/MSI) metastatic colorectal cancer (mCRC) in the first-line setting. OBJECTIVES To determine whether avelumab (an anti-programmed cell death ligand 1 antibody) improves progression-free survival (PFS) compared with standard second-line chemotherapy in patients with dMMR/MSI mCRC. DESIGN, SETTING, AND PARTICIPANTS The SAMCO-PRODIGE 54 trial is a national open-label phase 2 randomized clinical trial that was conducted from April 24, 2018, to April 29, 2021, at 49 French sites. Patients with dMMR/MSI mCRC who experienced progression while receiving standard first-line therapy were included in the analysis. INTERVENTIONS Patients were randomized to receive standard second-line therapy or avelumab every 2 weeks until progression, unacceptable toxic effects, or patient refusal. MAIN OUTCOME AND MEASURES The primary end point was PFS according to RECIST (Response Evaluation Criteria in Solid Tumours), version 1.1, evaluated by investigators in patients with mCRC and confirmed dMMR and MSI status who received at least 1 dose of treatment (modified intention-to-treat [mITT] population). RESULTS A total of 122 patients were enrolled in the mITT population. Median age was 66 (IQR, 56-76) years, 65 patients (53.3%) were women, 100 (82.0%) had a right-sided tumor, and 52 (42.6%) had BRAF V600E-mutated tumors. There was no difference in patients and tumor characteristics between treatment groups. No new safety concerns in either group were detected, with fewer treatment-related adverse events of at least grade 3 in the avelumab group than in the chemotherapy group (20 [31.7%] vs 34 [53.1%]; P = .02). After a median follow-up of 33.3 (95% CI, 28.3-34.8) months, avelumab was superior to chemotherapy with or without targeted agents with respect to PFS (15 [24.6%] vs 5 [8.2%] among patients without progression; P = .03). Rates of PFS rates at 12 months were 31.2% (95% CI, 20.1%-42.9%) and 19.4% (95% CI, 10.6%-30.2%) in the avelumab and control groups, respectively, and 27.4% (95% CI, 16.8%-39.0%) and 9.1% (95% CI, 3.2%-18.8%) at 18 months. Objective response rates were similar in both groups (18 [29.5%] vs 16 [26.2%]; P = .45). Among patients with disease control, 18 (75.7%) in the avelumab group compared with 9 (19.1%) in the control group had ongoing disease control at 18 months. CONCLUSIONS The SAMCO-PRODIGE 54 phase 2 randomized clinical trial showed, in patients with dMMR/MSI mCRC, better PFS and disease control duration with avelumab over standard second-line treatment, with a favorable safety profile. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03186326.
Collapse
Affiliation(s)
- Julien Taïeb
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP Centre, Université Paris Cité, Paris, France
| | - Olivier Bouche
- Department of Digestive Oncology, Centre Hospitalier Universitaire (CHU) Reims, Reims, France
| | - Thierry André
- Sorbonne Université and Hôpital Saint Antoine, INSERM 938 and Site de Recherche Intégrée sur le Cancer CURAMUS, Paris, France
| | - Karine Le Malicot
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM Lipides Nutrition Cancer–Unité Mixte de Recherche 1231, University of Burgundy and Franche Comté, Dijon, France
| | - Pierre Laurent-Puig
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP Centre, Université Paris Cité, Paris, France
| | - Jérémie Bez
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM Lipides Nutrition Cancer–Unité Mixte de Recherche 1231, University of Burgundy and Franche Comté, Dijon, France
| | - Clémence Toullec
- Department of Medical Oncology, Institut du Cancer, Avignon-Provence, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Violaine Randrian
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - Ludovic Evesque
- Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France
| | | | - Hervé Perrier
- Department of Hepato-Gastroenterology, Hôpital Saint-Joseph, Marseille, France
| | - Bruno Buecher
- Department of Oncology, Institut Curie, Paris, France
| | - Frederic Di Fiore
- Hepatogastroenterology Department, CHU Rouen, University of Rouen Normandy, INSERM 1245, Institut de Recherche en Oncologie Group, Normandie University, Rouen, France
| | - Claire Gallois
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Jean Francois Emile
- EA4340, Pathology Department and INSERM, Ambroise Paré Hospital, Boulogne, France
| | - Côme Lepage
- Sorbonne Université and Hôpital Saint Antoine, INSERM 938 and Site de Recherche Intégrée sur le Cancer CURAMUS, Paris, France
- Department of Digestive Oncology, University Hospital Dijon, University of Burgundy and Franche Comté, Dijon, France
| | - Farid Elhajbi
- Medical Oncology Department, Oscar Lambret Center, Lille, France
| | - David Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
20
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
21
|
Krekeler C, Wethmar K, Mikesch JH, Kerkhoff A, Menck K, Lenz G, Schildhaus HU, Wessolly M, Hoffmann MW, Pascher A, Asmus I, Wardelmann E, Bleckmann A. Complete Metabolic Response to Combined Immune Checkpoint Inhibition after Progression of Metastatic Colorectal Cancer on Pembrolizumab: A Case Report. Int J Mol Sci 2023; 24:12056. [PMID: 37569431 PMCID: PMC10418401 DOI: 10.3390/ijms241512056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
DNA mismatch repair deficient (dMMR) and microsatellite instable (MSI) metastatic colorectal cancer (mCRC) can be successfully treated with FDA- and EMA-approved immune checkpoint inhibitors (ICI) pembrolizumab and nivolumab (as single agents targeting the anti-programmed cell death protein-1 (PD-1)) or combinations of a PD-1 inhibitor with ipilimumab, a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)-targeting antibody. The best treatment strategy beyond progression on single-agent ICI therapy remains unclear. Here, we present the case of a 63-year-old male with Lynch-syndrome-associated, microsatellite instability-high (MSI-H) mCRC who achieved a rapid normalization of his tumor markers and a complete metabolic remission (CMR), currently lasting for ten months, on sequential ICI treatment with the combination of nivolumab and ipilimumab followed by nivolumab maintenance therapy after progression on single-agent anti-PD-1 ICI therapy. The therapy was well-tolerated, and no immune-related adverse events occurred. To the best of our knowledge, this is the first case of a sustained metabolic complete remission in an MSI-H mCRC patient initially progressing on single-agent anti-PD-1 therapy. Thus, dMMR mCRC patients might benefit from sequential immune checkpoint regimens even with long-term responses. However, further sophistication of clinical algorithms for treatment beyond progression on single-agent ICI therapy in MSI-mCRC is urgently needed.
Collapse
Affiliation(s)
- Carolin Krekeler
- Department for Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany (A.B.)
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Klaus Wethmar
- Department for Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany (A.B.)
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Jan-Henrik Mikesch
- Department for Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany (A.B.)
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Andrea Kerkhoff
- Department for Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany (A.B.)
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Kerstin Menck
- Department for Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany (A.B.)
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Georg Lenz
- Department for Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany (A.B.)
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Hans-Ulrich Schildhaus
- Institute of Pathology Nordhessen, 34119 Kassel, Germany
- Institute of Pathology, University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Matthias W. Hoffmann
- Department of General and Visceral Surgery, Raphaelsklinik Muenster, 48143 Muenster, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, 48149 Muenster, Germany
| | - Inga Asmus
- Department of Nuclear Medicine, University Hospital Muenster, 48149 Muenster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Annalen Bleckmann
- Department for Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany (A.B.)
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
22
|
Mestrallet G, Brown M, Bozkus CC, Bhardwaj N. Immune escape and resistance to immunotherapy in mismatch repair deficient tumors. Front Immunol 2023; 14:1210164. [PMID: 37492581 PMCID: PMC10363668 DOI: 10.3389/fimmu.2023.1210164] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Up to 30% of colorectal, endometrial and gastric cancers have a deficiency in mismatch repair (MMR) protein expression due to either germline or epigenetic inactivation. Patients with Lynch Syndrome who inherit an inactive MMR allele have an up to 80% risk for developing a mismatch repair deficient (MMRd) cancer. Due to an inability to repair DNA, MMRd tumors present with genomic instability in microsatellite regions (MS). Tumors with high MS instability (MSI-H) are characterized by an increased frequency of insertion/deletions (indels) that can encode novel neoantigens if they occur in coding regions. The high tumor antigen burden for MMRd cancers is accompanied by an inflamed tumor microenvironment (TME) that contributes to the clinical effectiveness of anti-PD-1 therapy in this patient population. However, between 40 and 70% of MMRd cancer patients do not respond to treatment with PD-1 blockade, suggesting that tumor-intrinsic and -extrinsic resistance mechanisms may affect the success of checkpoint blockade. Immune evasion mechanisms that occur during early tumorigenesis and persist through cancer development may provide a window into resistance pathways that limit the effectiveness of anti-PD-1 therapy. Here, we review the mechanisms of immune escape in MMRd tumors during development and checkpoint blockade treatment, including T cell dysregulation and myeloid cell-mediated immunosuppression in the TME. Finally, we discuss the development of new therapeutic approaches to tackle resistance in MMRd tumors, including cancer vaccines, therapies targeting immunosuppressive myeloid programs, and immune checkpoint combination strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matthew Brown
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cansu Cimen Bozkus
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Extramural member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
23
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
24
|
Sawada K, Nakayama K, Razia S, Yamashita H, Ishibashi T, Ishikawa M, Kanno K, Sato S, Nakayama S, Otsuki Y, Kyo S. Promising Therapeutic Impact of Immune Checkpoint Inhibitors in Type II Endometrial Cancer Patients with Deficient Mismatch Repair Status. Healthcare (Basel) 2023; 11:1073. [PMID: 37107907 PMCID: PMC10137870 DOI: 10.3390/healthcare11081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Type II endometrial cancer (EC) is responsible for most endometrial cancer-related deaths due to its aggressive nature, late-stage detection, and high tolerance to standard therapies. Thus, novel treatment strategies for type II EC are imperative. For patients with mismatch repair-deficient (dMMR) tumors, immunotherapy with immune checkpoint inhibitors represents a promising therapeutic strategy. However, the prevalence of dMMR tumors in type II EC patients remains unclear. In this study, using immunohistochemistry, we evaluated the expression of mismatch repair (MMR) proteins, tumor-infiltrating lymphocytes (CD8+), and immune checkpoint molecules (PD-L1) in 60 patients with type II EC (16, 5, 17, and 22 were endometrioid G3, serous, de-differentiated, and carcinosarcoma cases, respectively) to investigate the therapeutic effect of immune checkpoint inhibitors. Approximately 24 cases (40%) had a loss of MMR protein expression. The positivity rate of CD8+ (p = 0.0072) and PD-L1 (p = 0.0061) expression was significantly associated with the dMMR group. These results suggest immune checkpoint inhibitors (anti-PD-L1/PD-1 antibodies) could effectively treat type II EC with dMMR. The presence of dMMR might be a biomarker for a positive response to PD-1/PD-L1 immunotherapy in type II EC.
Collapse
Affiliation(s)
- Kiyoka Sawada
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan; (K.S.); (S.R.); (H.Y.); (T.I.); (M.I.); (K.K.); (S.S.)
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan; (K.S.); (S.R.); (H.Y.); (T.I.); (M.I.); (K.K.); (S.S.)
| | - Sultana Razia
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan; (K.S.); (S.R.); (H.Y.); (T.I.); (M.I.); (K.K.); (S.S.)
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan; (K.S.); (S.R.); (H.Y.); (T.I.); (M.I.); (K.K.); (S.S.)
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan; (K.S.); (S.R.); (H.Y.); (T.I.); (M.I.); (K.K.); (S.S.)
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan; (K.S.); (S.R.); (H.Y.); (T.I.); (M.I.); (K.K.); (S.S.)
| | - Kosuke Kanno
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan; (K.S.); (S.R.); (H.Y.); (T.I.); (M.I.); (K.K.); (S.S.)
| | - Seiya Sato
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan; (K.S.); (S.R.); (H.Y.); (T.I.); (M.I.); (K.K.); (S.S.)
| | - Satoru Nakayama
- Department of Obstetrics and Gynecology, Seirei Hamamatsu Hospital, Hamamatsu 4308558, Japan;
| | - Yoshiro Otsuki
- Department of Pathology, Seirei Hamamatsu Hospital, Hamamatsu 4308558, Japan;
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan; (K.S.); (S.R.); (H.Y.); (T.I.); (M.I.); (K.K.); (S.S.)
| |
Collapse
|
25
|
Shimozaki K, Nakayama I, Hirota T, Yamaguchi K. Current Strategy to Treat Immunogenic Gastrointestinal Cancers: Perspectives for a New Era. Cells 2023; 12:1049. [PMID: 37048122 PMCID: PMC10093684 DOI: 10.3390/cells12071049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Since pembrolizumab, an anti-programmed death-1 (PD-1) antibody, showed a dramatic response to immunogenic cancers with microsatellite instability-high (MSI-H) and/or deficient mismatch repair (dMMR) in the pilot clinical trial KEYNOTE-016, subsequent studies have confirmed durable responses of anti-PD-1 inhibitors for MSI-H/dMMR solid tumors. As immunotherapy is described as a "game changer," the therapeutic landscape for MSI-H/dMMR solid tumors including gastrointestinal cancers has changed considerably in the last decade. An MSI/MMR status has been established as the predictive biomarker for immune checkpoint blockades, playing an indispensable role in the clinical practice of patients with MSI-H/dMMR tumors. Immunotherapy is also now investigated for locally advanced MSI-H/dMMR gastrointestinal cancers. Despite this great success, a few populations with MSI-H/dMMR gastrointestinal cancers do not respond to immunotherapy, possibly due to the existence of intrinsic or acquired resistance mechanisms. Clarifying the underlying mechanisms of resistance remains a future task, whereas attempts to overcome resistance and improve the efficacy of immunotherapy are currently ongoing. Herein, we review recent clinical trials with special attention to MSI-H/dMMR gastrointestinal cancers together with basic/translational findings, which provide their rationale, and discuss perspectives for the further therapeutic development of treatment in this field.
Collapse
Affiliation(s)
- Keitaro Shimozaki
- Department of Gastrointestinal Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Izuma Nakayama
- Department of Gastrointestinal Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Toru Hirota
- Department of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastrointestinal Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| |
Collapse
|
26
|
Conte M, Di Mauro A, Capasso L, Montella L, De Simone M, Nebbioso A, Altucci L. Targeting HDAC2-Mediated Immune Regulation to Overcome Therapeutic Resistance in Mutant Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15071960. [PMID: 37046620 PMCID: PMC10093005 DOI: 10.3390/cancers15071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
A large body of clinical and experimental evidence indicates that colorectal cancer is one of the most common multifactorial diseases. Although some useful prognostic biomarkers for clinical therapy have already been identified, it is still difficult to characterize a therapeutic signature that is able to define the most appropriate treatment. Gene expression levels of the epigenetic regulator histone deacetylase 2 (HDAC2) are deregulated in colorectal cancer, and this deregulation is tightly associated with immune dysfunction. By interrogating bioinformatic databases, we identified patients who presented simultaneous alterations in HDAC2, class II major histocompatibility complex transactivator (CIITA), and beta-2 microglobulin (B2M) genes based on mutation levels, structural variants, and RNA expression levels. We found that B2M plays an important role in these alterations and that mutations in this gene are potentially oncogenic. The dysregulated mRNA expression levels of HDAC2 were reported in about 5% of the profiled patients, while other specific alterations were described for CIITA. By analyzing immune infiltrates, we then identified correlations among these three genes in colorectal cancer patients and differential infiltration levels of genetic variants, suggesting that HDAC2 may have an indirect immune-related role in specific subgroups of immune infiltrates. Using this approach to carry out extensive immunological signature studies could provide further clinical information that is relevant to more resistant forms of colorectal cancer.
Collapse
Affiliation(s)
- Mariarosaria Conte
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
- Correspondence: ; Tel.: +39-081-5667564
| | - Annabella Di Mauro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
| | - Liliana Montella
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy;
| | - Mariacarla De Simone
- Stem Cell Transplantation Unit, Division of Hematology, Cardarelli Hospital, 80131 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
- BIOGEM, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
- IEOS, Institute for Endocrinology and Experimental Oncology, CNRs, 80131 Napoli, Italy
| |
Collapse
|
27
|
Li YJ, Liu XZ, Yao YF, Chen N, Li ZW, Zhang XY, Lin XF, Wu AW. Efficacy and safety of preoperative immunotherapy in patients with mismatch repair-deficient or microsatellite instability-high gastrointestinal malignancies. World J Gastrointest Surg 2023; 15:222-233. [PMID: 36896306 PMCID: PMC9988634 DOI: 10.4240/wjgs.v15.i2.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Programmed death protein (PD)-1 blockade immunotherapy significantly prolongs survival in patients with metastatic mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) gastrointestinal malignancies such gastric and colorectal cancer. However, the data on preoperative immunotherapy are limited. AIM To evaluate the short-term efficacy and toxicity of preoperative PD-1 blockade immunotherapy. METHODS In this retrospective study, we enrolled 36 patients with dMMR/MSI-H gastrointestinal malignancies. All the patients received PD-1 blockade with or without chemotherapy of CapOx regime preoperatively. PD1 blockade 200 mg was given intravenously over 30 min on day 1 of each 21-d cycle. RESULTS Three patients with locally advanced gastric cancer achieved pathological complete response (pCR). Three patients with locally advanced duodenal carcinoma achieved clinical complete response (cCR), followed by watch and wait. Eight of 16 patients with locally advanced colon cancer achieved pCR. All four patients with liver metastasis from colon cancer reached CR, including three with pCR and one with cCR. pCR was achieved in two of five patients with non-liver metastatic colorectal cancer. CR was achieved in four of five patients with low rectal cancer, including three with cCR and one with pCR. cCR was achieved in seven of 36 cases, among which, six were selected for watch and wait strategy. No cCR was observed in gastric or colon cancer. CONCLUSION Preoperative PD-1 blockade immunotherapy in dMMR/MSI-H gastrointestinal malignancies can achieve a high CR, especially in patients with duodenal or low rectal cancer, and can achieve high organ function protection.
Collapse
Affiliation(s)
- Ying-Jie Li
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xin-Zhi Liu
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yun-Feng Yao
- Gastro-intestinal Ward III, Beijing Cancer Hospital, Beijing 100142, China
| | - Nan Chen
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhong-Wu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiao-Yan Zhang
- Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xin-Feng Lin
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ai-Wen Wu
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
28
|
Berrino E, Aquilano MC, Valtorta E, Amodio V, Germano G, Gusmini M, Gizzi K, Fenocchio E, Sapino A, Marsoni S, Sartore-Bianchi A, Bardelli A, Siena S, Bonoldi E, Marchiò C. Unique Patterns of Heterogeneous Mismatch Repair Protein Expression in Colorectal Cancer Unveil Different Degrees of Tumor Mutational Burden and Distinct Tumor Microenvironment Features. Mod Pathol 2023; 36:100012. [PMID: 36853785 DOI: 10.1016/j.modpat.2022.100012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
Mismatch repair (MMR) protein expression in colorectal cancer (CRC) cells is usually homogeneously retained or lost. Rare lesions may show a heterogeneous pattern of MMR protein expression. We evaluated MMR protein expression (MLH1, MSH2, MSH6, and PMS2) in 200 CRCs, identifying 3 groups with proficient MMR protein expression (MMRp), deficient MMR protein expression (MMRd), and heterogeneous MMR protein expression (MMRh). MMRh tumors were microdissected on the basis of the expression of the heterogeneous marker. DNA was extracted and subjected to targeted sequencing. RNA was purified from bulk tumors of all MMRh cases and in a control series of 15 MMRp and 10 MMRd CRCs and analyzed using the PanCancer IO 360 Panel (NanoString Technologies). Twenty-nine of the 200 cases (14.5%) were MMRd. Nine cases (4.5%) showed a heterogeneous pattern of MMR expression, with 6 tumors harboring concomitant loss of one of the other MMR proteins, thus featuring areas with double loss at immunohistochemistry (IHC) testing (MMRh double-loss cases). Four of the 6 MMRh double-loss cases were suitable for a separate sequence variant analysis of IHC double-negative and IHC single-negative components of the tumor. In all lesions, both components exhibited a high tumor mutation burden (TMB). Nevertheless, a significant increase in TMB in the double-negative components was observed (mean TMB: negative, 70 mut/Mb vs positive, 59 mut/Mb) because of a higher number of subclonal variants compared with the other component. Comparative gene expression analyses among MMRd, MMRp, and MMRh CRCs highlighted differential gene expression patterns and an increased number of tumor-infiltrating lymphocytes in MMRh lesions, which is also characterized by a substantial population of exhausted CD8+ lymphocytes. We describe a unique subgroup of CRCs showing heterogeneous expression of MMR proteins in a background of concomitant loss of one of the other markers.
Collapse
Affiliation(s)
- Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Emanuele Valtorta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Vito Amodio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Oncology, University of Turin, Turin, Italy
| | - Giovanni Germano
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Oncology, University of Turin, Turin, Italy
| | - Marco Gusmini
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Katiuscia Gizzi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo (TO), Italy
| | | | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Marsoni
- FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milano, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Oncology, University of Turin, Turin, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milano, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Bonoldi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
29
|
Huang Q, Yu T, Li L, Zhang Q, Zhang S, Li B, Li X, Xiao W, Liu G. Intraindividual Tumor Heterogeneity of Mismatch Repair Status in Metastatic Colorectal Cancer. Appl Immunohistochem Mol Morphol 2023; 31:84-93. [PMID: 36409630 PMCID: PMC9928560 DOI: 10.1097/pai.0000000000001089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/19/2022] [Indexed: 11/22/2022]
Abstract
Heterogeneous mismatch repair (MMR) status in metastatic colorectal cancer (mCRC) may associate with refractoriness to immunotherapy. We aimed here to study the concordance in MMR status between primary and paired metastasis in mCRC. Our study included 84 patients diagnosed with mCRC with primary and matched metastatic cancers. Immunohistochemistry was used to determine the MMR status of primary lesions and matched metastases. Pooled analysis of 913 cases was used to evaluate the prevalence and organ specificity of MMR status heterogeneity. The correlations between MMR pattern heterogeneity and clinical outcomes were analyzed. MMR status heterogeneity between primary and corresponding metastatic sites was exhibited by 10 (11.9%) patients. The prevalence of the heterogeneous MMR phenotype was significantly higher in primary tumors with deficient MMR (dMMR) than with proficient MMR (pMMR), which was verified in the pooled analysis ( P <0.001). Among patients with a dMMR primary tumor, the discrepancy was detected in liver, lung, ovary, peritoneum, and distant lymph node metastases. However, the discrepancy was confined to liver (26/440) or peritoneum (7/112) ( P =0.02) in patients with a pMMR primary tumor. Patients with or without MMR status heterogeneity experienced comparable overall survival ( P =0.452). Heterogeneous MMR patterns generally existed in a subset of patients with mCRC, particularly those with dMMR primary tumors. Testing the metastatic site may be valuable because the discordance of MMR status may potentially affect immune surveillance and immunotherapy.
Collapse
Affiliation(s)
- Qianpeng Huang
- Departments of General Surgery
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Tao Yu
- Oncology, Tianjin Medical University General Hospital, Tianjin
| | - Lei Li
- Oncology, Tianjin Medical University General Hospital, Tianjin
| | | | | | | | | | | | | |
Collapse
|
30
|
Amodio V, Lamba S, Chilà R, Cattaneo CM, Mussolin B, Corti G, Rospo G, Berrino E, Tripodo C, Pisati F, Bartolini A, Aquilano MC, Marsoni S, Mauri G, Marchiò C, Abrignani S, Di Nicolantonio F, Germano G, Bardelli A. Genetic and pharmacological modulation of DNA mismatch repair heterogeneous tumors promotes immune surveillance. Cancer Cell 2023; 41:196-209.e5. [PMID: 36584674 PMCID: PMC9833846 DOI: 10.1016/j.ccell.2022.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/23/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
Patients affected by colorectal cancer (CRC) with DNA mismatch repair deficiency (MMRd), often respond to immune checkpoint blockade therapies, while those with mismatch repair-proficient (MMRp) tumors generally do not. Interestingly, a subset of MMRp CRCs contains variable fractions of MMRd cells, but it is unknown how their presence impacts immune surveillance. We asked whether modulation of the MMRd fraction in MMR heterogeneous tumors acts as an endogenous cancer vaccine by promoting immune surveillance. To test this hypothesis, we use isogenic MMRp (Mlh1+/+) and MMRd (Mlh1-/-) mouse CRC cells. MMRp/MMRd cells mixed at different ratios are injected in immunocompetent mice and tumor rejection is observed when at least 50% of cells are MMRd. To enrich the MMRd fraction, MMRp/MMRd tumors are treated with 6-thioguanine, which leads to tumor rejection. These results suggest that genetic and pharmacological modulation of the DNA mismatch repair machinery potentiate the immunogenicity of MMR heterogeneous tumors.
Collapse
Affiliation(s)
- Vito Amodio
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Simona Lamba
- Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Rosaria Chilà
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Chiara M Cattaneo
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Giorgio Corti
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Giuseppe Rospo
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy; Department of Medical Sciences, University of Torino, Torino, Italy
| | - Claudio Tripodo
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech S.C.a.R.L., 20139, Milan, Italy
| | - Alice Bartolini
- Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Maria Costanza Aquilano
- Department of Hematology, Oncology, and Molecular Medicine, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20162 Milan, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy; Department of Medical Sciences, University of Torino, Torino, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', 20122 Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Giovanni Germano
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy.
| | - Alberto Bardelli
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy.
| |
Collapse
|
31
|
Gai C, Harnor SJ, Zhang S, Cano C, Zhuang C, Zhao Q. Advanced approaches of developing targeted covalent drugs. RSC Med Chem 2022; 13:1460-1475. [PMID: 36561076 PMCID: PMC9749957 DOI: 10.1039/d2md00216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
In recent years, the development of targeted covalent inhibitors has gained popularity around the world. Specific groups (electrophilic warheads) form irreversible bonds with the side chain of nucleophilic amino acid residues, thus changing the function of biological targets such as proteins. Since the first targeted covalent inhibitor was disclosed in the 1990s, great efforts have been made to develop covalent ligands from known reversible leads or drugs by addition of tolerated electrophilic warheads. However, high reactivity and "off-target" toxicity remain challenging issues. This review covers the concept of targeted covalent inhibition to diseases, discusses traditional and interdisciplinary strategies of cysteine-focused covalent drug discovery, and exhibits newly disclosed electrophilic warheads majorly targeting the cysteine residue. Successful applications to address the challenges of designing effective covalent drugs are also introduced.
Collapse
Affiliation(s)
- Conghao Gai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Suzannah J Harnor
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Shihao Zhang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Céline Cano
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Chunlin Zhuang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Qingjie Zhao
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| |
Collapse
|
32
|
Hou W, Yi C, Zhu H. Predictive biomarkers of colon cancer immunotherapy: Present and future. Front Immunol 2022; 13:1032314. [PMID: 36483562 PMCID: PMC9722772 DOI: 10.3389/fimmu.2022.1032314] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy has revolutionized colon cancer treatment. Immune checkpoint inhibitors (ICIs) have shown clinical benefits for colon cancer patients, especially those with high microsatellite instability (MSI-H). In 2020, the US Food and Drug Administration (FDA)-approved ICI pembrolizumab as the first-line treatment for metastatic MSI-H colon cancer patients. Additionally, neoadjuvant immunotherapy has presented efficacy in treating early-stage colon cancer patients. Although MSI has been thought of as an effective predictive biomarker for colon cancer immunotherapy, only a small proportion of colon cancer patients were MSI-H, and certain colon cancer patients with MSI-H presented intrinsic or acquired resistance to immunotherapy. Thus, further search for predictive biomarkers to stratify patients is meaningful in colon cancer immunotherapy. Except for MSI, other biomarkers, such as PD-L1 expression level, tumor mutation burden (TMB), tumor-infiltrating lymphocytes (TILs), certain gut microbiota, ctDNA, and circulating immune cells were also proposed to be correlated with patient survival and ICI efficacy in some colon cancer clinical studies. Moreover, developing new diagnostic techniques helps identify accurate predictive biomarkers for colon cancer immunotherapy. In this review, we outline the reported predictive biomarkers in colon cancer immunotherapy and further discuss the prospects of technological changes for biomarker development in colon cancer immunotherapy.
Collapse
Affiliation(s)
- Wanting Hou
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Cheng Yi
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong Zhu
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
33
|
Role of the cGAS-STING pathway in regulating the tumor-immune microenvironment in dMMR/MSI colorectal cancer. Cancer Immunol Immunother 2022; 71:2765-2776. [PMID: 35429245 DOI: 10.1007/s00262-022-03200-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/30/2022] [Indexed: 12/12/2022]
Abstract
Deficient mismatch repair (dMMR)/microsatellite instability (MSI) colorectal cancer (CRC) has high immunogenicity and better prognosis compared with proficient MMR (pMMR)/microsatellite stable (MSS) CRC. Although the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been considered to contribute to the high number of CD8+ TILs, its role in dMMR/MSI CRC is largely unknown. In this study, to examine the role of the cGAS-STING pathway on the recruitment of CD8+ TILs in dMMR/MSI CRC, we used public datasets and clinical tissue samples in our cohorts to evaluate the expression of cGAS, STING, and CD8+ TILs in pMMR/MSS and dMMR/MSI CRCs. According to the analysis of public datasets, the expression of cGAS-STING, CD8 effector gene signature, and CXCL10-CCL5, chemoattractants for CD8+ TILs which regulated by the cGAS-STING pathway, was significantly upregulated in dMMR/MSI CRC, and the expression of cGAS-STING was significantly associated with the expression of CD8 effector gene signature. Immunohistochemistry staining of the clinical tissue samples (n = 283) revealed that cGAS-STING was highly expressed in tumor cells of dMMR CRC, and higher expression of cGAS-STING in tumor cells was significantly associated with the increased number of CD8+ TILs. Moreover, we demonstrated that the downregulation of MMR gene in human CRC cell lines enhanced the activation of the cGAS-STING pathway. Taken together, for the first time, we found that dMMR/MSI CRC has maintained a high level of cGAS-STING expression in tumor cells, which might contribute to abundant CD8+ TILs and immune-active TME.
Collapse
|
34
|
Sartore-Bianchi A, Agostara AG, Patelli G, Mauri G, Pizzutilo EG, Siena S. Application of histology-agnostic treatments in metastatic colorectal cancer. Dig Liver Dis 2022; 54:1291-1303. [PMID: 35701319 DOI: 10.1016/j.dld.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Cancer treatment is increasingly focused on targeting molecular alterations identified across different tumor histologies. While some oncogenic drivers such as microsatellite instability (MSI) and NTRK fusions are actionable with the very same approach regardless of tumor type ("histology-agnostic"), others require histology-specific therapeutic adjustment ("histology-tuned") by means of adopting specific inhibitors and ad hoc combinations. Among histology-agnostic therapies, pembrolizumab or dostarlimab demonstrated comparable activity in MSI metastatic colorectal cancer (mCRC) as in other tumors with MSI status (ORR 38% vs 40% and 36% vs 39%, respectively), while entrectinib or larotrectinib proved effective in NTRK rearranged mCRC even though less dramatically than in the overall population (ORR 20% vs 57%, and 50% vs 78%, respectively). Histology-tuned approaches in mCRC are those targeting BRAFV600E mutations and ERBB2 amplification, highlighting the need of simultaneous anti-EGFR blockade or careful choice of companion inhibitors in this tumor type. Anti-RET and anti-ALK therapies emerged as a potential histology-agnostic indications, while anti-KRASG12C strategies could develop as future histology-tuned therapies. Targeting of ERBB2 mutations and NRG1 fusion provided discrepant results. In conclusion, agnostic targets such as MSI and NTRK fusions are already exploitable in mCRC, while the plethora of emerging histology-tuned targets represent a challenging opportunity requiring concurrent evolution of molecular diagnostic tools.
Collapse
Affiliation(s)
- Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Alberto Giuseppe Agostara
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Giorgio Patelli
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Gianluca Mauri
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Elio Gregory Pizzutilo
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy.
| |
Collapse
|
35
|
Immune checkpoint alterations and their blockade in COVID-19 patients. BLOOD SCIENCE 2022; 4:192-198. [PMID: 36311817 PMCID: PMC9592141 DOI: 10.1097/bs9.0000000000000132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease that seriously affects people's lives. Immune dysfunction, which is characterized by abnormal expression of multiple immune checkpoint proteins (ICs) on immune cells, is associated with progression and poor prognosis for tumors and chronic infections. Immunotherapy targeting ICs has been well established in modulating immune function and improving clinical outcome for solid tumors and hematological malignancies. The role of ICs in different populations or COVID-19 stages and the impact of IC blockade remains unclear. In this review, we summarized current studies of alterations in ICs in COVID-19 to better understand immune changes and provide strategies for treating COVID-19 patients, particularly those with cancer.
Collapse
|
36
|
Mauri G, Vitiello PP, Sogari A, Crisafulli G, Sartore-Bianchi A, Marsoni S, Siena S, Bardelli A. Liquid biopsies to monitor and direct cancer treatment in colorectal cancer. Br J Cancer 2022; 127:394-407. [PMID: 35264786 PMCID: PMC9346106 DOI: 10.1038/s41416-022-01769-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and deadly cancers worldwide. Despite recent improvements in treatment and prevention, most of the current therapeutic options are weighted by side effects impacting patients' quality of life. Better patient selection towards systemic treatments represents an unmet clinical need. The recent multidisciplinary and molecular advancements in the treatment of CRC patients demand the identification of efficient biomarkers allowing to personalise patient care. Currently, core tumour biopsy specimens represent the gold-standard biological tissue to identify such biomarkers. However, technical feasibility, tumour heterogeneity and cancer evolution are major limitations of this single-snapshot approach. Genotyping circulating tumour DNA (ctDNA) has been addressed as potentially overcoming such limitations. Indeed, ctDNA has been retrospectively demonstrated capable of identifying minimal residual disease post-surgery and post-adjuvant treatment, as well as spotting druggable molecular alterations for tailoring treatments in metastatic disease. In this review, we summarise the available evidence on ctDNA applicability in CRC. Then, we review ongoing clinical trials assessing how liquid biopsy can be used interventionally to guide therapeutic choice in localised, locally advanced and metastatic CRC. Finally, we discuss how its widespread could transform CRC patients' management, dissecting its limitations while suggesting improvement strategies.
Collapse
Affiliation(s)
- Gianluca Mauri
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Pietro Paolo Vitiello
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy
| | - Alberto Sogari
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy
| | - Giovanni Crisafulli
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | | | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy.
| |
Collapse
|
37
|
Prognostic and tumor immunity implication of inflammatory bowel disease-associated genes in colorectal cancer. Eur J Med Res 2022; 27:91. [PMID: 35698180 PMCID: PMC9190109 DOI: 10.1186/s40001-022-00720-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiologic studies continue to emphasize that increasing patients with inflammatory bowel disease (IBD) develop to colorectal cancer (CRC). Although the function and mechanisms of IBD-associated genes (IBDGs) in CRC tumorigenesis have been extensively researched, the implications of IBDGs in the prognosis value and tumor immunity of CRC remain unclear. RESULTS In this study, the expression, pathological stages and prognostic value of IBDGs in CRC were systematically analyzed, and 7 prognostic genes including CDH1, CCL11, HLA-DRA, NOS2, NAT2, TIMP1 and TP53 were screened through LASSO-Cox regression analysis. Then, a prognostic signature was established based on the 7 prognostic genes, and the model exhibited a good ability in risk stratification of CRC patients. Subsequent results showed that the genetic alterations of the 7 prognostic genes exhibited more significant and extensive influence on immune cells infiltration in colon adenocarcinoma than that in rectal adenocarcinoma. Meanwhile, immune cells infiltration also showed a significant difference between low-risk group and high-risk group. What's more, 7 prognostic genes-based risk stratification was associated with microsatellite instability, and its prognostic characteristics were significantly negatively correlated with mismatch repair genes. CONCLUSIONS This study provided a promising insight that the 7 IBDGs could be used as valuable biomarkers for prognostic diagnosis and personalized immunotherapy of CRC patients.
Collapse
|
38
|
Chia DKA, Gwee YX, Sundar R. Resistance to systemic immune checkpoint inhibition in the peritoneal niche. J Immunother Cancer 2022; 10:jitc-2022-004749. [PMID: 35728873 PMCID: PMC9214396 DOI: 10.1136/jitc-2022-004749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 11/28/2022] Open
Abstract
Immune checkpoint inhibition (ICI) is an established therapeutic option for patients with deficient mismatch repair or high levels of microsatellite instability tumors. Yet, response to ICI among this group is varied, with nearly one-third of patients exhibiting primary resistance. Initial efforts in studying mechanisms of resistance to ICI have focused on intrinsic tumor factors. Host factors such as metastatic niches have unique biological properties that may mediate resistance to ICI but have been less studied date. Patients with metastatic d-MMR/MSI-H gastrointestinal cancers and peritoneal metastases (PM) who had concurrent ascites have been recently shown to have worse outcomes with ICI therapy compared with patients with PM without ascites and patients with non-PM metastases. The juxtaposition of tumors with an intrinsic sensitivity to ICI failing to respond by virtue of the presence of ascites within the peritoneum, brings to the forefront the critical role of the metastatic niche. In this commentary, we discuss mechanisms for ICI resistance that may arise from the immunoprivileged state of the peritoneal cavity, paracrine factors within malignant ascites or tumor-peritoneum interactions. An improved understanding of the peritoneal microenvironment and the use of peritoneal-directed therapies may ameliorate the modest benefit of ICIs in this unique clinical entity.
Collapse
Affiliation(s)
- Daryl Kai Ann Chia
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore
| | - Yong Xiang Gwee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| |
Collapse
|
39
|
Wang Z, Zhang Q, Qi C, Bai Y, Zhao F, Chen H, Li Z, Wang X, Chen M, Gong J, Peng Z, Zhang X, Cai J, Chen S, Zhao X, Shen L, Li J. Combination of AKT1 and CDH1 mutations predicts primary resistance to immunotherapy in dMMR/MSI-H gastrointestinal cancer. J Immunother Cancer 2022; 10:jitc-2022-004703. [PMID: 35705314 PMCID: PMC9204428 DOI: 10.1136/jitc-2022-004703] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Background Gastrointestinal (GI) cancer is the second most common cancer type with mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) phenotype that is expected to respond to immune-checkpoint inhibitors (ICIs). However, approximately half of the patients with dMMR/MSI-H GI cancer derive no benefit from ICIs. We sought to identify the predictors of primary resistance to ICIs in dMMR/MSI-H GI cancer. Methods Three independent cohorts were included: (1) the discovery cohort (65 patients with dMMR/MSI-H GI cancer) with ICI efficacy data and pre-ICIs tissue samples for genomic profile and tumor immune infiltration; (2) the validation cohort (22 patients with dMMR/MSI-H GI cancer) with ICI efficacy data and pre-ICIs plasma samples for genomic profile; and (3) the TCGA (The Cancer Genome Atlas) cohort not receiving ICIs (152 patients with MSI-H GI cancer) with genomic profile and survival data. Results AKT1 and CDH1 mutations were identified as independent predictors of poor progression-free survival (PFS) and primary resistance to ICIs in dMMR/MSI-H GI cancer. We combined these two genes as an immuno-oncology therapy predictor (IOpred), which could recognize 52.4% (11/21) of dMMR/MSI-H patients with primary resistance to ICIs with a positive predictive value (PPV) of 91.7% (11/12). Receiver operating characteristic analysis demonstrated IOpred with a good performance in predicting primary resistance (area under the curve 0.751). Patients with IOpred-Mut (mutant AKT1 or CDH1) GI cancer had significantly shorter PFS (HR=8.36, p<0.001) and overall survival (OS, HR=5.17, p<0.001) than IOpred-WT (wild-type for both AKT1 and CDH1) cases upon ICI treatment. The validation cohort also confirmed the correlation between IOpred-mutation and poorer prognosis (PFS, HR=4.68, p=0.004; OS, HR=15.98, p<0.001) in dMMR/MSI-H patients after ICIs. The PPV of IOpred in identifying primary resistance to ICIs was 80% (4/5) in the validation cohort. Additionally, IOpred-WT patients could be further stratified by tumor mutational burden (TMB), wherein TMB-low patients (TMB ≤26.19 mutations per megabase (Mb)) had a significantly higher primary resistance rate to ICIs (34.8% vs 6.7%, p=0.014) and poorer PFS (HR=3.46, p=0.008) and OS (HR=4.42, p=0.047) than TMB-high patients (TMB >26.19 mutations/Mb). Conclusions IOpred was identified as a powerful predictor of primary resistance to ICIs in dMMR/MSI-H GI cancer, which might serve as a promising biomarker to help guide immunotherapy decision-making.
Collapse
Affiliation(s)
- Zhenghang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Changsong Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuezong Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feilong Zhao
- Medical Affairs, 3D Medicines Inc, Shanghai, China
| | - Hui Chen
- Medical Affairs, 3D Medicines Inc, Shanghai, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mifen Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jifang Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaotian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinping Cai
- Medical Affairs, 3D Medicines Inc, Shanghai, China
| | - Shiqing Chen
- Medical Affairs, 3D Medicines Inc, Shanghai, China
| | | | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
40
|
Anagnostou V, Bardelli A, Chan TA, Turajlic S. The status of tumor mutational burden and immunotherapy. NATURE CANCER 2022; 3:652-656. [PMID: 35764740 DOI: 10.1038/s43018-022-00382-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Valsamo Anagnostou
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, TO, Italy. .,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, TO, Italy.
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA. .,National Center for Regenerative Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA.
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK. .,Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK. .,Melanoma and Kidney Cancer Team, Institute of Cancer Research, London, UK.
| |
Collapse
|
41
|
Karthika C, Sureshkumar R, Zehravi M, Akter R, Ali F, Ramproshad S, Mondal B, Kundu MK, Dey A, Rahman MH, Antonescu A, Cavalu S. Multidrug Resistance in Cancer Cells: Focus on a Possible Strategy Plan to Address Colon Carcinoma Cells. Life (Basel) 2022; 12:811. [PMID: 35743842 PMCID: PMC9224881 DOI: 10.3390/life12060811] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022] Open
Abstract
Even though various treatment methods are available for cancer, the death curve is not reducing. The diagnosis of cancer at the fourth stage and drug resistance are the leading reasons for treatment failure and lower survival rates. In this review article, we summarize the possible pitfalls during cancer treatment in general, which mainly include multidrug resistance, and propose a hypothesis for colorectal cancer specifically. We also evaluate multidrug resistance in cancer in general and colorectal cancer in particular and hypothesize a concept based on combination therapy with 5-fluorouracil, curcumin, and lipids for the possible management of colorectal cancer. In addition, a hypothetical approach, combining a synthetic agent and a natural chemotherapeutic agent, to treating colorectal cancer is also discussed. This hypothesis could improve the management of colorectal cancer.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, 24, Wonju 26426, Korea;
| | - Faraat Ali
- Department of Licensing and Enforcement, Laboratory Services, Botswana Medicines Regulatory Authority (BoMRA), Gaborone 999106, Botswana;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, 24, Wonju 26426, Korea;
| | - Angela Antonescu
- Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie 10, 410087 Oradea, Romania;
| |
Collapse
|
42
|
Lu L, Przybylla R, Shang Y, Dai M, Krohn M, Krämer OH, Mullins CS, Linnebacher M. Microsatellite Status and IκBα Expression Levels Predict Sensitivity to Pharmaceutical Curcumin in Colorectal Cancer Cells. Cancers (Basel) 2022; 14:1032. [PMID: 35205780 PMCID: PMC8870219 DOI: 10.3390/cancers14041032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Clinical utilization of curcumin in colorectal cancer (CRC) was revived as a result of the development of novel curcumin formulations with improved bioavailability. Additionally, identification of biomarkers for curcumin sensitivity would also promote successful clinical applications. Here, we wanted to identify such biomarkers in order to establish a predictive model for curcumin sensitivity. Thirty-two low-passage CRC cell lines with specified tumor characteristics were included. Curcumin suppressed cell proliferation, yet sensitivity levels were distinct. Most curcumin-sensitive CRC cell lines were microsatellite stable and expressed high levels of IκBα. The predictive capacity of this biomarker combination possessed a statistical significance of 72% probability to distinguish correctly between curcumin-sensitive and -resistant CRC cell lines. Detailed functional analyses were performed with three sensitive and three resistant CRC cell lines. As curcumin's mode of action, inhibition of NF-κB p65 activation via IκBα was identified. In consequence, we hypothesize that novel curcumin formulations-either alone or, more likely, in combination with standard therapeutics-can be expected to prove clinically beneficial for CRC patients with high IκBα expression levels.
Collapse
Affiliation(s)
- Lili Lu
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | - Randy Przybylla
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | - Yuru Shang
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | - Meng Dai
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | - Mathias Krohn
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | | | - Christina Susanne Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| |
Collapse
|
43
|
Roudko V, Cimen Bozkus C, Greenbaum B, Lucas A, Samstein R, Bhardwaj N. Lynch Syndrome and MSI-H Cancers: From Mechanisms to "Off-The-Shelf" Cancer Vaccines. Front Immunol 2021; 12:757804. [PMID: 34630437 PMCID: PMC8498209 DOI: 10.3389/fimmu.2021.757804] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
Defective DNA mismatch repair (dMMR) is associated with many cancer types including colon, gastric, endometrial, ovarian, hepatobiliary tract, urinary tract, brain and skin cancers. Lynch syndrome - a hereditary cause of dMMR - confers increased lifetime risk of malignancy in different organs and tissues. These Lynch syndrome pathogenic alleles are widely present in humans at a 1:320 population frequency of a single allele and associated with an up to 80% risk of developing microsatellite unstable cancer (microsatellite instability - high, or MSI-H). Advanced MSI-H tumors can be effectively treated with checkpoint inhibitors (CPI), however, that has led to response rates of only 30-60% despite their high tumor mutational burden and favorable immune gene signatures in the tumor microenvironment (TME). We and others have characterized a subset of MSI-H associated highly recurrent frameshift mutations that yield shared immunogenic neoantigens. These frameshifts might serve as targets for off-the-shelf cancer vaccine designs. In this review we discuss the current state of research around MSI-H cancer vaccine development, its application to MSI-H and Lynch syndrome cancer patients and the utility of MSI-H as a biomarker for CPI therapy. We also summarize the tumor intrinsic mechanisms underlying the high occurrence rates of certain frameshifts in MSI-H. Finally, we provide an overview of pivotal clinical trials investigating MSI-H as a biomarker for CPI therapy and MSI-H vaccines. Overall, this review aims to inform the development of novel research paradigms and therapeutics.
Collapse
Affiliation(s)
- Vladimir Roudko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cansu Cimen Bozkus
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin Greenbaum
- Epidemiology and Biostatistics, Computational Oncology program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Physiology, Biophysics & Systems Biology, Weill Cornell Medical College, New York, NY, United States
| | - Aimee Lucas
- Henry D. Janowitz Division of Gastroenterology, Samuel D. Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Samstein
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Radiation Oncology, Mount Sinai Hospital, New York, NY, United States
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
44
|
Xu YJ, Zhao JM, Gao C, Ni XF, Wang W, Hu WW, Wu CP. Hsa_circ_0136666 activates Treg-mediated immune escape of colorectal cancer via miR-497/PD-L1 pathway. Cell Signal 2021; 86:110095. [PMID: 34320370 DOI: 10.1016/j.cellsig.2021.110095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE In the rankings of cancer mortality and incidence worldwide, colorectal cancer ranks fourth and the third, respectively. Circular RNA hsa_circ_0136666 (hsa_circ_0136666) is reported to participate in the growth of colorectal cancer. However, the mechanism by which hsa_circ_0136666 regulates the tumorigenesis of colorectal cancer needs to be further explored. In this study, we report here the role of hsa_circ_0136666 in the aberrant activation of Treg cells and immune evasion of tumor cells, providing a new strategy for the treatment of colorectal cancer. METHODS Western blotting assay and qRT-PCR assay were used to determine protein and mRNA expression levels. Dual-luciferase reporter assay was used to evaluate the targeted regulatory relationship. RNA immunoprecipitation was used to detect RNA binding. Colony formation assay was utilized to measure the cell proliferation. Flow cytometry was used to assess cell apoptosis. Xenograft model was setup to evaluate tumor growth. RESULTS The results showed that hsa_circ_0136666 and PD-L1 was increased in colorectal cancer cells while miR-497 was decreased in colorectal cancer cells when compared with normal colon epithelial cell line. Hsa_circ_0136666 was demonstrated to directly target miR-497, which also regulated PD-L1 by binding to its 3'UTR. Further mechanistic studies identified that hsa_circ_0136666 controlled cell proliferation and apoptosis via targeting miR-497 and regulating PD-L1 expression. Of note, hsa_circ_0136666 stimulated Treg cells mediated by miR-497/PD-L1 axis and its downstream signal pathway in Treg cells. Finally, hsa_circ_0136666 was found to accelerate the tumor growth in vivo. CONCLUSIONS Our findings demonstrated that hsa_circ_0136666 promoted the expression of PD-L1 by inhibiting miR-497 level in colorectal cancer, thus inducing the activation of Treg cells and leading to the immune escape of tumor, providing a novel mechanistic insight into the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Yan-Jie Xu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China
| | - Jie-Min Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China
| | - Cao Gao
- Department of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China
| | - Xue-Feng Ni
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China
| | - Wei Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China
| | - Wen-Wei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China.
| | - Chang-Ping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China.
| |
Collapse
|