1
|
Chen Y, Zhou G, Li Y, Liu S, Xu Q, Liu X. Construction of nitroreductase-responsive near-infrared composite nanoprobe and its application in tumor hypoxia imaging. Talanta 2025; 289:127750. [PMID: 39983382 DOI: 10.1016/j.talanta.2025.127750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Hypoxia is an important feature in the development of solid tumors. Nitroreductase (NTR) is closely related to the level of hypoxia, thus NTR-responsive fluorescent probes with high selectivity and sensitivity will help to evaluate the degree of hypoxia and guide personalized treatment. In this study, a near-infrared (NIR) NTR-activated composite nanoprobe 780-pNBC@MP-B was developed for tumor hypoxia imaging. The nanoprobe has a mesoporous organosilicon nanostructure functionalized with PEG for in vivo long circulation, and encapsulates a NIR molecular probe 780-pNBC for NTR imaging, which can exhibit responsive degradation to glutathione (GSH) attributed to the disulfide bond in the nanocarrier structure. Benefiting from the hydrophilic nanocarrier, 780-pNBC@MP-B with good water dispersibility and photostability was successfully applied to visualize NTR in hypoxic cells and tumor-bearing mice. Therefore, this work provides a new tool for tumor hypoxia detection and expands the new application of mesoporous silica in the field of enzyme probes.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guanglian Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yitong Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shuxian Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qianru Xu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Valla SA, Chimento A, Demarchi G, Prodan EN, Werner E, Vitale DL, Romano ML, Alaniz LD, Becú-Villalobos D, Cristina C. Pituitary folliculo-stellate cells modulate tumor vasculature and extracellular matrix composition in experimental lactosomatotropinomas. Biochem Biophys Res Commun 2025; 767:151876. [PMID: 40315570 DOI: 10.1016/j.bbrc.2025.151876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
Folliculo-stellate cells (FSCs) constitute 5-10 % of the adenohypophysis and have been proposed as paracrine regulators of pituitary cells. However, their participation in pituitary tumor development remains unclear. We generated a lacto-somatotropic tumor model by subcutaneous injection of GH3 (lacto-somatotrophs) and the FSCs TtT/GF, isolated or combined, in immunodeficient mice, to study the role of the FSCs on tumor formation, hormone secretion, vascularization and extra-cellular matrix involvement. The co-culture of both cell lines let us gain insight into the proliferative and secretory action of FSC in pituitary tumor modulation. Our results showed that initially GH3:TtT/GF tumors had an earlier onset, but lately, TtT/GF cells restrained GH3:TtT/GF tumor growth and their Prl synthesis, although no differences were observed in the proliferative potential of tumor cells in vivo. Instead, TtT/GF cells exerted a direct mitogenic action on GH3 cells in vitro. Moreover, GH3 tumors had fewer irrigating vessels, lower vascular area and a higher VEGF/bFGF ratio that correlated with Hif1a expression, consistent with the tissue hypoxia and hemorrhage. These features were downregulated in their co-injected counterparts, which interestingly showed an increased deposition of collagens, glycoproteins and mucopolysaccharides extra-cellular matrix (EMC) components. Isolated TtT/GF injected cells did not generate tumors, but they developed fibrous masses characterized by collagen and high bFGF production. In conclusion, our results demonstrate that FSCs are dual regulators of pituitary tumor growth, with a mitogenic action on tumor cells but also a restrictive tumor effect on the cancer processes angiogenesis, hypoxia, and ECM remodeling.
Collapse
Affiliation(s)
- S A Valla
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional Del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina; Centro de Investigaciones y Transferencia Del Noroeste de La Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - A Chimento
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional Del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina; Centro de Investigaciones y Transferencia Del Noroeste de La Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina; Comisión de Investigaciones Científicas de La Provincia de Buenos Aires, CIC, La Plata, Buenos Aires, Argentina
| | - G Demarchi
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional Del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina; Centro de Investigaciones y Transferencia Del Noroeste de La Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - E N Prodan
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional Del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina; Centro de Investigaciones y Transferencia Del Noroeste de La Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - E Werner
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional Del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina; Centro de Investigaciones y Transferencia Del Noroeste de La Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - D L Vitale
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional Del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina; Centro de Investigaciones y Transferencia Del Noroeste de La Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - M L Romano
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional Del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina; Centro de Investigaciones y Transferencia Del Noroeste de La Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - L D Alaniz
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional Del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina; Centro de Investigaciones y Transferencia Del Noroeste de La Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - D Becú-Villalobos
- Instituto de Biología y Medicina Experimental (IByME-CONICET), CABA, Argentina
| | - C Cristina
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional Del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina; Centro de Investigaciones y Transferencia Del Noroeste de La Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Garemilla SSS, Gampa SC, Garimella S. Role of the tumor microenvironment in cancer therapy: unveiling new targets to overcome drug resistance. Med Oncol 2025; 42:202. [PMID: 40332723 DOI: 10.1007/s12032-025-02754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Cancer is a leading cause of death globally, with resistance to therapy representing a major obstacle to effective treatment. The tumor microenvironment (TME), comprising a complex network to cellular and non-cellular components including cancer-associated fibroblasts, immune cells, the extracellular matrix and region of hypoxia, is integral to cancer progression and therapeutic resistance. This review delves into the multifaceted interactions within the TME that contribute to tumor growth, survival and immune evasion. Key elements such as the role of cancer- associated fibroblasts in remodeling the extracellular matrix and promoting angiogenesis, the influence of immune cells such as tumor-associated macrophages in creating an immunosuppressive milieu and the impact of hypoxia conditions on metabolic adaptation and therapy resistance are thoroughly examined. This review evaluates current and emerging TME-targeted therapeutic strategies, including inhibitors of extracellular matrix components, modulators of immune cell activity and approached to alleviate hypoxia. Combination therapies that integrate TME-targeted agents with conventional treatments such as chemotherapy and immunotherapy are also discussed for their potential to enhance treatment efficacy and circumvent resistance mechanisms. By synthesising recent advances in TME research and therapeutic innovation, this paper aims to underscore the importance of TME in cancer therapy and highlight promising avenues for improving patient outcomes through targeted intervention.
Collapse
Affiliation(s)
| | - Siri Chandana Gampa
- Department of Life Sciences, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Sireesha Garimella
- Department of Life Sciences, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
4
|
Dong L, Zhang X, Yu X, Liu G, Yang L. Proteoglycan-degrading enzymes engineered for enhanced tumor microenvironment interaction in renal cell carcinoma. Int J Biol Macromol 2025; 307:140440. [PMID: 39884611 DOI: 10.1016/j.ijbiomac.2025.140440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
This work optimized proteoglycan-degrading enzymes through targeted mutagenesis to enhance their interaction with the tumor microenvironment in Renal Cell Carcinoma (RCC). A comprehensive mutagenesis approach identified 60 key mutations significantly improving enzymatic activity, stability, and structural integrity. When compared to Wild Type (WT) enzyme, a remarkable increase in specific activity by 35 % (p < 0.001) and a considerable decrease in the Km values for hyaluronidases from 2.5 mM to 1.5 mM (p < 0.05), as a result of these modifications. Computational methods are then employed to analyze the active site of the enzymes to detect potential residues that may alter. These computational techniques include molecular docking and protein structure prediction. The structural models of the enzymes are created by utilizing homology modeling and crystallography. These models demonstrate the spatial arrangement of the amino acid enzymes. It also illustrated the specific mutations to improve the potential of enzymes to relate to the Extracellular Matrix (ECM) of tumors. The computational screening methods effectively predicted how the modifications impact enzyme catalytic efficiency and stability. The modified enzymes retained 85 % of the enzyme activity, while the WT retained 60 %. Thus, the modified enzymes demonstrated better thermal stability than WT. Vitro test analyses show that the proteoglycan breakdown was significantly reduced by 70 % (p < 0.001), and for effective proteoglycan breakdown, hyaluronidase concentration is needed. This work proposed a novel therapeutic approach called proteoglycan-degrading enzymes for the treatment of RCC. These proteoglycan-degrading enzymes are more stable and effective for treating RCC, as demonstrated in the outcomes. Customized proteoglycan-degrading enzymes make the therapy more effective. The effective breakdown of the tumor's ECM in RCC models establishes this customized proteoglycan-degrading enzyme. These enzymes are effective for this customized cancer treatment as they improve stability, activity, and interaction with the TME.
Collapse
Affiliation(s)
- Lingling Dong
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoli Zhang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, PR China
| | - Xiaopeng Yu
- Oncology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Gang Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lina Yang
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
5
|
Bai Y, Osmundson EC, Donahue MJ, De Vis JB. Magnetic resonance imaging to detect tumor hypoxia in brain malignant disease: A systematic review of validation studies. Clin Transl Radiat Oncol 2025; 52:100940. [PMID: 40093743 PMCID: PMC11908384 DOI: 10.1016/j.ctro.2025.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Tumor hypoxia indicates a worse prognosis in brain malignancies; however, current gold-standard methods for assessing tumor hypoxia are invasive and often inaccessible. Magnetic Resonance Imaging (MRI) is widely available, but its validity for identifying tumor hypoxia or hypoxia-related neoangiogenesis is not well characterized. A systematic literature search was performed across PubMed and Embase Databases. The search query identified MRI studies that validated hypoxia-surrogate imaging sequences against gold-standard hypoxia or neoangiogenesis detection methods in patients with brain malignancies. Literature screen identified 23 manuscripts published between 2007 and 2022. Among conventional MRI sequences, peritumoral edema and signal change after contrast administration were associated with gold-standard oxygen-assessment methods. T2*- and T2'-derived measures were associated with gold-standard methods, while reports on quantitative measures of oxygen extraction fraction were conflicting. Fiber density, tissue cellularity, blood volume, vascular transit time, and permeability measurements were associated with gold-standard methods, whereas blood flow measurements yielded conflicting results. MRI measures are promising surrogates for tumor hypoxia or hypoxia-related neoangiogenesis. Additional studies are needed to reconcile disparate findings. Future sensitivity analyses are needed to establish the MRI methods most accurate at identifying tumor hypoxia.
Collapse
Affiliation(s)
- Y Bai
- Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - E C Osmundson
- Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - J B De Vis
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Yang L, Haeckel A, Beindorff N, Poetzsch SML, Mi H, Ni F, Hojjat H, Brenner W, de Moraes PAD, Guo J, Savic LJ, Schellenberger E. Long circulating XTEN864-HGV-Apoptin fusion protein for selective cancer therapy. Int J Biol Macromol 2025; 306:141679. [PMID: 40037452 DOI: 10.1016/j.ijbiomac.2025.141679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
The virus protein CAV-Apoptin and its homologue HGV-Apoptin selectively kill cancer cells but are not suitable for systemic treatment. The aim was to develop Apoptin-based fusion proteins for intravenous application in cancer therapy, which also contain the hydrophilic polypeptide XTEN, a cleavage site for MMP-2/9, and a TAT peptide for cell penetration. Expression of XTEN864-HGV-Apoptin in E. coli and purification using XTEN as a tag yielded 100 mg protein/L tissue culture. The expression of XTEN864-CAV-Apoptin did not generate a sufficient yield. Cytotoxic effects were assessed using MTT and Annexin A5 assays, whereas cellular uptake was visualized using Cy3.5-XTEN864-HGV-Apoptin. Blood half-life and biodistribution were evaluated with 99mTc-XTEN864-HGV-Apoptin using SPECT-CT and gamma counting. The fusion protein significantly reduced cancer cell growth and induced apoptosis with minimal effects on non-cancerous cells. It accumulates in the nucleus and associates with F-actin. In mice, the protein showed a blood half-life of 0.68 h (fast phase) and 17 h (slow phase), with a tumor/muscle ratio of 9.36 ± 6.22 (SD). In a 4T1 mouse tumor model, it effectively inhibited tumor growth. The cancer-specific cytotoxicity and prolonged circulation of XTEN864-HGV-Apoptin suggest its potential for systemically applicable, biodegradable, and E. coli-producible antitumor drugs.
Collapse
Affiliation(s)
- Liu Yang
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Akvile Haeckel
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicola Beindorff
- Charité - Universitätsmedizin Berlin, Berlin Experimental Radionuclide Imaging Center (BERIC), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Simon Marc Levin Poetzsch
- Charité - Universitätsmedizin Berlin, Berlin Experimental Radionuclide Imaging Center (BERIC), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Honglan Mi
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Fei Ni
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Hamidreza Hojjat
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Winfried Brenner
- Charité - Universitätsmedizin Berlin, Berlin Experimental Radionuclide Imaging Center (BERIC), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Nuclear Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Pedro Augusto Dantas de Moraes
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jing Guo
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Lynn Jeanette Savic
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eyk Schellenberger
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
7
|
Wu G, Chen Y, Chen C, Liu J, Wu Q, Zhang Y, Chen R, Xiao J, Su Y, Shi H, Yu C, Wang M, Ouyang Y, Jiang A, Chen Z, Ye X, Shen C, Reheman A, Li X, Liu M, Shen J. Role and mechanisms of exercise therapy in enhancing drug treatment for glioma: a review. Front Immunol 2025; 16:1576283. [PMID: 40370453 PMCID: PMC12075166 DOI: 10.3389/fimmu.2025.1576283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/02/2025] [Indexed: 05/16/2025] Open
Abstract
Gliomas, particularly glioblastoma (GBM), are among the most aggressive and challenging brain tumors to treat. Although current therapies such as chemotherapy, radiotherapy, and targeted treatments have extended patient survival to some extent, their efficacy remains limited and is often accompanied by severe side effects. In recent years, exercise therapy has gained increasing attention as an adjunctive treatment in clinical and research settings. Exercise not only improves patients' physical function and cognitive abilities but may also enhance the efficacy of conventional drug treatments by modulating the immune system, suppressing inflammatory responses, and improving blood-brain barrier permeability. This review summarizes the potential mechanisms of exercise in glioma treatment, including enhancing immune surveillance through activation of natural killer (NK) cells and T cells, and increasing drug penetration by improving blood-brain barrier function. Additionally, studies suggest that exercise can synergize with chemotherapy and immunotherapy, improving treatment outcomes while reducing drug-related side effects. Although the application of exercise therapy in glioma patients is still in the exploratory phase, existing evidence indicates its significant clinical value as an adjunctive approach, with the potential to become a new standard in glioma treatment in the future.
Collapse
Affiliation(s)
- Guanghui Wu
- Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde, Fujian, China
- Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian, China
| | - Yisheng Chen
- Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde, Fujian, China
- Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian, China
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Neurosurgery and Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianling Liu
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Qiaowu Wu
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Yazhen Zhang
- School of Physical Education, Ningde Normal University, Ningde, Fujian, China
| | - Runqiong Chen
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Jianzhong Xiao
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Yusheng Su
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Haojun Shi
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Chunsheng Yu
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Miao Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Airong Jiang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Zhengzhou Chen
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Xiao Ye
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Chengwan Shen
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Xianjun Li
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Ming Liu
- Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde, Fujian, China
- Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian, China
| | - Jiancheng Shen
- Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde, Fujian, China
- Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University, Ningde, Fujian, China
| |
Collapse
|
8
|
Yan X, Yang Z, Cao X, Liang L, Duan Y, Zhang P, Feng Y, Wen T, Luo S, Jia L, Sun J, Han H. Targeting endothelial MYC using siRNA or miR-218 nanoparticles sensitizes chemo- and immuno-therapies by recapitulating the Notch activation-induced tumor vessel normalization. Theranostics 2025; 15:5381-5401. [PMID: 40303332 PMCID: PMC12036866 DOI: 10.7150/thno.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The chaotic, over-activated tumor vasculature promotes tumor growth and erodes most current therapies. Although Notch activation critically regulates angiogenesis, the broad roles of Notch has dampened its druggability. Methods: Gene-modified mice with a Cdh5-CreERT transgene were employed to activate/block Notch signaling in endothelial cells (ECs). Multiple transcriptome analyses were conducted to compare gene expression profiles. qRT-PCR and western blotting were used to determine gene expression level. Immunofluorescence and flow cytometry were used to observe morphological alterations and immune microenvironment in tumors. Nanoparticles (PEI-PEG-cRGD) were used to deliver siRNA into tumor ECs (TECs) in vivo. Results: Genetic Notch activation or blockade in TECs normalizes or deteriorates tumor vessels, respectively. Single-cell RNA sequencing showed that Notch activation selectively reduced the proliferating TEC subset, which accounted for about 30% of TECs and gave rise to other TEC subsets. Notch activation or blockade downregulated or upregulated MYC, respectively. MYC overexpression canceled Notch activation-induced proliferation arrest of TECs in vitro, and a MYC inhibitor normalized tumor vessels in RBPj deficient mice, suggesting that MYC is the authentic Notch target in normalizing tumor vessels. Nanoparticles encapsulated with MYC siRNA (EC-siMYC) or miR-218 (EC-miR-218), a Notch-downstream miRNA suppressing MYC, were able to mitigate Notch inhibition-induced tumor vessel defects. Combination of cisplatin with MYC blockade exhibited improved therapeutic effects. Moreover, MYC blockade promoted T cell infiltration and enhanced anti-PD1 immunotherapy. Conclusions: Together, our data have demonstrated that Notch activation normalizes tumor vessels by repressing the proliferating TEC subset via MYC, and targeting endothelial MYC using nanoparticles bearing siRNA or miRNA is an efficient strategy for tumor anti-angiogenic therapy.
Collapse
Affiliation(s)
- Xianchun Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ziyan Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Xiuli Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
- Department of Medical Genetic and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yanyan Duan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Peiran Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yixuan Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ting Wen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Shanqiang Luo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Lintao Jia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaxing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
9
|
Eghbalifard N, Nouri N, Rouzbahani S, Bakhshi M, Ghasemi Kahrizsangi N, Golafshan F, Abbasi F. Hypoxia signaling in cancer: HIF-1α stimulated by COVID-19 can lead to cancer progression and chemo-resistance in oral squamous cell carcinoma (OSCC). Discov Oncol 2025; 16:399. [PMID: 40138101 PMCID: PMC11947373 DOI: 10.1007/s12672-025-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The potential implications of Coronavirus disease-2019 (COVID-19) on oral squamous cell carcinoma (OSCC) development, chemo-resistance, tumor recurrence, and patient outcomes are explored, emphasizing the urgent need for tailored therapeutic strategies to mitigate these risks. The role of hypoxia-inducible factor 1-alpha (HIF-1α) in OSCC studies has highlighted HIF-1α as a crucial prognostic marker in OSCC, with implications for disease prognosis and patient survival. Its overexpression has been linked to aggressive subtypes in early OSCC stages, indicating its significance as an early biomarker for disease progression. Moreover, dysplastic lesions with heightened HIF-1α expression exhibit a greater propensity for malignant transformation, underscoring its role in early oral carcinogenesis. Cancer patients, including those with OSCC, face an elevated risk of severe COVID-19 complications, which may further impact cancer progression and treatment outcomes. Understanding the interplay between COVID-19 infection, HIF-1α activation, and OSCC pathogenesis is crucial for enhancing clinical management strategies. So, insights from this review shed light on the significance of HIF-1α in OSCC tumorigenesis, metastasis formation, and patient prognosis. The review underscores the need for further research to elucidate the precise mechanisms through which HIF-1α modulates cancer progression and chemo-resistance in the context of COVID-19 infection. Such knowledge is essential for developing targeted therapeutic interventions to improve outcomes for OSCC patients.
Collapse
Affiliation(s)
- Negar Eghbalifard
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nikta Nouri
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rouzbahani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Bakhshi
- Islamic Azad University of Najaf Abad, Affiliated Hospitals, Isfahan, Iran
| | - Negin Ghasemi Kahrizsangi
- Child Growth and Development Research Center, Research Institute for Primary Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faraz Golafshan
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Abbasi
- Department of Obstetrics and Gynecology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
10
|
Yang B, Shan C, Lv X, Song X, Zeng D, An R, Lan X, Gai Y. 177Lu-Labeled Heterodimeric Agent with High Stability Targeting Neovascularization for Tumor Radioligand Therapy. J Med Chem 2025; 68:3146-3156. [PMID: 39846414 DOI: 10.1021/acs.jmedchem.4c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Radiopharmaceutical theranostics holds significant promise in tumor diagnosis and treatment, but suboptimal tumor uptake and retention remain a persistent limitation. We have conjugated a unique albumin binder to our previously developed heterodimeric precursor HX01 and achieved a novel precursor L6, aiming to prolong circulation time and enhance tumor accumulation and retention. However, we observed that the NGR sequence of L6 was gradually rearranged to iso-DGR under alkaline conditions, resulting in decreased stability. In this study, we further modified the L6 to synthesize XH02, subsequently assessing their in vitro and in vivo properties following radiolabeling. Utilizing positron emission tomography (PET)/computed tomography (CT) imaging, single-photon emission computed tomography (SPECT)/CT imaging, and biodistribution study in BxPC-3 xenograft mice, we observed striking accumulation and retention of radiopharmaceutical within tumors. Two cycles of administration of 177Lu-XH02 displayed exceptional tumor growth inhibition in BxPC-3 tumors while causing minimal side effects. This promising result underscores the immense potential of this agent for further clinical translation and investigation.
Collapse
Affiliation(s)
- Biao Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Changyu Shan
- Hexin (Suzhou) Pharmaceutical Technology Co., Ltd., Taicang, Suzhou 215421, China
| | - Xiaoying Lv
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Dexing Zeng
- Hexin (Suzhou) Pharmaceutical Technology Co., Ltd., Taicang, Suzhou 215421, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| |
Collapse
|
11
|
Cong B, Cao X, Jiang WG, Ye L. Molecular and Cellular Machinery of Lymphatic Metastasis in Breast Cancer. Onco Targets Ther 2025; 18:199-209. [PMID: 39926374 PMCID: PMC11806925 DOI: 10.2147/ott.s503272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is one of the most common malignant tumours in women worldwide. A primary route for breast cancer cells to disseminate is through regional lymphatic vessels and nodes. Cancer cell-induced lymphangiogenesis plays a crucial role in lymphatic metastasis and is associated with poor survival of breast cancer. Advances in molecular biology have led to the identification of biomarkers associated with lymphangiogenesis and lymphatic metastasis, including lymphatic vessel endothelial cell (LVEC) markers and tumour microenvironment markers, such as vascular endothelial growth factor receptor 3 (VEGFR3), podoplanin (PDPN), and lymphatic endothelial hyaluronan receptor-1 (LYVE1). LVEC molecular markers play a profound role in both the formation of new lymphatic vessels and the invasive expansion of primary tumour. Abnormal expression of LVEC markers may contribute to lymphatic vessel disease and/or metastasis of cancer cells through the lymphatic system. These molecular markers may present a potential for targeted therapies and precision diagnostics for managing lymphatic metastasis in breast cancer. This review aims to provide a comprehensive summary of the current understanding of the molecular and cellular machinery underlying lymphatic metastasis in breast cancer, with a particular focus on the lymphangiogenic markers and their role in the lymphatic dissemination.
Collapse
Affiliation(s)
- Binbin Cong
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
- Breast Cancer Centre, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xiaoshan Cao
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
- Breast Cancer Centre, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
| |
Collapse
|
12
|
Magdalena JB, Justyna C, Joanna C, Ryszard S, Alina D, Dorota SL, Ewelina P, Sybilla M, Tomasz C. Normalization of tumor vasculature by imiquimod: proposal for a new anticancer therapeutic indication for a TLR7 agonist. Cancer Immunol Immunother 2025; 74:90. [PMID: 39891776 PMCID: PMC11787066 DOI: 10.1007/s00262-025-03943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Imiquimod (IMQ), a drug from aminoquinoline group, is the toll-like receptor 7 (TLR7) agonist. It acts as an immunostimulant and radio-sensitizing agent. IMQ stimulates both innate and adaptive immune response. Despite studies conducted, there are no unambiguous data showing how IMQ affects the condition of tumor blood vessels. Tumor vasculature plays the main role in tumor progression. Formation of abnormal blood vessels increases area of hypoxia which recruits suppressor cells, blocks tumor infiltration by CD8+ T lymphocytes, inhibits efficacy of chemoterapeutic drug and leads to cancer relapse. Normalization is a type of therapy targeted at abnormal tumor blood vessels. Here, we demonstrated that 50 µg of IMQ inhibits the growth of melanoma tumors more efficiently, compared to other tested doses and the control group. Dose escalation did not improve the therapeutic antitumor potential of TLR7 agonist. A dose of 50 µg of IMQ most effectively reduced tumor blood vessel density. Imiquimod normalized tumor vasculature both structurally (by reducing vessel tortuosity and increasing pericyte coverage) and functionally (by improving tumor perfusion) in a dose-dependent manner. Hypoxia regions in tumors of treated mice were significantly reduced after IMQ administration. A dose of 50 µg of IMQ had also the greatest impact on the changes in tumor-infiltrating T lymphocytes levels. TLR7 agonist inhibited angiogenesis in treated mice. Functional vascular normalization by IMQ increases the effectiveness of low dose of doxorubicin. Higher dose of IMQ showed worse effects than lower doses including decreased tumor perfusion, increased tumor hypoxia and immunosuppression. This knowledge may help to optimize the combination of the selected IMQ dose with e.g. chemotherapy or radiotherapy to elicit synergistic effect in cancer treatment. To conclude, we outline IMQ repurposing as a vascular normalizing agent. Our research results may contribute to expanding the therapeutic indications for the use of IMQ in anticancer therapy in the future.
Collapse
Affiliation(s)
- Jarosz-Biej Magdalena
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland.
| | - Czapla Justyna
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Ciepła Joanna
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Smolarczyk Ryszard
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Drzyzga Alina
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Sprus-Lipka Dorota
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Pilny Ewelina
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Matuszczak Sybilla
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Cichoń Tomasz
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| |
Collapse
|
13
|
Sweeney A, Langley A, Xavierselvan M, Shethia RT, Solomon P, Arora A, Mallidi S. Vascular regional analysis unveils differential responses to anti-angiogenic therapy in pancreatic xenografts through macroscopic photoacoustic imaging. Theranostics 2025; 15:2649-2671. [PMID: 39990229 PMCID: PMC11840746 DOI: 10.7150/thno.99361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/17/2024] [Indexed: 02/25/2025] Open
Abstract
Background: Amongst the various imaging techniques that provide surrogate tumor radiographic indications to aid in planning, monitoring, and predicting outcomes of therapy, ultrasound-guided photoacoustic imaging (US-PAI) is a promising non-ionizing modality based on endogenous blood (hemoglobin) and blood oxygen saturation (StO₂) contrast. Adaptation of US-PAI to the clinical realm requires macroscopic system configurations for adequate depth visualization. Methods: Here we present a vascular regional analysis (VRA) methodology of obtaining areas of low and high vessel density regions within the tumor (LVD and HVD respectively) by frequency domain filtering of macroscopic PA images. In this work, we evaluated the various vascular and oxygenation profiles of different murine xenografts of pancreatic cancer (AsPC-1, MIA PaCa-2, and BxPC-3) that have varying levels of angiogenic potentials and investigated the effects of receptor tyrosine kinase inhibitor (sunitinib) on the tumor microvessel density and StO₂. Results: The administration of sunitinib resulted in transient deoxygenation and reduction in vessel density within 72 h in two (AsPC-1 and MIA PaCa-2) of the three tumor types. Utilizing VRA, the regional change in StO2 (∆StO2) revealed the preferential targeting of sunitinib in LVD regions in only the AsPC-1 tumors. We also identified the presence of vascular normalization (validated through immunohistochemistry) in the sunitinib treated AsPC-1 tumors at day 8 post-treatment where a significant increases in HVD ∆StO2 (~20%) were seen following the 72-hour time point, indicative of improved vessel flow and functionality. Treated AsPC-1 vasculature displayed increased maturity and functionality compared to non-treated tumors on day 8, while these same metrics showed no conclusive evidence of vascular normalization in MIA PaCa-2 or BxPC-3 tumors. Conclusion: Overall, VRA as a tool to monitor treatment response allowed us to identify time points of vascular remodeling, highlighting its ability to provide insights into the tumor microenvironment for sunitinib treatment and other anti-angiogenic therapies.
Collapse
Affiliation(s)
- Allison Sweeney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Andrew Langley
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Ronak T. Shethia
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Patrick Solomon
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Aayush Arora
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
14
|
Yang G, Li H, Yin J, Yao L, Yang J, Tang J, Wu Y, Zhou M, Luo T, Zhang Y, Zhang J, Yang X, Dong X, Liu Z, Li N. Alleviating Tumor Hypoxia and Immunosuppression via Sononeoperfusion: A New Ally for potentiating anti-PD-L1 blockade of solid Tumor. ULTRASONICS SONOCHEMISTRY 2025; 112:107115. [PMID: 39482116 PMCID: PMC11635779 DOI: 10.1016/j.ultsonch.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
The hypoxic and immunosuppressive tumor microenvironment (TME) remains a major obstacle to impede cancer immunotherapy. Here, we found that sononeoperfusion-a new effect of tumor perfusion enhancement induced by low mechanical index ultrasound stimulated microbubble cavitation (USMC)-ameliorated tumor tissue oxygenation and induced tumor vascular normalization (TVN). This TVN might be associated with the down-regulation of hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF) within tumors. Moreover, the sononeoperfusion effect reduced the accumulation of immunosuppressive cells, such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and M2-like tumor-associated macrophages (M2-TAMs), and decreased the production of immune inhibitory factors like transforming growth factor-β1 (TGF-β1), interleukin 10 (IL-10), chemoattractant chemokines CC-chemokine ligand 22 (CCL22), CCL28, adenosine and lactate within tumors. Notably, flow cytometry analysis revealed that sononeoperfusion not only increased the percentage of tumor infiltrating-CD8+ T cells, but also promoted the generation of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) by these cells. Furthermore, the improved immune TME by sononeoperfusion effect sensitized anti-PD-L1 treatment both in MC38 colon cancer and Lewis lung carcinoma mice, resulting in tumor regression and prolonged survival. Mechanically, the enhanced efficacy of combination therapy was mainly based on promoting the infiltration and function of CD8+ T cells within tumors. Together, sononeoperfusion could ameliorate hypoxia and immunosuppression in the TME, thereby potentiating anti-PD-L1 therapy for solid tumors. This novel method of USMC generating sononeoperfusion effect may provide a new therapeutic modality for facilitating cancer immunotherapy.
Collapse
Affiliation(s)
- Guoliang Yang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Hui Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jiabei Yin
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Lei Yao
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jun Yang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jiawei Tang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - You Wu
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Meng Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - TingTing Luo
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Yi Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jing Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Xuezhi Yang
- Institute of Cancer, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - XiaoXiao Dong
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Zheng Liu
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China.
| | - Ningshan Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China.
| |
Collapse
|
15
|
Berenbrok N, Vargas-Delgado ME, Beitzen-Heineke A, Schmidt C, Gensch V, Loges S, Ben-Batalla I. Prolonged inhibition of intratumoral mast cells enhances efficacy of low-dose antiangiogenic therapy. Int J Cancer 2025; 156:186-200. [PMID: 39175105 DOI: 10.1002/ijc.35132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
Low-dose antiangiogenic therapies have demonstrated the ability to enhance normalization of tumor vessels, consequently improving hypoxia levels, drug delivery, and promoting anticancer immune responses. Mast cells have been identified as contributors to resistance against antiangiogenic therapy and facilitators of abnormal neoangiogenesis. In this study, we demonstrate that by simultaneously targeting intratumoral mast cells with Imatinib and administering low-dose anti-VEGFR2 therapy, antitumor efficacy can be enhanced in preclinical models. Thus, combinatory treatment overcomes therapy resistance, while concurrently promoting tumor vessel normalization. Notably, histomorphometric analysis of tumor sections revealed that vessel perfusion could be improved through mast cell inhibition and, despite a significantly reduced microvessel density, the combination treatment did not result in elevated tumor hypoxia levels compared to anti-VEGFR2 therapy alone. Short-term Imatinib application effectively increased antitumor efficacy, and by prolonging the application of Imatinib tumor vessel normalization was additionally improved. The combination of mast cell depletion and antiangiogenic treatments has not been investigated in detail and promises to help overcoming therapy resistance. Further studies will be required to explore their impact on other treatment approaches, and subsequently to validate these findings in a clinical setting.
Collapse
Affiliation(s)
- Nikolaus Berenbrok
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| | - Maria Elena Vargas-Delgado
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| | - Antonia Beitzen-Heineke
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| | - Claudia Schmidt
- Light Microscopy Facility (W210), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Victoria Gensch
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| | - Sonja Loges
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| | - Isabel Ben-Batalla
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center, Hamburg, Germany
| |
Collapse
|
16
|
Xia W, Goff M, Schiavone C, Singh N, Huang J, Need E, Cave J, Gillespie DL, Jensen RL, Pagel MD, Dogra P, Shi S, Goel S. Image-Guided Targeting of Mitochondrial Metabolism Sensitizes Pediatric Malignant Rhabdoid Tumors to Low Dose Radiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607364. [PMID: 39211061 PMCID: PMC11361026 DOI: 10.1101/2024.08.09.607364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tumor hypoxia leads to radioresistance and markedly worse clinical outcomes for pediatric malignant rhabdoid tumors (MRT). Our transcriptomics and bioenergetic profiling data reveal that mitochondrial oxidative phosphorylation (OXPHOS) is a metabolic vulnerability of MRT and can be exploited to overcome consumptive hypoxia by repurposing an FDA-approved anti-malarial drug, Atovaquone (AVO). We then establish the utility of Oxygen-Enhanced-Multispectral Optoacoustic Tomography (OE-MSOT), a label-free, ionizing radiation-free imaging modality, to visualize and quantify spatiotemporal changes in tumor hypoxia in response to AVO. We show a potent but transient increase in tumor oxygenation upon AVO treatment which results in complete elimination of tumors in all tested mice when combined with 10 Gy radiotherapy, a dose several times lower than the current clinic standard. Finally, we use translational mathematical modeling for systematic evaluation of dosing regimens, administration timing, and therapeutic synergy in a virtual clinical patient population. Together, our work establishes a framework for safe and pediatric patient-friendly image-guided metabolic radiosensitization of rhabdoid tumors.
Collapse
|
17
|
Rachunek-Medved K, Krauß S, Daigeler A, Adams C, Eckert F, Ganser K, Gonzalez-Menendez I, Quintanilla-Martinez L, Kolbenschlag J. Acute remote ischemic conditioning enhances (CD3+)- but not (FoxP3+)-T-cell invasion in the tumor center and increases IL 17 and TNF-alpha expression in a murine melanoma model. Front Immunol 2024; 15:1501885. [PMID: 39650654 PMCID: PMC11621216 DOI: 10.3389/fimmu.2024.1501885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Hypoxia can drive tumor progression, suppress anti-tumor immunity, and reduce the effectiveness of radiotherapy and chemotherapy. This study aimed to assess the impact of remote ischemic conditioning (RIC) on tumor oxygenation (sO2) and the anti-tumor immune response. Material and methods Fourteen B16-Ova tumor-bearing C57BL/6N mice received six 5-minute RIC cycles, while another fourteen underwent anesthesia only. Pimonidazole was administered 1.5 hours before sacrifice. Blood flow, sO2, and hemoglobin levels were measured in the non-ischemic hind limb and tumor. Tumor hypoxia was assessed using pimonidazole and CA IX immunohistochemistry, and T cell infiltration by CD3 and FoxP3 staining. Serum levels of 23 cytokines were analyzed using a multiplex immunoassay. Results Isoflurane anesthesia caused a slight intraindividual increase in blood flow (p = 0.07) and sO2 (p = 0.06) of the hind limb and a sole increase in tumor sO2 (p = 0.035), whereas RIC improved sO2 of the tumor in relation to the hind limb (p=0.03). The median of the tumor oxygen saturation reached 51.4% in the control group and 62.7% in the RIC group (p = 0.09), exhibiting a slight tendency towards better oxygenation in the RIC group. Pimonidazole (p=0.24) and CA IX hypoxia score (p=0.48) did not reveal statistically significant differences between the two groups. In RIC-treated tumors, the number of CD3 (p=0.006), but not FoxP3- positive cells (p = 0.84), in the tumor core was significantly higher compared to the control group. In the RIC group, the mean fluorescence intensity (MFI) of IL-17 was significantly higher (p=0.035), and TNF-α was trend-wise higher (p=0.063) compared to the control group. Conclusion Both isoflurane anesthesia and RIC have an impact on microcirculation. The application of RIC counteracted some of the effects of isoflurane, primarily in healthy tissue, and led to a significant improvement in relative tumor tissue oxygenation compared to the non-ischemic hind limb. RIC selectively enhanced immune infiltration within the tumor center, probably by previously activated tumor infiltrating T cells, while having no significant impact on T-regulatory cells. RIC appears to impact the cytokine profile, as indicated by elevated MFIs of TNF-α and IL-17.
Collapse
Affiliation(s)
- Katarzyna Rachunek-Medved
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Sabrina Krauß
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Adrien Daigeler
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Constantin Adams
- Department of Paediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, University Hospital Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, University Hospital Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Jonas Kolbenschlag
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
18
|
Debnath SK, Debnath M, Ghosh A, Srivastava R, Omri A. Targeting Tumor Hypoxia with Nanoparticle-Based Therapies: Challenges, Opportunities, and Clinical Implications. Pharmaceuticals (Basel) 2024; 17:1389. [PMID: 39459028 PMCID: PMC11510357 DOI: 10.3390/ph17101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hypoxia is a crucial factor in tumor biology, affecting various solid tumors to different extents. Its influence spans both early and advanced stages of cancer, altering cellular functions and promoting resistance to therapy. Hypoxia reduces the effectiveness of radiotherapy, chemotherapy, and immunotherapy, making it a target for improving therapeutic outcomes. Despite extensive research, gaps persist, necessitating the exploration of new chemical and pharmacological interventions to modulate hypoxia-related pathways. This review discusses the complex pathways involved in hypoxia and the associated pharmacotherapies, highlighting the limitations of current treatments. It emphasizes the potential of nanoparticle-based platforms for delivering anti-hypoxic agents, particularly oxygen (O2), to the tumor microenvironment. Combining anti-hypoxic drugs with conventional cancer therapies shows promise in enhancing remission rates. The intricate relationship between hypoxia and tumor progression necessitates novel therapeutic strategies. Nanoparticle-based delivery systems can significantly improve cancer treatment efficacy by targeting hypoxia-associated pathways. The synergistic effects of combined therapies underscore the importance of multimodal approaches in overcoming hypoxia-mediated resistance. Continued research and innovation in this area hold great potential for advancing cancer therapy and improving patient outcomes.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Monalisha Debnath
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Arnab Ghosh
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Rohit Srivastava
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
19
|
Mandel RM, Lotlikar PS, Keasler KT, Chen EY, Wilson JJ, Milner PJ. Gas Delivery Relevant to Human Health using Porous Materials. Chemistry 2024; 30:e202402163. [PMID: 38949770 PMCID: PMC11443428 DOI: 10.1002/chem.202402163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Gases are essential for various applications relevant to human health, including in medicine, biomedical imaging, and pharmaceutical synthesis. However, gases are significantly more challenging to safely handle than liquids and solids. Herein, we review the use of porous materials, such as metal-organic frameworks (MOFs), zeolites, and silicas, to adsorb medicinally relevant gases and facilitate their handling as solids. Specific topics include the use of MOFs and zeolites to deliver H2S for therapeutic applications, 129Xe for magnetic resonance imaging, O2 for the treatment of cancer and hypoxia, and various gases for use in organic synthesis. This Perspective aims to bring together the organic, inorganic, medicinal, and materials chemistry communities to inspire the design of next-generation porous materials for the storage and delivery of medicinally relevant gases.
Collapse
Affiliation(s)
- Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Piyusha S. Lotlikar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Elena Y. Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
20
|
Albini A, Noonan DM, Corradino P, Magnoni F, Corso G. The Past and Future of Angiogenesis as a Target for Cancer Therapy and Prevention. Cancer Prev Res (Phila) 2024; 17:289-303. [PMID: 38714356 DOI: 10.1158/1940-6207.capr-24-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Cancer growth is dependent on angiogenesis, the formation of new blood vessels, which represents a hallmark of cancer. After this concept was established in the 1970s, inhibition of tumor development and metastases by blocking the neoangiogenic process has been an important approach to the treatment of tumors. However, antiangiogenic therapies are often administered when cancer has already progressed. The key to reducing the cancer burden is prevention. We noticed 20 years ago that a series of possible cancer chemopreventive agents showed antiangiogenic properties when tested in experimental models. This article reviews the relevant advances in the understanding of the rationale for targeting angiogenesis for cancer therapy, prevention, and interception and recently investigated substances with antiangiogenic activity that may be suitable for such strategies. Many compounds, either dietary derivatives or repurposed drugs, with antiangiogenic activity are possible tools for cancer angioprevention. Such molecules have a favorable safety profile and are likely to allow the prolonged duration necessary for an efficient preventive strategy. Recent evidence on mechanisms and possible use is described here for food derivatives, including flavonoids, retinoids, triterpenoids, omega fatty acids, and carotenoids from marine microorganisms. As examples, a number of compounds, including epigallocatechin, resveratrol, xanthohumol, hydroxytyrosol, curcumin, fenretinide, lycopene, fucoxanthin, and repurposed drugs, such as aspirin, β blockers, renin-angiotensin-aldosterone inhibitors, carnitines, and biguanides, are reviewed.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| | - Paola Corradino
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Francesca Magnoni
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Eichhorn JS, Petrik J. Thetumor microenvironment'sinpancreatic cancer:Effects onimmunotherapy successandnovel strategiestoovercomethehostile environment. Pathol Res Pract 2024; 259:155370. [PMID: 38815507 DOI: 10.1016/j.prp.2024.155370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Cancer is a significant global health issue that poses a considerable burden on both patients and healthcare systems. Many different types of cancers exist that often require unique treatment approaches and therapies. A hallmark of tumor progression is the creation of an immunosuppressive environment, which poses complex challenges for current treatments. Amongst the most explored characteristics is a hypoxic environment, high interstitial pressure, and immunosuppressive cells and cytokines. Traditional cancer treatments involve radiotherapy, chemotherapy, and surgical procedures. The advent of immunotherapies was regarded as a promising approach with hopes of greatly increasing patients' survival and outcome. Although some success is seen with various immunotherapies, the vast majority of monotherapies are unsuccessful. This review examines how various aspects of the tumor microenvironment (TME) present challenges that impede the success of immunotherapies. Subsequently, we review strategies to manipulate the TME to facilitate the success of immunotherapies.
Collapse
Affiliation(s)
- Jan Sören Eichhorn
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1 Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1 Canada.
| |
Collapse
|
22
|
Sweeney A, Xavierselvan M, Langley A, Solomon P, Arora A, Mallidi S. Vascular regional analysis unveils differential responses to anti-angiogenic therapy in pancreatic xenografts through macroscopic photoacoustic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595784. [PMID: 38854042 PMCID: PMC11160648 DOI: 10.1101/2024.05.27.595784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy and the third leading cause of cancer deaths in the U.S. Despite major innovations in imaging technologies, there are limited surrogate radiographic indicators to aid in therapy planning and monitoring. Amongst the various imaging techniques Ultrasound-guided photoacoustic imaging (US-PAI) is a promising modality based on endogenous blood (hemoglobin) and blood oxygen saturation (StO 2 ) contrast to monitor response to anti-angiogenic therapies. Adaptation of US-PAI to the clinical realm requires macroscopic configurations for adequate depth visualization, illuminating the need for surrogate radiographic markers, including the tumoral microvessel density (MVD). In this work, subcutaneous xenografts with PC cell lines AsPC-1 and MIA-PaCa-2 were used to investigate the effects of receptor tyrosine kinase inhibitor (sunitinib) treatment on MVD and StO 2 . Through histological correlation, we have shown that regions of high and low vascular density (HVD and LVD) can be identified through frequency domain filtering of macroscopic PA images which could not be garnered from purely global analysis. We utilized vascular regional analysis (VRA) of treatment-induced StO 2 and total hemoglobin (HbT) changes. VRA as a tool to monitor treatment response allowed us to identify potential timepoints of vascular remodeling, highlighting its ability to provide insights into the TME not only for sunitinib treatment but also other anti-angiogenic therapies.
Collapse
|
23
|
Koirala A, Marshak-Rothstein A, Ksander BR, Gregory-Ksander M. Fas Ligand enhances vessel maturation and inhibits vascular leakage associated with age-related macular degeneration. RESEARCH SQUARE 2024:rs.3.rs-4331250. [PMID: 38766158 PMCID: PMC11100875 DOI: 10.21203/rs.3.rs-4331250/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Neovascular age-related macular degeneration (AMD), results from choroidal neovascularization (CNV), retinal edema and loss of photoreceptors. Previous studies suggested that Fas Ligand (FasL) on retinal pigment epithelial cells inhibited CNV by inducing apoptosis of infiltrating Fas+ vascular endothelial cells. However, induction of apoptosis depends on membrane-bound (mFasL) while the FasL cleavage product (sFasL) is neuroprotective. To better understand how FasL regulates the development of CNV, we used a mouse model of laser CNV to evaluate the development of CNV in mice with a FasL cleavage site mutation (ΔCS) and can only express the membrane-bound form of FasL. There was no significant difference in CNV size and area of vascular leakage in homozygous FasLΔCS/ΔCS mice when compared to wild type mice. Unexpectedly, heterozygous FasLΔCS/WT mice developed significantly less vascular leakage and showed accelerated neovessel maturation. However, CNV was not prevented in heterozygous FasLΔCS/WT mice if the Fas receptor was deleted in myeloid cells (FasLΔCS/+ Fasflox/flox CreLysM). Thus, FasL-mediated CNV inhibition depends on the extent of FasL cleavage, and on FasL engagement of Fas+ myeloid cells. Moreover, accelerated neovessel maturation prevents vascular leakage in AMD.
Collapse
Affiliation(s)
- Adarsha Koirala
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Bruce R. Ksander
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Godel-Pastre S, Porcel E, Pinna G, Vandamme M, Denis C, Leterrier C, Doris E, Truillet C, Gravel E. Tumor-Targeted Perfluorinated Micelles as Efficient Theranostic Agents Combining Positron Emission Tomography and Radiosensitization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21557-21570. [PMID: 38648555 DOI: 10.1021/acsami.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We report the synthesis of biocompatible perfluorinated micelles designed to improve radiotherapeutic efficacy in a radioresistant tumor environment. In vitro and in vivo behaviors of perfluorinated micelles were assessed at both cellular and tissular levels. The micellar platform offers key advantages as theranostic tool: (i) small size, allowing deep tissue penetration; (ii) oxygen transport to hypoxic tissues; (iii) negligible toxicity in the absence of ionizing radiation; (iv) internalization into cancer cells; (v) potent radiosensitizing effect; and (vi) excellent tumor-targeting properties, as monitored by positron emission tomography. We have demonstrated strong in vitro radiosensitizing effects of the micelle and in vivo tumor targeting, making this nanometric carrier a promising tool for the potentiation of focused radiotherapy.
Collapse
Affiliation(s)
- Sophia Godel-Pastre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Erika Porcel
- Université Paris-Saclay, CNRS,Institut des Sciences Moléculaires d'Orsay, 91401 Orsay, France
| | - Guillaume Pinna
- Plateforme ARN Interférence (PARI), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Université Paris-Saclay, CEA, 92260 Fontenay-aux-Roses, France
| | - Marie Vandamme
- Plateforme ARN Interférence (PARI), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Université Paris-Saclay, CEA, 92260 Fontenay-aux-Roses, France
| | - Caroline Denis
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Claire Leterrier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| |
Collapse
|
25
|
Liu Z, Zeinalzadeh Z, Huang T, Han Y, Peng L, Wang D, Zhou Z, Ousmane D, Wang J. Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer. Transl Oncol 2024; 42:101896. [PMID: 38324960 PMCID: PMC10851222 DOI: 10.1016/j.tranon.2024.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Esophageal cancer, known for its high incidence and low five-year survival rate, poses significant treatment challenges. A key aspect of this challenge is the close link between mitochondria and resistance to chemoradiotherapy (CRT). Currently, there is a scarcity of biomarkers for predicting CRT response and prognosis in esophageal cancer. Our study addresses this gap by developing a prognostic model that incorporates mitochondria-related CRT resistance (MRCRTR) genes, including CTSL, TBL1X, CLN8, MMP1, PDPN, and MRPL37. Survival analysis using Kaplan-Meier curves reveals that patients with high MRCRTR scores have lower survival rates than those with low scores. Utilizing a nomogram, we successfully predict the one-, two-, and three-year overall survival rates for esophageal cancer patients. Cox regression analysis confirms the MRCRTR score as an independent prognostic factor. Furthermore, our single-cell and correlation analyses suggested that MRCRTR genes might influence CRT resistance by modulating the immune microenvironment and impacting angiogenesis. Our pan-cancer analysis also indicates the potential applicability of MRCRTR scores to head and neck squamous cell carcinoma. The validation of these findings, conducted with samples from Xiang-ya Hospital, aligns closely with our bioinformatics results. Our study not only explores the role of MRCRTR genes in predicting the prognosis of esophageal cancer but also enhances the understanding of the interplay between CRT, mitochondria, and patient outcomes.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; Ultrapathology (Biomedical Electron Microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zahra Zeinalzadeh
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Tao Huang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yingying Han
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Lushan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Dan Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; Ultrapathology (Biomedical Electron Microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
26
|
Garcia MR, Andrade PB, Lefranc F, Gomes NGM. Marine-Derived Leads as Anticancer Candidates by Disrupting Hypoxic Signaling through Hypoxia-Inducible Factors Inhibition. Mar Drugs 2024; 22:143. [PMID: 38667760 PMCID: PMC11051506 DOI: 10.3390/md22040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Nelson G. M. Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| |
Collapse
|
27
|
Petrik J, Lauks S, Garlisi B, Lawler J. Thrombospondins in the tumor microenvironment. Semin Cell Dev Biol 2024; 155:3-11. [PMID: 37286406 DOI: 10.1016/j.semcdb.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Many cancers begin with the formation of a small nest of transformed cells that can remain dormant for years. Thrombospondin-1 (TSP-1) initially promotes dormancy by suppressing angiogenesis, a key early step in tumor progression. Over time, increases in drivers of angiogenesis predominate, and vascular cells, immune cells, and fibroblasts are recruited to the tumor mass forming a complex tissue, designated the tumor microenvironment. Numerous factors, including growth factors, chemokine/cytokine, and extracellular matrix, participate in the desmoplastic response that in many ways mimics wound healing. Vascular and lymphatic endothelial cells, and cancer-associated pericytes, fibroblasts, macrophages and immune cells are recruited to the tumor microenvironment, where multiple members of the TSP gene family promote their proliferation, migration and invasion. The TSPs also affect the immune signature of tumor tissue and the phenotype of tumor-associated macrophages. Consistent with these observations, expression of some TSPs has been established to correlate with poor outcomes in specific types of cancer.
Collapse
Affiliation(s)
- James Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| | - Sylvia Lauks
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Bianca Garlisi
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jack Lawler
- Harvard Medical School, Boston, MA, USA; Beth Israel, Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Li H, Huang H, Tan H, Jia Q, Song W, Zhang Q, Zhou B, Bai J. Key processes in tumor metastasis and therapeutic strategies with nanocarriers: a review. Mol Biol Rep 2024; 51:197. [PMID: 38270746 DOI: 10.1007/s11033-023-08910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/26/2024]
Abstract
Cancer metastasis is the leading cause of cancer-related death. Metastasis occurs at all stages of tumor development, with unexplored changes occurring at the primary site and distant colonization sites. The growing understanding of the metastatic process of tumor cells has contributed to the emergence of better treatment options and strategies. This review summarizes a range of features related to tumor cell metastasis and nanobased drug delivery systems for inhibiting tumor metastasis. The mechanisms of tumor metastasis in the ideal order of metastatic progression were summarized. We focus on the prominent role of nanocarriers in the treatment of tumor metastasis, summarizing the latest applications of nanocarriers in combination with drugs to target important components and processes of tumor metastasis and providing ideas for more effective nanodrug delivery systems.
Collapse
Affiliation(s)
- Hongjie Li
- School of Clinical Medicine, Weifang Medical University, 261053, Weifang, China
| | - Haiqin Huang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, 250012, Jinan, China
| | - Qitao Jia
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Weina Song
- Department of Pediatric Respiratory and Critical Care, Qilu Hospital of Shandong University Dezhou Hospital, 253000, Dezhou, China
| | - Qingdong Zhang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, 261053, Weifang, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| |
Collapse
|
29
|
Fei B, Mo Z, Yang J, Wang Z, Li S. Nanodrugs Reprogram Cancer-Associated Fibroblasts and Normalize Tumor Vasculatures for Sequentially Enhancing Photodynamic Therapy of Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:6379-6391. [PMID: 37954460 PMCID: PMC10638926 DOI: 10.2147/ijn.s429884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023] Open
Abstract
Background The failure of cancer photodynamic therapy (PDT) is largely ascribed to excessive stroma and defective vasculatures that restrain the photosensitizer permeation and the oxygen perfusion in tumors. Method and Results In this study, a nanodrug that integrated the cancer-associated fibroblast (CAF) regulation with tumor vessel normalization was tailored to sequentially sensitize PDT. The nanodrug exhibited high targeting towards CAFs and efficiently reversed the activated CAFs into quiescence, thus decreasing collagen deposition in the tumor microenvironment (TME), which overcame the protective physical barrier. Furthermore, the nanodrug regulated vascular endothelial cells and restored the tumor vasculatures, thereby improving vascular permeability. Based on the combined effects of reprogramming the TME, the nanodrug improved tumor accumulation of photosensitizers and alleviated hypoxia in the TME, which facilitated the subsequent PDT. Importantly, the nanodrug regulated the immunosuppressive TME by favoring the infiltration of immunostimulatory cells over immunosuppressive cells, which potentiated the PDT-induced immune response. Conclusion Our work demonstrates a sequential treatment strategy in which the combination of the CAF regulation and tumor vasculature normalization, followed by PDT, could be a promising modality for sensitizing tumor to PDT.
Collapse
Affiliation(s)
- Bingyuan Fei
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhanhao Mo
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinghui Yang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, People's Republic of China
| | - Shuo Li
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
30
|
Zeng Y, Zhang S, Li S, Song G, Meng T, Yuan H, Hu F. Normalizing Tumor Blood Vessels to Improve Chemotherapy and Inhibit Breast Cancer Metastasis by Multifunctional Nanoparticles. Mol Pharm 2023; 20:5078-5089. [PMID: 37728215 DOI: 10.1021/acs.molpharmaceut.3c00381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The abnormal tumor blood vessels with high leakage can promote tumor cells to infiltrate into the systemic circulation and increase the risk of tumor metastasis. In addition, chemotherapy may destroy tumor blood vessels and further aggravate metastasis. Normalizing tumor blood vessels can reduce vascular leakage and increase vascular integrity. The simultaneous administration of vascular normalization drugs and chemotherapy drugs may resist the blood vessels' destruction of chemotherapy. Here, multifunctional nanoparticles (CCM@LMSN/DOX&St), which combined chemotherapy with tumor blood vessel normalization, were prepared for the treatment of breast cancer. The results showed that CCM@LMSN/DOX&St-loaded sunitinib (St) promoted the expression of junction proteins Claudin-4 and VE-cadherin of endothelial cells, reversed the destruction of DOX to the endothelial cell layer, protected the integrity of the endothelial cell layer, and inhibited the migration of 4T1 tumor cells across the endothelial cell layer. In vivo experiments showed that CCM@LMSN/DOX&St effectively inhibited tumor growth in situ; what is exciting was that it also inhibited distal metastasis of breast cancer. CCM@LMSN/DOX&St encapsulated with St can normalize tumor blood vessels, reverse the damage of DOX to tumor blood vessels, increase the integrity of blood vessels, and prevent tumor cell invasion into blood vessels, which can inhibit breast cancer spontaneous metastasis and reduce chemotherapy-induced metastasis. This drug delivery platform effectively inhibited the progression of tumors and provided a promising solution for effective tumor treatment.
Collapse
Affiliation(s)
- Yingping Zeng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Shufen Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Sufen Li
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Guangtao Song
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
31
|
Pan Y, Liu L, He Y, Ye L, Zhao X, Hu Z, Mou X, Cai Y. NIR diagnostic imaging of triple-negative breast cancer and its lymph node metastasis for high-efficiency hypoxia-activated multimodal therapy. J Nanobiotechnology 2023; 21:312. [PMID: 37660121 PMCID: PMC10475188 DOI: 10.1186/s12951-023-02010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) possesses special biological behavior and clinicopathological characteristics, which is highly invasive and propensity to metastasize to lymph nodes, leading to a worse prognosis than other types of breast cancer. Thus, the development of an effective therapeutic method is significant to improve the survival rate of TNBC patients. RESULTS In this work, a liposome-based theranostic nanosystem (ILA@Lip) was successfully prepared by simultaneously encapsulating IR 780 as the photosensitizer and lenvatinib as an anti-angiogenic agent, together with banoxantrone (AQ4N) molecule as the hypoxia-activated prodrug. The ILA@Lip can be applied for the near-infrared (NIR) fluorescence diagnostic imaging of TNBC and its lymph node metastasis for multimodal therapy. Lenvatinib in ILA@Lip can inhibit angiogenesis by cutting oxygen supply, thereby leading to enhanced hypoxia levels. Meanwhile, large amounts of reactive oxygen species (ROS) were produced while IR 780 was irradiated by an 808 nm laser, which also rapidly exhausted oxygen in tumor cells to worsen tumor hypoxia. Through creating an extremely hypoxic in TNBC, the conversion of non-toxic AQ4N to toxic AQ4 was much more efficiency for hypoxia-activated chemotherapy. Cytotoxicity assay of ILA@Lip indicated excellent biocompatibility with normal cells and tissues, but showed high toxicity in hypoxic breast cancer cells. Also, the in vivo tumors treated by the ILA@Lip with laser irradiation were admirably suppressed in both subcutaneous tumor model and orthotopic tumor models. CONCLUSION Utilizing ILA@Lip is a profound strategy to create an extremely hypoxic tumor microenvironment for higher therapeutic efficacy of hypoxia-activated chemotherapy, which realized collective suppression of tumor growth and has promising potential for clinical translation.
Collapse
Affiliation(s)
- Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Yichen He
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luyi Ye
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Xin Zhao
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Zhiming Hu
- Department of Hepatobiliary Pancreatic Surgery, Zhejiang Provincial Tongde Hospital, Hangzhou, 310012, Zhejiang, China.
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
32
|
Li Y, Fu L, Wu B, Guo X, Shi Y, Lv C, Yu Y, Zhang Y, Liang Z, Zhong C, Han S, Xu F, Tian Y. Angiogenesis modulated by CD93 and its natural ligands IGFBP7 and MMRN2: a new target to facilitate solid tumor therapy by vasculature normalization. Cancer Cell Int 2023; 23:189. [PMID: 37660019 PMCID: PMC10474740 DOI: 10.1186/s12935-023-03044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023] Open
Abstract
The tumor vasculature was different from the normal vasculature in both function and morphology, which caused hypoxia in the tumor microenvironment (TME). Previous anti-angiogenesis therapy had led to a modest improvement in cancer immunotherapy. However, antiangiogenic therapy only benefitted a few patients and caused many side effects. Therefore, there was still a need to develop a new approach to affect tumor vasculature formation. The CD93 receptor expressed on the surface of vascular endothelial cells (ECs) and its natural ligands, MMRN2 and IGFBP7, were now considered potential targets in the antiangiogenic treatment because recent studies had reported that anti-CD93 could normalize the tumor vasculature without impacting normal blood vessels. Here, we reviewed recent studies on the role of CD93, IGFBP7, and MMRN2 in angiogenesis. We focused on revealing the interaction between IGFBP7-CD93 and MMRN2-CD93 and the signaling cascaded impacted by CD93, IGFBP7, and MMRN2 during the angiogenesis process. We also reviewed retrospective studies on CD93, IGFBP7, and MMRN2 expression and their relationship with clinical factors. In conclusion, CD93 was a promising target for normalizing the tumor vasculature.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lei Fu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xingqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Shi
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yang Yu
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
33
|
Izci M, Maksoudian C, Gonçalves F, Pérez Gilabert I, Rios Luci C, Bolea-Fernandez E, Vanhaecke F, Manshian BB, Soenen SJ. The Efficacy of Nanoparticle Delivery to Hypoxic Solid Tumors by ciRGD Co-Administration Depends on Neuropilin-1 and Neutrophil Levels. Adv Healthc Mater 2023; 12:e2300594. [PMID: 37247322 DOI: 10.1002/adhm.202300594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Indexed: 05/31/2023]
Abstract
The ability to improve nanoparticle delivery to solid tumors is an actively studied domain, where various mechanisms are looked into. In previous work, the authors have looked into nanoparticle size, tumor vessel normalization, and disintegration, and here it is aimed to continue this work by performing an in-depth mechanistic study on the use of ciRGD peptide co-administration. Using a multiparametric approach, it is observed that ciRGD can improve nanoparticle delivery to the tumor itself, but also to tumor cells specifically better than vessel normalization strategies. The effect depends on the level of tumor perfusion, hypoxia, neutrophil levels, and vessel permeability. This work shows that upon characterizing tumors for these parameters, conditions can be selected that can optimally benefit from ciRGD co-administration as a means to improve NP delivery to solid tumors.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Filipa Gonçalves
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Irati Pérez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Eduardo Bolea-Fernandez
- Atomic & Mass Spectrometry - A&MS research group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, Ghent, 9000, Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS research group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, Ghent, 9000, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
- Leuven Cancer Research Institute, Faculty of Medical Sciences, KU Leuven, Herestraat 49, Leuven, B3000, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
- Leuven Cancer Research Institute, Faculty of Medical Sciences, KU Leuven, Herestraat 49, Leuven, B3000, Belgium
| |
Collapse
|
34
|
Sadri M, Najafi A, Rahimi A, Behranvand N, Hossein Kazemi M, Khorramdelazad H, Falak R. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe? Int Immunopharmacol 2023; 122:110470. [PMID: 37433246 DOI: 10.1016/j.intimp.2023.110470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Behranvand
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Lintern N, Smith AM, Jayne DG, Khaled YS. Photodynamic Stromal Depletion in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4135. [PMID: 37627163 PMCID: PMC10453210 DOI: 10.3390/cancers15164135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid malignancies, with a five-year survival of less than 10%. The resistance of the disease and the associated lack of therapeutic response is attributed primarily to its dense, fibrotic stroma, which acts as a barrier to drug perfusion and permits tumour survival and invasion. As clinical trials of chemotherapy (CT), radiotherapy (RT), and targeted agents have not been successful, improving the survival rate in unresectable PDAC remains an urgent clinical need. Photodynamic stromal depletion (PSD) is a recent approach that uses visible or near-infrared light to destroy the desmoplastic tissue. Preclinical evidence suggests this can resensitise tumour cells to subsequent therapies whilst averting the tumorigenic effects of tumour-stromal cell interactions. So far, the pre-clinical studies have suggested that PDT can successfully mediate the destruction of various stromal elements without increasing the aggressiveness of the tumour. However, the complexity of this interplay, including the combined tumour promoting and suppressing effects, poses unknowns for the clinical application of photodynamic stromal depletion in PDAC.
Collapse
Affiliation(s)
- Nicole Lintern
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew M. Smith
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, UK
| | - David G. Jayne
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Yazan S. Khaled
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
36
|
Drzał A, Dziurman G, Hoła P, Lechowski J, Delalande A, Swakoń J, Pichon C, Elas M. Murine Breast Cancer Radiosensitization Using Oxygen Microbubbles and Metformin: Vessels Are the Key. Int J Mol Sci 2023; 24:12156. [PMID: 37569531 PMCID: PMC10418665 DOI: 10.3390/ijms241512156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Radiotherapy is a cornerstone of cancer treatment, but tumor hypoxia and resistance to radiation remain significant challenges. Vascular normalization has emerged as a strategy to improve oxygenation and enhance therapeutic outcomes. In this study, we examine the radiosensitization potential of vascular normalization using metformin, a widely used anti-diabetic drug, and oxygen microbubbles (OMBs). We investigated the synergistic action of metformin and OMBs and the impact of this therapeutic combination on the vasculature, oxygenation, invasiveness, and radiosensitivity of murine 4T1 breast cancer. We employed in vivo Doppler ultrasonographic imaging for vasculature analysis, electron paramagnetic resonance oximetry, and immunohistochemical assessment of microvessels, perfusion, and invasiveness markers. Our findings demonstrate that both two-week metformin therapy and oxygen microbubble treatment normalize abnormal cancer vasculature. The combination of metformin and OMB yielded more pronounced and sustained effects than either treatment alone. The investigated therapy protocols led to nearly twice the radiosensitivity of 4T1 tumors; however, no significant differences in radiosensitivity were observed between the various treatment groups. Despite these improvements, resistance to treatment inevitably emerged, leading to the recurrence of hypoxia and an increased incidence of metastasis.
Collapse
Affiliation(s)
- Agnieszka Drzał
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Gabriela Dziurman
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Paweł Hoła
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Jakub Lechowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Anthony Delalande
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France; (A.D.); (C.P.)
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Jan Swakoń
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland;
| | - Chantal Pichon
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France; (A.D.); (C.P.)
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
- Institut Universitaire de France, 75231 Paris, France
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| |
Collapse
|
37
|
Sun XX, Nosrati Z, Ko J, Lee CM, Bennewith KL, Bally MB. Induced Vascular Normalization-Can One Force Tumors to Surrender to a Better Microenvironment? Pharmaceutics 2023; 15:2022. [PMID: 37631236 PMCID: PMC10458586 DOI: 10.3390/pharmaceutics15082022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy has changed the way many cancers are being treated. Researchers in the field of immunotherapy and tumor immunology are investigating similar questions: How can the positive benefits achieved with immunotherapies be enhanced? Can this be achieved through combinations with other agents and if so, which ones? In our view, there is an urgent need to improve immunotherapy to make further gains in the overall survival for those patients that should benefit from immunotherapy. While numerous different approaches are being considered, our team believes that drug delivery methods along with appropriately selected small-molecule drugs and drug candidates could help reach the goal of doubling the overall survival rate that is seen in some patients that are given immunotherapeutics. This review article is prepared to address how immunotherapies should be combined with a second treatment using an approach that could realize therapeutic gains 10 years from now. For context, an overview of immunotherapy and cancer angiogenesis is provided. The major targets in angiogenesis that have modulatory effects on the tumor microenvironment and immune cells are highlighted. A combination approach that, for us, has the greatest potential for success involves treatments that will normalize the tumor's blood vessel structure and alter the immune microenvironment to support the action of immunotherapeutics. So, this is reviewed as well. Our focus is to provide an insight into some strategies that will engender vascular normalization that may be better than previously described approaches. The potential for drug delivery systems to promote tumor blood vessel normalization is considered.
Collapse
Affiliation(s)
- Xu Xin Sun
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Zeynab Nosrati
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Janell Ko
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
| | - Che-Min Lee
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin L. Bennewith
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
38
|
Qin C, Liu S, Zhou S, Xia X, Hu J, Yu Y, Ma D. Tanshinone IIA promotes vascular normalization and boosts Sorafenib's anti-hepatoma activity via modulating the PI3K-AKT pathway. Front Pharmacol 2023; 14:1189532. [PMID: 37324455 PMCID: PMC10267387 DOI: 10.3389/fphar.2023.1189532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Angiogenesis is an essential feature of liver cancer. Tumor hypoxia results from abnormal vessel architecture. Numerous studies have sufficiently demonstrated that Tanshinone IIA (Tan IIA) can increase blood flow and enhance microcirculation. The objectives of this study are to: 1 assess the impact of Tan IIA on tumor angiogenesis and architecture, 2 determine the impact of Tan IIA on tumor hypoxia and susceptibility to Sorafenib, and 3 clarify the relevant mechanisms. Methods: CCK8 and flow cytometry measured cell proliferation and apoptosis, respectively. Tube creation assay was used to investigate medication effects on angiogenesis and structure. Drug effects on tumor development, metastasis, and hypoxic tumor microenvironment are assessed in an orthotopic xenograft model of liver tumors. Protein expression was measured by Western blotting and immunohistochemistry. Results: Our results demonstrated that Tan IIA could not reduce tumor proliferation or enhance Sorafenib's anti-tumor effect in vitro. Nevertheless, it can prevent Sorafenib from demolishing the typical vascular structure and aid sorafenib in blocking the recruitment of vascular endothelial cells by liver cancer cells. Although Tan IIA cannot inhibit tumor growth in vivo, it can significantly boost Sorafenib's inhibitory effect on liver cancer, alleviate tumor microenvironment hypoxia, and minimize lung metastasis. This effect may be achieved by reducing HIF-1α and HIF-2α expression via the PI3K-AKT signal pathway. Discussion: Our results reveal the mechanism of Tan IIA in normalizing tumor blood vessels, provide innovative concepts and approaches to overcome chemotherapy resistance, and provide a theoretical basis for the clinical transformation and usage of Tan IIA.
Collapse
Affiliation(s)
- Chengdong Qin
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Siyuan Liu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shiqi Zhou
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xianghou Xia
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiejie Hu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yang Yu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dening Ma
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| |
Collapse
|
39
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
40
|
Nakajima K, Sugikawa A, Yasui H, Higashikawa K, Suzuki C, Natsume T, Suzuki M, Takakura H, Tomita M, Takahashi S, Hirata K, Magata Y, Kuge Y, Ogawa M. In vivo imaging of acute physiological responses after treatment of cancer with near-infrared photoimmunotherapy. Mol Imaging Biol 2023:10.1007/s11307-023-01822-9. [PMID: 37193805 DOI: 10.1007/s11307-023-01822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer phototherapy using an antibody-photosensitizer conjugate (Ab-IR700). By NIR light irradiation, Ab-IR700 forms a water-insoluble aggregation on the plasma membrane of cancer cells, leading to lethal membrane damage of cancer cells with high selectivity. However, IR700 produces singlet oxygen, which induces non-selective inflammatory responses such as edema in normal tissues around the tumor. Understanding such treatment-emergent responses is important to minimize side effects and improve clinical outcomes. Thus, in this study, we evaluated physiological responses during NIR-PIT by magnetic resonance imaging (MRI) and positron emission tomography (PET). PROCEDURES Ab-IR700 was intravenously injected into tumor-bearing mice with two tumors on the right and left sides of the dorsum. At 24 h after injection, a tumor was irradiated with NIR light. Edema formation was examined by T1/T2/diffusion-weighted MRI and inflammation was investigated by PET with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). Because inflammation can increase vascular permeability via inflammatory mediators, we evaluated changes in oxygen levels in tumors using a hypoxia imaging probe, [18F]fluoromisonidazole ([18F]FMISO). RESULTS The uptake of [18F]FDG in the irradiated tumor was significantly decreased compared to the control tumor, indicating the impairment of glucose metabolism induced by NIR-PIT. MRI and [18F]FDG-PET images showed that inflammatory edema with [18F]FDG accumulation was present in the surrounding normal tissues of the irradiated tumor. Furthermore, [18F]FMISO accumulation in the center of the irradiated tumor was relatively low, indicating the enhancement of oxygen supply due to increased vascular permeability. In contrast, high [18F]FMISO accumulation was observed in the peripheral region, indicating enhancement of hypoxia in the region. This could be because inflammatory edema was formed in the surrounding normal tissues, which blocked blood flow to the tumor. CONCLUSIONS We successfully monitored inflammatory edema and changes in oxygen levels during NIR-PIT. Our findings on the acute physiological responses after light irradiation will help to develop effective measures to minimize the side effects in NIR-PIT.
Collapse
Affiliation(s)
- Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiyo Sugikawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chie Suzuki
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takahiro Natsume
- Promotion Center for Medical Collaboration & Intellectual Property, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Mayu Tomita
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Sachi Takahashi
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiro Magata
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
41
|
Zhang J, Tang K, Fang R, Liu J, Liu M, Ma J, Wang H, Ding M, Wang X, Song Y, Yang D. Nanotechnological strategies to increase the oxygen content of the tumor. Front Pharmacol 2023; 14:1140362. [PMID: 36969866 PMCID: PMC10034070 DOI: 10.3389/fphar.2023.1140362] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Hypoxia is a negative prognostic indicator of solid tumors, which not only changes the survival state of tumors and increases their invasiveness but also remarkably reduces the sensitivity of tumors to treatments such as radiotherapy, chemotherapy and photodynamic therapy. Thus, developing therapeutic strategies to alleviate tumor hypoxia has recently been considered an extremely valuable target in oncology. In this review, nanotechnological strategies to elevate oxygen levels in tumor therapy in recent years are summarized, including (I) improving the hypoxic tumor microenvironment, (II) oxygen delivery to hypoxic tumors, and (III) oxygen generation in hypoxic tumors. Finally, the challenges and prospects of these nanotechnological strategies for alleviating tumor hypoxia are presented.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Runqi Fang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Jiaming Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Ming Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| |
Collapse
|
42
|
Zamborlin A, Voliani V. Gold nanoparticles as antiangiogenic and antimetastatic agents. Drug Discov Today 2023; 28:103438. [PMID: 36375738 DOI: 10.1016/j.drudis.2022.103438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Angiogenesis and metastasis are two interdependent cancer hallmarks, the latter of which is the key cause of treatment failure. Thus, establishing effective antiangiogenesis/antimetastasis agents is the final frontier in cancer research. Gold nanoparticles (GNPs) may provide disruptive advancements in this regard due to their intrinsic physical and physiological features. Here, we comprehensively discuss recent potential therapeutical strategies to treat angiogenesis and metastasis and present a critical review on the state-of-the-art in vitro and in vivo evaluations of the antiangiogenic/antimetastatic activity of GNPs. Finally, we provide perspectives on the contribution of GNPs to the advancement of cancer management.
Collapse
Affiliation(s)
- Agata Zamborlin
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12 - 56127 Pisa, Italy; NEST-Scuola Normale Superiore, Piazza San Silvestro, 12 - 56127 Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12 - 56127 Pisa, Italy; Department of Pharmacy, University of Genoa, Viale Cembrano, 4 - 16148 Genoa, Italy.
| |
Collapse
|
43
|
Piao XM, Byun YJ, Zheng CM, Song SJ, Kang HW, Kim WT, Yun SJ. A New Treatment Landscape for RCC: Association of the Human Microbiome with Improved Outcomes in RCC. Cancers (Basel) 2023; 15:cancers15030935. [PMID: 36765892 PMCID: PMC9913391 DOI: 10.3390/cancers15030935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Microbes play different roles in metabolism, local or systemic inflammation, and immunity, and the human microbiome in tumor microenvironment (TME) is important for modulating the response to immunotherapy in cancer patients. Renal cell carcinoma (RCC) is an immunogenic tumor, and immunotherapy is the backbone of its treatment. Correlations between the microbiome and responsiveness to immune checkpoint inhibitors have been reported. This review summarizes the recent therapeutic strategies for RCC and the effects of TME on the systemic therapy of RCC. The current understanding and advances in microbiome research and the relationship between the microbiome and the response to immunotherapy for RCC are also discussed. Improving our understanding of the role of the microbiome in RCC treatment will facilitate the development of microbiome targeting therapies to modify the tumor microbiome and improve treatment outcomes.
Collapse
Affiliation(s)
- Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young Joon Byun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chuang-Ming Zheng
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sun Jin Song
- Department of Emergency, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Won Tae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
- Correspondence: ; Tel.: +82-43-269-6142
| |
Collapse
|
44
|
Heid I, Trajkovic-Arsic M, Lohöfer F, Kaissis G, Harder FN, Mayer M, Topping GJ, Jungmann F, Crone B, Wildgruber M, Karst U, Liotta L, Algül H, Yen HY, Steiger K, Weichert W, Siveke JT, Makowski MR, Braren RF. Functional biomarkers derived from computed tomography and magnetic resonance imaging differentiate PDAC subgroups and reveal gemcitabine-induced hypo-vascularization. Eur J Nucl Med Mol Imaging 2022; 50:115-129. [PMID: 36074156 PMCID: PMC9668793 DOI: 10.1007/s00259-022-05930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a molecularly heterogeneous tumor entity with no clinically established imaging biomarkers. We hypothesize that tumor morphology and physiology, including vascularity and perfusion, show variations that can be detected by differences in contrast agent (CA) accumulation measured non-invasively. This work seeks to establish imaging biomarkers for tumor stratification and therapy response monitoring in PDAC, based on this hypothesis. METHODS AND MATERIALS Regional CA accumulation in PDAC was correlated with tumor vascularization, stroma content, and tumor cellularity in murine and human subjects. Changes in CA distribution in response to gemcitabine (GEM) were monitored longitudinally with computed tomography (CT) Hounsfield Units ratio (HUr) of tumor to the aorta or with magnetic resonance imaging (MRI) ΔR1 area under the curve at 60 s tumor-to-muscle ratio (AUC60r). Tissue analyses were performed on co-registered samples, including endothelial cell proliferation and cisplatin tissue deposition as a surrogate of chemotherapy delivery. RESULTS Tumor cell poor, stroma-rich regions exhibited high CA accumulation both in human (meanHUr 0.64 vs. 0.34, p < 0.001) and mouse PDAC (meanAUC60r 2.0 vs. 1.1, p < 0.001). Compared to the baseline, in vivo CA accumulation decreased specifically in response to GEM treatment in a subset of human (HUr -18%) and mouse (AUC60r -36%) tumors. Ex vivo analyses of mPDAC showed reduced cisplatin delivery (GEM: 0.92 ± 0.5 mg/g, vs. vehicle: 3.1 ± 1.5 mg/g, p = 0.004) and diminished endothelial cell proliferation (GEM: 22.3% vs. vehicle: 30.9%, p = 0.002) upon GEM administration. CONCLUSION In PDAC, CA accumulation, which is related to tumor vascularization and perfusion, inversely correlates with tumor cellularity. The standard of care GEM treatment results in decreased CA accumulation, which impedes drug delivery. Further investigation is warranted into potentially detrimental effects of GEM in combinatorial therapy regimens.
Collapse
Affiliation(s)
- Irina Heid
- School of Medicine, Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany.
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Fabian Lohöfer
- School of Medicine, Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Georgios Kaissis
- School of Medicine, Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
- Department of Computing, Imperial College London, London, SW7 2AZ, UK
- School of Medicine, Institute for Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
| | - Felix N Harder
- School of Medicine, Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Moritz Mayer
- School of Medicine, Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Geoffrey J Topping
- School of Medicine, Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Friderike Jungmann
- School of Medicine, Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Barbara Crone
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Muenster, Germany
| | - Moritz Wildgruber
- Institute of Clinical Radiology, University Hospital Muenster, Muenster, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Muenster, Germany
| | - Lucia Liotta
- School of Medicine, Clinic and Policlinic of Internal Medicine II, Technical University of Munich, Munich, Germany
| | - Hana Algül
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Klinikum rechts der Isar, Technical University of Munich, Munich, Bavaria, Germany
| | - Hsi-Yu Yen
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK, partner Site Munich), Munich, Germany
| | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Marcus R Makowski
- School of Medicine, Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Rickmer F Braren
- School of Medicine, Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany.
- German Cancer Consortium (DKTK, partner Site Munich), Munich, Germany.
| |
Collapse
|
45
|
Cai Y, Zang GY, Huang Y, Sun Z, Zhang LL, Qian YJ, Yuan W, Wang ZQ. Advances in neovascularization after diabetic ischemia. World J Diabetes 2022; 13:926-939. [PMID: 36437864 PMCID: PMC9693741 DOI: 10.4239/wjd.v13.i11.926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
With the high incidence of diabetes around the world, ischemic complications cause a serious influence on people's production and living. Neovascularization plays a significant role in its development. Therefore, neovascularization after diabetic ischemia has aroused attention and has become a hot spot in recent years. Neovascularization is divided into angiogenesis represented by atherosclerosis and arteriogenesis characterized by coronary collateral circulation. When mononuclear macrophages successively migrate to the ischemia anoxic zone after ischemia or hypoxia, they induce the secretion of cytokines, such as vascular endothelial growth factor and hypoxia-inducible factor, activate signaling pathways such as classic Wnt and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathways, trigger oxidative stress response, activate endothelial progenitor cells or enter the glycolysis or lactic acid process and promote the formation of new blood vessels, remodeling them into mature blood vessels and restoring blood supply. However, the hypoglycemic condition has different impacts on neovascularization. Consequently, this review aimed to introduce the mechanisms of neovascularization after diabetic ischemia, increase our un-derstanding of diabetic ischemic complications and their therapies and provide more treatment options for clinical practice and effectively relieve patients' pain. It is believed that in the near future, neovascularization will bring more benefits and hope to patients with diabetes.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Guang-Yao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Yan Huang
- Department of Ophthalmology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Li-Li Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Yong-Jiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Zhong-Qun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| |
Collapse
|
46
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
47
|
He J, Liu Z, Zhu X, Xia H, Gao H, Lu J. Ultrasonic Microbubble Cavitation Enhanced Tissue Permeability and Drug Diffusion in Solid Tumor Therapy. Pharmaceutics 2022; 14:1642. [PMID: 36015267 PMCID: PMC9414228 DOI: 10.3390/pharmaceutics14081642] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy has an essential role not only in advanced solid tumor therapy intervention but also in society's health at large. Chemoresistance, however, seriously restricts the efficiency and sensitivity of chemotherapeutic agents, representing a significant threat to patients' quality of life and life expectancy. How to reverse chemoresistance, improve efficacy sensitization response, and reduce adverse side effects need to be tackled urgently. Recently, studies on the effect of ultrasonic microbubble cavitation on enhanced tissue permeability and retention (EPR) have attracted the attention of researchers. Compared with the traditional targeted drug delivery regimen, the microbubble cavitation effect, which can be used to enhance the EPR effect, has the advantages of less trauma, low cost, and good sensitization effect, and has significant application prospects. This article reviews the research progress of ultrasound-mediated microbubble cavitation in the treatment of solid tumors and discusses its mechanism of action to provide new ideas for better treatment strategies.
Collapse
Affiliation(s)
- Jide He
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Zenan Liu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Xuehua Zhu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Haizhui Xia
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Jian Lu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
48
|
Fan P, Qiang H, Liu Z, Zhao Q, Wang Y, Liu T, Wang X, Chu T, Huang Y, Xu W, Qin S. Effective low-dose Anlotinib induces long-term tumor vascular normalization and improves anti-PD-1 therapy. Front Immunol 2022; 13:937924. [PMID: 35990640 PMCID: PMC9382125 DOI: 10.3389/fimmu.2022.937924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
Anlotinib is a new multitarget tyrosine kinase inhibitor for tumor angiogenesis, and its monotherapy exhibits a decent clinical efficacy. However, the process of combining Anlotinib and immune checkpoint therapy to achieve optimal antitumor effects while limiting side effects remains unclear. In this study, we found that effective low-dose Anlotinib was sufficient to inhibit tumor growth while reducing side effects compared with high doses. Effective low-dose Anlotinib treatments induced durable tumor vascular normalization and improved anti-PD-1 therapy in both short- and long-term treatment regimens. Mechanistically, the combination therapy increased the proportions of intratumoral CD4+ T, CD8+ T, and NK cells. Anlotinib-associated antitumor effects were independent of interferon γ; however, the combination therapy required CD8+ T cells to suppress tumor growth. Together, these results suggest that the combination of effective low-dose Anlotinib and PD-1 blockade induces durable antitumor effects with fewer side effects. Our findings indicate that antiangiogenic treatments combined with immune checkpoint therapy at an effective low-dose, rather than a tolerable high dose, would be more efficacious and safer.
Collapse
Affiliation(s)
- Peng Fan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Huiping Qiang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenhua Liu
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhao
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tingkun Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xuan Wang
- Department of Immunology, Innovent Biologics, Inc., Suzhou, China
| | - Tianqing Chu
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhui Huang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- *Correspondence: Yuhui Huang, ; Wei Xu, ; Songbing Qin,
| | - Wei Xu
- Department of Immunology, Innovent Biologics, Inc., Suzhou, China
- *Correspondence: Yuhui Huang, ; Wei Xu, ; Songbing Qin,
| | - Songbing Qin
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Yuhui Huang, ; Wei Xu, ; Songbing Qin,
| |
Collapse
|
49
|
Dong H, Yang D, Hu Y, Song X. Recent advances in smart nanoplatforms for tumor non-interventional embolization therapy. J Nanobiotechnology 2022; 20:337. [PMID: 35858896 PMCID: PMC9301833 DOI: 10.1186/s12951-022-01548-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
Tumor embolization therapy has attracted great attention due to its high efficiency in inhibiting tumor growth by cutting off tumor nutrition and oxygen supply by the embolic agent. Although transcatheter arterial embolization (TAE) is the mainstream technique in the clinic, there are still some limitations to be considered, especially the existence of high risks and complications. Recently, nanomaterials have drawn wide attention in disease diagnosis, drug delivery, and new types of therapies, such as photothermal therapy and photodynamic therapy, owing to their unique optical, thermal, convertible and in vivo transport properties. Furthermore, the utilization of nanoplatforms in tumor non-interventional embolization therapy has attracted the attention of researchers. Herein, the recent advances in this area are summarized in this review, which revealed three different types of nanoparticle strategies: (1) nanoparticles with active targeting effects or stimuli responsiveness (ultrasound and photothermal) for the safe delivery and responsive release of thrombin; (2) tumor microenvironment (copper and phosphate, acidity and GSH/H2O2)-responsive nanoparticles for embolization therapy with high specificity; and (3) peptide-based nanoparticles with mimic functions and excellent biocompatibility for tumor embolization therapy. The benefits and limitations of each kind of nanoparticle in tumor non-interventional embolization therapy will be highlighted. Investigations of nanoplatforms are undoubtedly of great significance, and some advanced nanoplatform systems have arrived at a new height and show potential applications in practical applications.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological Hospital, Medical School of Nanjing University Jiangsu, 30 Zhongyang Road, 210008, Nanjing, China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Yanling Hu
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China.
- Nanjing Polytechnic Institute, 210048, Nanjing, China.
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China.
| |
Collapse
|
50
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|