1
|
Zou Z, Zhong L. Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy. Genes Dis 2025; 12:101403. [PMID: 40271195 PMCID: PMC12018003 DOI: 10.1016/j.gendis.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 04/25/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) stands as the most formidable form of thyroid malignancy, presenting a persistent challenge in clinical management. Recent years have witnessed a gradual unveiling of the intricate genetic underpinnings governing ATC through next-generation sequencing. The emergence of this genetic landscape has paved the way for the exploration of targeted therapies and immunotherapies in clinical trials. Despite these strides, the precise mechanisms governing ATC pathogenesis and the identification of efficacious treatments demand further investigation. Our comprehensive review stems from an extensive literature search focusing on the genetic implications, notably the pivotal MAPK and PI3K-AKT-mTOR signaling pathways, along with targeted therapies and immunotherapies in ATC. Moreover, we screen and summarize the advances and challenges in the current diagnostic approaches for ATC, including the invasive tissue sampling represented by fine needle aspiration and core needle biopsy, immunohistochemistry, and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. We also investigate enormous studies on the prognosis of ATC and outline independent prognostic factors for future clinical assessment and therapy for ATC. By synthesizing this literature, we aim to encapsulate the evolving landscape of ATC oncology, potentially shedding light on novel pathogenic mechanisms and avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zhao Zou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Krishnamoorthy GP, Glover AR, Untch BR, Sigcha-Coello N, Xu B, Vukel D, Liu Y, Tiedje V, Pineda JMB, Berman K, Tamarapu PP, Acuña-Ruiz A, Saqcena M, de Stanchina E, Boucai L, Ghossein RA, Knauf JA, Abdel-Wahab O, Bradley RK, Fagin JA. RBM10 loss promotes metastases by aberrant splicing of cytoskeletal and extracellular matrix mRNAs. J Exp Med 2025; 222:e20241029. [PMID: 39992626 PMCID: PMC11849553 DOI: 10.1084/jem.20241029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon inclusion events included vinculin (VCL), tenascin C (TNC), and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse HrasG12V/Rbm1OKO thyrocytes develop metastases that are reversed by RBM10 expression or by combined knockdown of VCL, CD44, and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusion in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFκB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.
Collapse
Affiliation(s)
- Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony R. Glover
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R. Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nickole Sigcha-Coello
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dina Vukel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Tiedje
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose Mario Bello Pineda
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katherine Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasanna P. Tamarapu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian Acuña-Ruiz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Boucai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald A. Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James A. Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Kong Y, Tai Y, Chen B, Li C, Chen H, Shi L. Serum potassium level is associated with serum neurofilament light chain in American adult population: a cross-sectional analysis of the 2013-2014 National Health and Nutrition Examination Survey. Front Aging Neurosci 2025; 17:1511881. [PMID: 40171384 PMCID: PMC11959064 DOI: 10.3389/fnagi.2025.1511881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Objective Serum neurofilament light chain (sNfL) is one of the most sensitive diagnostic biomarkers for a variety of neurodegenerative pathologies. Potassium, an essential electrolyte, plays a critical role in maintaining neuronal health and the proper functioning of the central nervous system (CNS). The aim of our research was to investigate the association between serum potassium level and sNfL levels. Methods Based on the National Health and Nutrition Examination Survey (NHANES) database, we analyzed data from the 2013 to 2014 NHANES. Serum potassium concentrations were measured via ion-selective electrode (ISE) technology. The levels of sNfL were measured using a sensitive immunoassay developed by Siemens Healthineers. Our researcher analyzed the association between potassium level in serum and sNfL in American persons using multivariate logistic regression analysis and smoothed curve fitting. The consistency of these results was examined in various population subgroups. Results A total of 1,670 participants were involved in our research, including 872 women (50.5%) and 798 men (49.5%). The median serum potassium concentration was 4.0 mmol/L and the median sNfL was 12.3 pg/ml. After adjusting for potential confounders in the full model, individuals with higher serum potassium concentrations had higher sNfL levels (Q3 vs. Q1, β = 2.86, 95% CI: 0.33-5.39, P = 0.027). There was a non-linear positive dose-response association between higher serum potassium concentrations and sNfL levels (P for non-linearity = 0.028). Based on the results of stratified analysis, the relationship was stronger in the low- and middle-income group, non-drinking and non-physical activity participants, and participants with hypertension and diabetes. Interpretation In the cohort of American adults, a greater serum potassium concentration was linked to a higher sNfL. However, causality still needs to be further verified.
Collapse
Affiliation(s)
- Yingming Kong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Bin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Chunzheng Li
- Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Hao Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liang Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Houl JH, Bagheri-Yarmand R, Kunnimalaiyaan M, Miranda Mendez P, Kidd JL, Dadbin A, Jurado Ruiz A, Parekh PA, Henderson YC, Chari NS, Thennavan AT, Powell RT, Stephan CC, Zhao X, Maniakas A, Nurieva R, Busaidy NL, Cabanillas ME, Dadu R, Zafereo M, Wang JR, Lai SY, Hofmann MC. Role of the ETV5/p38 signaling axis in aggressive thyroid cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.637322. [PMID: 40027641 PMCID: PMC11870521 DOI: 10.1101/2025.02.17.637322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Patients with poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) face a much poorer prognosis than those with differentiated thyroid cancers. Around 25% of PDTCs and 35% of ATCs carry the BRAFV600E mutation, which constitutively activates the MAPK pathway, a key driver of cell growth. Although combining BRAF and MEK inhibitors can shrink tumors, resistance often develops. The exact cause of this resistance remains unclear. We previously found that in PDTC and ATC cells the BRAFV600E mutation is strongly linked to the expression of ETV5, a transcription factor downstream of the MAPK pathway. In the current study, we observed a significant association between ETV5 expression and the activation of p38, a central component of the MAPK14 pathway. Upon reduction of ETV5 levels, p38 expression and activation decreased, along with its upstream regulators MKK3/MKK6. This suggests that the MAPK and p38/MAPK14 pathways are interconnected and that p38 has oncogenic properties in these cancers. Using high-throughput screening, we established that combining p38 inhibitors with the BRAF inhibitor dabrafenib showed strong synergy in vitro, including in cells resistant to dabrafenib and trametinib that had acquired a secondary TP53 mutation. We then tested this combination in a genetically engineered mouse model (GEMM) of ATC. Overall, our findings suggest an oncogenic link between the MAPK and p38/MAPK14 pathways and that combining p38 pathway inhibitors with dabrafenib-targeted therapy could improve treatment outcomes for aggressive thyroid cancers. However, more specific and effective p38 inhibitors are required to fully harness this potential.
Collapse
|
5
|
Yeh CN, Lin SF, Wu CL, Liou MJ, Chen IW, Chen CP, Chang CF, Wang QA, Wu CE. Genomic landscape and comparative analysis of tissue and liquid-based NGS in Taiwanese anaplastic thyroid carcinoma. NPJ Precis Oncol 2025; 9:16. [PMID: 39809865 PMCID: PMC11733018 DOI: 10.1038/s41698-025-00802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is an aggressive cancer that requirements rapid diagnosis and multimodal treatment. Next-generation sequencing (NGS) aids in personalized therapies and improved trial enrollment. The role of liquid-based NGS in ATC remains unclear. This study analyzed ATC samples using tissue-based NGS, liquid-based NGS, or both platforms. Genetic alterations showed highly heterogeneity, including mutations in RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, cell cycle regulation, other receptor tyrosine kinases, DNA damage response, mismatch repair, and chromatin remodeling. TP53 (65.4%) and BRAF (30.8%) were the most frequently mutated genes in tissue NGS. In paired samples, the concordance rates were 69.2% for TP53 and 84.6% for BRAF. One of two patients treated with dabrafenib and trametinib showed a copy number gain in post-treatment tissue NGS, potentially indicating resistance. Liquid biopsy provides valuable supplementary information when tissue samples are insufficient. Further studies are necessary to understand resistance mechanisms and develop strategies to overcome them in BRAF-targeted therapy.
Collapse
Affiliation(s)
- Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Shu-Fu Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan, ROC
| | | | - Miaw-Jene Liou
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - I-Wen Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Chiao-Ping Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Ching-Fu Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Qi-An Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Chiao-En Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC.
| |
Collapse
|
6
|
Zhang R, Wang Z, Wang H, Li L, Dong L, Ding L, Li Q, Zhu L, Zhang T, Zhu Y, Ding K. CTHRC1 is associated with BRAF(V600E) mutation and correlates with prognosis, immune cell infiltration, and drug resistance in colon cancer, thyroid cancer, and melanoma. BIOMOLECULES & BIOMEDICINE 2024; 25:42-61. [PMID: 39052013 PMCID: PMC11647256 DOI: 10.17305/bb.2024.10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Colon cancer, thyroid cancer, and melanoma are common malignant tumors that seriously threaten human health globally. The B-Raf proto-oncogene, serine/threonine kinase (BRAF)(V600E) mutation is an important driver gene mutation in these cancer types. In this study, we identified that collagen triple helix repeat containing 1 (CTHRC1) expression was associated with the BRAF(V600E) mutation in colon cancer, thyroid cancer, and melanoma. Based on database analysis and clinical tissue studies, CTHRC1 was verified to correlate with poor prognosis and worse clinicopathological features in colon cancer and thyroid cancer patients, but not in patients with melanoma. Several signaling pathways, immune cell infiltration, and immunotherapy markers were associated with CTHRC1 expression. Additionally, a high level of CTHRC1 was correlated with decreased sensitivity to antitumor drugs (vemurafenib, PLX-4720, dabrafenib, and SB-590885) targeting the BRAF(V600E) mutation. This study provides evidence of a significant correlation between CTHRC1 and the BRAF(V600E) mutation, suggesting its potential utility as a diagnostic and prognostic biomarker in human colon cancer, thyroid cancer, and melanoma.
Collapse
Affiliation(s)
- Rumeng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhihao Wang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Li
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Dong
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Linyan Zhu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tiantian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Wang M, Luo K, Bian B, Tian M, Zhao H, Zhang Y, Wang J, Guo Q, Cheng G, Si N, Wei X, Yang J, Wang H, Zhou Y. Study on chemical profiling of bailing capsule and its potential mechanism against thyroiditis based on network pharmacology with molecular docking strategy. Biomed Chromatogr 2024; 38:e5900. [PMID: 38937935 DOI: 10.1002/bmc.5900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
Bailing capsule (BLC), a drug that is clinically administered to modulate the autoimmune system, exhibits promising therapeutic potential in the treatment of thyroiditis. This study elucidates the chemical profile of BLC and its potential therapeutic mechanism in thyroiditis, leveraging network pharmacology and molecular docking techniques. Utilizing ultra-high-performance liquid chromatography coupled with linear trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS), 58 compounds were identified, the majority of which were nucleosides and amino acids. Utilizing the ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC QqQ MS/MS) strategy, 16 representative active components from six batches of BLCs were simultaneously determined. Network pharmacology analysis further revealed that the active components included 5'-adenylate, guanosine, adenosine, cordycepin, inosine, 5'-guanylic acid, and l-lysine. Targets with higher connectivity included AKT1, MAPK3, RAC1, and PIK3CA. The signaling pathways primarily focused on thyroid hormone regulation and the Ras, PI3K/AKT, and MAPK pathways, all of which were intricately linked to inflammatory immunity and hormonal regulation. Molecular docking analysis corroborated the findings from network pharmacology, revealing that adenosine, guanosine, and cordycepin exhibited strong affinity toward AKT1, MAPK3, PIK3CA, and RAC1. Overall, this study successfully elucidated the material basis and preliminary mechanism underlying BLC's intervention in thyroiditis, thus laying a solid basis for further exploration of its in-depth mechanisms.
Collapse
Affiliation(s)
- Mengxiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keke Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyao Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyan Guo
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangqing Cheng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Krishnamoorthy GP, Glover AR, Untch BR, Sigcha-Coello N, Xu B, Vukel D, Liu Y, Tiedje V, Berman K, Tamarapu PP, Acuña-Ruiz A, Saqcena M, de Stanchina E, Boucai L, Ghossein RA, Knauf JA, Abdel-Wahab O, Bradley RK, Fagin JA. RBM10 loss induces aberrant splicing of cytoskeletal and extracellular matrix mRNAs and promotes metastatic fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602730. [PMID: 39026820 PMCID: PMC11257529 DOI: 10.1101/2024.07.09.602730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon-inclusion events included vinculin (VCL), tenascin C (TNC) and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon-inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse Hras G12V /Rbm1O KO thyrocytes develop metastases that are reversed by RBM10 or by combined knockdown of VCL, CD44 and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusions in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFkB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.
Collapse
Affiliation(s)
- Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony R. Glover
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R. Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nickole Sigcha-Coello
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dina Vukel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Tiedje
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasanna P. Tamarapu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian Acuña-Ruiz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Boucai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald A. Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James A. Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Turner N, Hamidi S, Ouni R, Rico R, Henderson YC, Puche M, Alekseev S, Colunga-Minutti JG, Zafereo ME, Lai SY, Kim ST, Cabanillas ME, Nurieva R. Emerging therapeutic options for follicular-derived thyroid cancer in the era of immunotherapy. Front Immunol 2024; 15:1369780. [PMID: 38868771 PMCID: PMC11167082 DOI: 10.3389/fimmu.2024.1369780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Although most follicular-derived thyroid cancers are well differentiated and have an overall excellent prognosis following treatment with surgery and radioiodine, management of advanced thyroid cancers, including iodine refractory disease and poorly differentiated/undifferentiated subtypes, is more challenging. Over the past decade, better understanding of the genetic drivers and immune milieu of advanced thyroid cancers has led to significant progress in the management of these patients. Numerous targeted kinase inhibitors are now approved by the U.S Food and Drug administration (FDA) for the treatment of advanced, radioiodine refractory differentiated thyroid cancers (DTC) as well as anaplastic thyroid cancer (ATC). Immunotherapy has also been thoroughly studied and has shown promise in selected cases. In this review, we summarize the progress in the understanding of the genetic landscape and the cellular and molecular basis of radioiodine refractory-DTC and ATC, as well as discuss the current treatment options and future therapeutic avenues.
Collapse
Affiliation(s)
- Naimah Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rim Ouni
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rene Rico
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ying C. Henderson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Puche
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Biology, College of Science and Engineering, Houston Christian University, Houston, TX, United States
| | - Sayan Alekseev
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program of Biology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Jocelynn G. Colunga-Minutti
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program of Immunology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | - Mark E. Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen Y. Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sang T. Kim
- Department of Rheumatology, Allergy and Immunology, Yale University, New Haven, CT, United States
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program of Immunology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
11
|
Hamidi S, Hu MI. RET kinase inhibitors for the treatment of RET-altered thyroid cancers: Current knowledge and future directions. ANNALES D'ENDOCRINOLOGIE 2024; 85:118-126. [PMID: 38342224 DOI: 10.1016/j.ando.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
RET gain-of-function mutations are the most common drivers in medullary thyroid carcinoma, while RET fusions are identified in 5-10% of papillary thyroid carcinomas. Thus, RET plays a major role in the tumorigenesis of thyroid neoplasia, making it a valuable therapeutic target. Over a decade ago, multikinase inhibitors (MKIs) were first shown to have variable degrees of anti-RET activity. Despite some clinical efficacy in RET-altered thyroid cancers, significant off-target activity of MKIs led to marked toxicities limiting their use. More recently, two potent, highly selective RET inhibitors, selpercatinib and pralsetinib, were shown to have notable efficacy in RET-altered cancers, associated with more tolerable side effect profiles than those of MKIs. However, these treatments are non-curative, and emerging evidence suggests that patients who progress on therapy acquire mutations conferring drug resistance. Thus, the quest for a more definitive treatment for advanced, RET-altered thyroid cancers continues. This year we celebrate the 30th anniversary of the association of germline mutations of the RET proto-oncogene with the multiple endocrine neoplasia (MEN) type 2 syndromes. In this timely review, we summarize the current state-of-the-art treatment strategies for RET-altered thyroid cancers, their limitations, as well as future therapeutic avenues.
Collapse
Affiliation(s)
- Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX, 77030, USA.
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX, 77030, USA
| |
Collapse
|
12
|
Chen L, Tao G, Yang M. Machine-learning-based prediction of a diagnostic model using autophagy-related genes based on RNA sequencing for patients with papillary thyroid carcinoma. Open Med (Wars) 2024; 19:20240896. [PMID: 38463514 PMCID: PMC10921443 DOI: 10.1515/med-2024-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 03/12/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer and belongs to the category of malignant tumors of the thyroid gland. Autophagy plays an important role in PTC. The purpose of this study is to develop a novel diagnostic model using autophagy-related genes (ARGs) in patients. In this study, RNA sequencing data of PTC samples and normal samples were obtained from GSE33630 and GSE29265. Then, we analyzed GSE33630 datasets and identified 127 DE-ARGs. Functional enrichment analysis suggested that 127 DE-ARGs were mainly enriched in pathways in cancer, protein processing in endoplasmic reticulum, toll-like receptor pathway, MAPK pathway, apoptosis, neurotrophin signaling pathway, and regulation of autophagy. Subsequently, CALCOCO2, DAPK1, and RAC1 among the 127 DE-ARGs were identified as diagnostic genes by support vector machine recursive feature elimination and least absolute shrinkage and selection operator algorithms. Then, we developed a novel diagnostic model using CALCOCO2, DAPK1, and RAC1 and its diagnostic value was confirmed in GSE29265 and our cohorts. Importantly, CALCOCO2 may be a critical regulator involved in immune microenvironment because its expression was related to many types of immune cells. Overall, we developed a novel diagnostic model using CALCOCO2, DAPK1, and RAC1 which can be used as diagnostic markers of PTC.
Collapse
Affiliation(s)
- Lin Chen
- Department of Endocrinology and Metabolism, People’s Hospital of Chongqing Liang jiang New Area, Chongqing, China
| | - Gaofeng Tao
- Department of Medicine and Education, People’s Hospital of Chongqing Liang jiang New Area, Chongqing, China
| | - Mei Yang
- Department of Endocrinology and Metabolism, People’s Hospital of Chongqing Liang jiang New Area, Chongqing, China
| |
Collapse
|
13
|
Xu L, Ding R, Song S, Liu J, Li J, Ju X, Ju B. Single-cell RNA sequencing reveals the mechanism of PI3K/AKT/mTOR signaling pathway activation in lung adenocarcinoma by KRAS mutation. J Gene Med 2024; 26:e3658. [PMID: 38282149 DOI: 10.1002/jgm.3658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Aberrant activation of the phosphatidlinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway has been shown to play an important role in lung adenocarcinoma (LUAD). The effect of KRAS mutations, one of the important signatures of LUAD, on the PI3K/AKT/mTOR pathway in LUAD remains unclear. METHODS The Seurat package and principal component analysis were used for cell categorization of single-cell RNA sequencing data of LUAD. The AUCell score was used to assess the activity of the PI3K/AKT/mTOR pathway. Meanwhile, using the gene expression profiles and mutation profiles in the The Cancer Genome Atlas dataset, LUAD patients were categorized into KRAS-mutant (KRAS-MT) and KRAS-wild-types (KRAS-WT), and the corresponding enrichment scores were calculated using gene set enrichment analysis analysis. Finally, the subpopulation of cells with the highest pathway activity was identified, the copy number variation profile of this subpopulation was inscribed using the inferCNV package and the CMap database was utilized to make predictions for drugs targeting this subpopulation. RESULTS There is higher PI3K/AKT/mTOR pathway activity in LUAD epithelial cells with KRAS mutations, and high expression of KRAS, PIK3CA, AKT1 and PDPK1. In particular, we found significantly higher levels of pathway activity and associated gene expression in KRAS-MT than in KRAS-WT. We identified the highest pathway activity on a subpopulation of GRB2+ epithelial cells and the presence of amplified genes within its pathway. Finally, drugs were able to target GRB2+ epithelial cell subpopulations, such as wortmannin, palbociclib and angiogenesis inhibitor. CONCLUSIONS The present study provides a basic theory for the activation of the PI3K/AKT/mTOR signaling pathway as a result of KRAS mutations.
Collapse
Affiliation(s)
- Long Xu
- School of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Renquan Ding
- Department of Thoracic Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuxi Song
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Junling Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jingyu Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xing Ju
- TCM Innovation Engineering Technology Center, Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Baozhao Ju
- School of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To summarize recent developments in the diagnosis and management of patients with anaplastic thyroid cancer (ATC). RECENT FINDINGS An updated edition of the Classification of Endocrine and Neuroendocrine Tumors was released by the World Health Organization (WHO), in which squamous cell carcinoma of the thyroid are now a subtype of ATC. Broader access to next generation sequencing has allowed better understanding of the molecular mechanisms driving ATC and improved prognostication. BRAF-targeted therapies revolutionized the treatment of advanced/metastatic BRAFV600E -mutated ATC, offering significant clinical benefit and allowing better locoregional control of disease through the neoadjuvant approach. However, inevitable development of resistance mechanisms represents a major challenge. Addition of immunotherapy to BRAF/MEK inhibition has shown very promising results and significant improvement in survival outcomes. SUMMARY Major advancements took place in the characterization and management of ATC in recent years, especially in patients with a BRAF V600E mutation. Still, no curative treatment is available, and options are limited once resistance to currently available BRAF-targeted therapies develops. Additionally, there is still a need for more effective treatments for patients without a BRAF mutation.
Collapse
Affiliation(s)
- Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Bosso G, Cipressa F, Tullo L, Cenci G. Co-amplification of CBX3 with EGFR or RAC1 in human cancers corroborated by a conserved genetic interaction among the genes. Cell Death Discov 2023; 9:317. [PMID: 37633946 PMCID: PMC10460438 DOI: 10.1038/s41420-023-01598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Chromobox Protein 3 (CBX3) overexpression is a common event occurring in cancer, promotes cancer cell proliferation and represents a poor prognosis marker in a plethora of human cancers. Here we describe that a wide spectrum of human cancers harbors a co-amplification of CBX3 gene with either EGFR or RAC1, which yields a statistically significant increase of both mRNA and protein levels of CBX3, EGFR and RAC1. We also reveal that the simultaneous overexpression of CBX3, RAC1 and EGFR gene products correlates with a worse prognosis compared to the condition when CBX3, RAC1 and EGFR are singularly upregulated. Furthermore, we also show that a co-occurrence of low-grade amplification, in addition to high-grade amplification, between CBX3 and EGFR or RAC1 is associated with a reduced patient lifespan. Finally, we find that CBX3 and RAC1/EGFR genetically interact in the model organism Drosophila melanogaster, suggesting that the simultaneous overexpression as well as well the co-occurrence of high- or low-grade copy number alterations in these genes is not accidental and could reflect evolutionarily conserved functional relationships.
Collapse
Affiliation(s)
- Giuseppe Bosso
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy.
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| | - Francesca Cipressa
- Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| | - Liliana Tullo
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy.
- Fondazione Cenci Bolognetti, Istituto Pasteur Italia, Rome, Italy.
| |
Collapse
|
16
|
Hamidi S, Hofmann MC, Iyer PC, Cabanillas ME, Hu MI, Busaidy NL, Dadu R. Review article: new treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance. Front Endocrinol (Lausanne) 2023; 14:1176731. [PMID: 37435488 PMCID: PMC10331470 DOI: 10.3389/fendo.2023.1176731] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
The treatment of advanced, radioiodine refractory, differentiated thyroid cancers (RR-DTCs) has undergone major advancements in the last decade, causing a paradigm shift in the management and prognosis of these patients. Better understanding of the molecular drivers of tumorigenesis and access to next generation sequencing of tumors have led to the development and Food and Drug Administration (FDA)-approval of numerous targeted therapies for RR-DTCs, including antiangiogenic multikinase inhibitors, and more recently, fusion-specific kinase inhibitors such as RET inhibitors and NTRK inhibitors. BRAF + MEK inhibitors have also been approved for BRAF-mutated solid tumors and are routinely used in RR-DTCs in many centers. However, none of the currently available treatments are curative, and most patients will ultimately show progression. Current research efforts are therefore focused on identifying resistance mechanisms to tyrosine kinase inhibitors and ways to overcome them. Various novel treatment strategies are under investigation, including immunotherapy, redifferentiation therapy, and second-generation kinase inhibitors. In this review, we will discuss currently available drugs for advanced RR-DTCs, potential mechanisms of drug resistance and future therapeutic avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
17
|
Ma W, Tian M, Hu L, Ruan X, Zhang W, Zheng X, Gao M. Early Combined SHP2 Targeting Reverses the Therapeutic Resistance of Vemurafenib in Thyroid Cancer. J Cancer 2023; 14:1592-1604. [PMID: 37325052 PMCID: PMC10266257 DOI: 10.7150/jca.83853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
The BRAFV600E mutation is the most common oncogenic mutation in thyroid cancer, suggesting an aggressive subtype of thyroid cancer and poor prognosis. Vemurafenib, a selective inhibitor of BRAFV600E, may provide therapeutic benefit in various cancers including thyroid cancer. However, the prevalence of drug resistance remains a challenge because of the feedback activation of the MAPK/ERK and PI3K/AKT pathways. In treating thyroid cancer cells with vemurafenib, we have detected reactivation of the MAPK/ERK signaling pathway as a result of the release of multiple receptor tyrosine kinases (RTKs) from the negative feedback of ERK phosphorylation. SHP2 is an important target protein downstream of the RTK signaling pathway. Decreasing it through SHP2 knockdown or the use of an inhibitor of SHP2 (SHP099) was found to significantly increase the early sensitivity and reverse the late resistance to vemurafenib in BRAFV600E mutant thyroid cancer cells. Overall, our findings suggest that blocking SHP2 reverses the reactivation of the MAPK/ERK signaling pathway caused by the activation of RTKs and improves the sensitivity of thyroid cancer to vemurafenib, which has potential implications for mechanism-based early combination strategies to treat thyroid cancer.
Collapse
Affiliation(s)
- Weike Ma
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Mengran Tian
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Linfei Hu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wei Zhang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin 300121, China
| |
Collapse
|
18
|
Papanikolaou V, Kyrodimos E, Mastronikolis N, Asimakopoulos AD, Papanastasiou G, Tsiambas E, Spyropoulou D, Katsinis S, Manoli A, Papouliakos S, Pantos P, Ragos V, Peschos D, Chrysovergis A. Anti-EGFR/BRAF-Tyrosine Kinase Inhibitors in Thyroid Carcinoma. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:151-156. [PMID: 36875315 PMCID: PMC9949544 DOI: 10.21873/cdp.10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
Alterations in significant genes located on chromosome 7 - including epidermal growth factor receptor (EGFR) and also v-Raf murine sarcoma viral oncogene homolog B (BRAF) as a mitogen-activated protein kinase (MAPK) - combined or not with numerical imbalances of the whole chromosome (aneuploidy-polysomy) are crucial genetic events involved in the development and progression of malignancies. Identification of EGFR/BRAF-dependent specific somatic mutations and other mechanisms of deregulation (i.e., amplification) is critical for applying targeted therapeutic approaches [tyrosine kinase inhibitors (TKIs] or monoclonal antibodies (mAbs). Thyroid carcinoma is a specific pathological entity characterized by a variety of histological sub-types. Follicular thyroid carcinoma (FTC), papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), and anaplastic thyroid carcinoma (ATC) represent its main sub-types. In the current review, we explore the role of EGFR/BRAF alterations in thyroid carcinoma in conjunction with the corresponding anti-EGFR/BRAF TKI-based novel therapeutic strategies for patients with specific genetic signatures.
Collapse
Affiliation(s)
- Vasileios Papanikolaou
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | - Efthymios Kyrodimos
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | | | | | - George Papanastasiou
- Department of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | - Evangelos Tsiambas
- Department of Cytology, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | - Spyros Katsinis
- Department of Otorhinolaryngology, Pamakaristos General Hospital, Athens, Greece
| | - Arezina Manoli
- Department of Otorhinolaryngology, Thoracic Diseases General Hospital Sotiria, Athens, Greece
| | - Sotirios Papouliakos
- Department of Otorhinolaryngology, General Hospital "Gennimatas", Athens, Greece
| | - Pavlos Pantos
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | - Vasileios Ragos
- Department of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Aristeidis Chrysovergis
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
19
|
Schubert L, Mariko ML, Clerc J, Huillard O, Groussin L. MAPK Pathway Inhibitors in Thyroid Cancer: Preclinical and Clinical Data. Cancers (Basel) 2023; 15:cancers15030710. [PMID: 36765665 PMCID: PMC9913385 DOI: 10.3390/cancers15030710] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Thyroid cancer is the most common endocrine cancer, with a good prognosis in most cases. However, some cancers of follicular origin are metastatic or recurrent and eventually become radioiodine refractory thyroid cancers (RAIR-TC). These more aggressive cancers are a clinical concern for which the therapeutic arsenal remains limited. Molecular biology of these tumors has highlighted a hyper-activation of the Mitogen-Activated Protein Kinases (MAPK) pathway (RAS-RAF-MEK-ERK), mostly secondary to the BRAFV600E hotspot mutation occurring in about 60% of papillary cancers and 45% of anaplastic cancers. Therapies targeting the different protagonists of this signaling pathway have been tested in preclinical and clinical models: first and second generation RAF inhibitors and MEK inhibitors. In clinical practice, dual therapies with a BRAF inhibitor and a MEK inhibitor are being recommended in anaplastic cancers with the BRAFV600E mutation. Concerning RAIR-TC, these inhibitors can be used as anti-proliferative drugs, but their efficacy is inconsistent due to primary or secondary resistance. A specific therapeutic approach in thyroid cancers consists of performing a short-term treatment with these MAPK pathway inhibitors to evaluate their capacity to redifferentiate a refractory tumor, with the aim of retreating the patients by radioactive iodine therapy in case of re-expression of the sodium-iodide symporter (NIS). In this work, we report data from recent preclinical and clinical studies on the efficacy of MAPK pathway inhibitors and their resistance mechanisms. We will also report the different preclinical and clinical studies that have investigated the redifferentiation with these therapies.
Collapse
Affiliation(s)
- Louis Schubert
- Department of Endocrinology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, 75014 Paris, France
| | - Mohamed Lamine Mariko
- Department of Endocrinology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, 75014 Paris, France
| | - Jérôme Clerc
- Department of Nuclear Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75014 Paris, France
| | - Olivier Huillard
- Institut du Cancer Paris CARPEM, Department of Medical Oncology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Lionel Groussin
- Department of Endocrinology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, 75014 Paris, France
- Correspondence:
| |
Collapse
|
20
|
da Silva TN, Rodrigues R, Saramago A, Pires C, Rito M, Horta M, Martins C, Leite V, Cavaco BM. Target therapy for BRAF mutated anaplastic thyroid cancer: a clinical and molecular study. Eur J Endocrinol 2023; 188:6979712. [PMID: 36651156 DOI: 10.1093/ejendo/lvac011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Anaplastic thyroid carcinoma (ATC) has a poor survival. The combination of Dabrafenib plus Trametinib (DT) had a significant impact in survival of BRAF p.V600E patients. However, durable responses may be compromised by resistance. We aim to present our experience with DT in BRAF positive ATC patients and compare the outcomes with usual therapy, and to study tumor molecular alterations in the DT group. METHODS Patients treated between May 2018 and April 2022 in a tertiary referral center, assessed for BRAF status were included. Patients were divided in three groups: BRAF p.V600E treated with DT, BRAF wild type (WT) under multimodal therapy (MT), and BRAF WT under compassionate care (CC). Response was assessed monthly in the first 6 months and every 3 months afterwards, by RECIST 1.1. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared with the log-rank test. RESULTS Twenty-seven ATC patients were included (DT = 9, MT = 8, and CC = 10). Median OS was 475 days for DT, 156 days for MT, and 39 days for CC (P < .001). At 12 months, only patients in the DT group were alive (71%). Median PFS was 270 days, in the DT group, compared with less than 32 days in BRAF WT (P < .001). No severe adverse events were reported. Molecular profiling showed that in one of the four clinical progressions, a pathogenic NRAS mutation was found. CONCLUSIONS Our results show a significant real-world efficacy of Dabrafenib plus Trametinib in both survival and recurrence compared with standard treatment, with a good safety profile.
Collapse
Affiliation(s)
- Tiago Nunes da Silva
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Ricardo Rodrigues
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Ana Saramago
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Carolina Pires
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Miguel Rito
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Mariana Horta
- Serviço de Radiologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Carmo Martins
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Valeriano Leite
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
- NOVA Medical School-Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
| | - Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| |
Collapse
|
21
|
Sukrithan V, Jain P, Shah MH, Konda B. Kinase inhibitors in thyroid cancers. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2023; 3:e220062. [PMID: 37434642 PMCID: PMC10305552 DOI: 10.1530/eo-22-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 07/13/2023]
Abstract
Objective The treatment landscape for thyroid cancers has changed rapidly with the availability of kinase inhibitors against VEGFR, BRAF, MEK, NTRK, and RET. We provide an up-to-date review of the role of kinase inhibitors in thyroid cancer and discuss upcoming trials. Design & Methods A comprehensive review of the available literature describing kinase inhibitors in thyroid cancer was performed. Results and Conclusions Kinase inhibitors have become the standard of care for patients with metastatic radioactive iodine-refractory thyroid cancer. Short-term treatment can re-sensitize differentiated thyroid cancer to radioactive iodine, thereby potentially improving outcomes and sparing toxicities associated with the long-term use of kinase inhibitors. The approval of cabozantinib as salvage therapy for progressive radioactive iodine-refractory differentiated thyroid cancer following failure with sorafenib or lenvatinib adds to the available armamentarium of active agents. Vandetanib and cabozantinib have become mainstay treatments for metastatic medullary thyroid cancer regardless of RET mutation status. Selpercatinib and pralsetinib, potent and selective receptor kinase inhibitors with activity against RET, have revolutionized the treatment paradigm for medullary thyroid cancers and other cancers with driver mutations in RET. Dabrafenib plus trametinib for BRAF mutated anaplastic thyroid cancer provides an effective treatment option for this aggressive cancer with a dismal prognosis. In order to design the next generation of agents for thyroid cancer, future efforts will need to focus on developing a better understanding of the mechanisms of resistance to kinase inhibition including bypass signaling and escape mutations.
Collapse
Affiliation(s)
- Vineeth Sukrithan
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| | - Prachi Jain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| | - Manisha H Shah
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| | - Bhavana Konda
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
22
|
Hofmann MC, Kunnimalaiyaan M, Wang JR, Busaidy NL, Sherman SI, Lai SY, Zafereo M, Cabanillas ME. Molecular mechanisms of resistance to kinase inhibitors and redifferentiation in thyroid cancers. Endocr Relat Cancer 2022; 29:R173-R190. [PMID: 35975971 PMCID: PMC9534048 DOI: 10.1530/erc-22-0129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
Protein kinases play critical roles in cell survival, proliferation, and motility. Their dysregulation is therefore a common feature in the pathogenesis of a number of solid tumors, including thyroid cancers. Inhibiting activated protein kinases has revolutionized thyroid cancer therapy, offering a promising strategy in treating tumors refractory to radioactive iodine treatment or cytotoxic chemotherapies. However, despite satisfactory early responses, these drugs are not curative and most patients inevitably progress due to drug resistance. This review summarizes up-to-date knowledge on various mechanisms that thyroid cancer cells develop to bypass protein kinase inhibition and outlines strategies that are being explored to overcome drug resistance. Understanding how cancer cells respond to drugs and identifying novel molecular targets for therapy still represents a major challenge for the treatment of these patients.
Collapse
Affiliation(s)
- Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muthusamy Kunnimalaiyaan
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer R. Wang
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naifa L. Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven I. Sherman
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Y. Lai
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Zafereo
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Busaidy NL, Konda B, Wei L, Wirth LJ, Devine C, Daniels GA, DeSouza JA, Poi M, Seligson ND, Cabanillas ME, Sipos JA, Ringel MD, Eisfeld AK, Timmers C, Shah MH. Dabrafenib Versus Dabrafenib + Trametinib in BRAF-Mutated Radioactive Iodine Refractory Differentiated Thyroid Cancer: Results of a Randomized, Phase 2, Open-Label Multicenter Trial. Thyroid 2022; 32:1184-1192. [PMID: 35658604 PMCID: PMC9595631 DOI: 10.1089/thy.2022.0115] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Oncogenic BRAF mutations are commonly found in advanced differentiated thyroid cancer (DTC), and reports have shown efficacy of BRAF inhibitors in these tumors. We investigated the difference in response between dabrafenib monotherapy and dabrafenib + trametinib therapy in patients with BRAF-mutated radioactive iodine refractory DTC. Methods: In this open-label randomized phase 2 multicenter trial, patients aged ≥18 years with BRAF-mutated radioactive iodine refractory DTC with progressive disease by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 within 13 months before enrollment were eligible. Patients were randomly assigned to receive dabrafenib alone or dabrafenib + trametinib. The primary endpoint was objective response rate by modified RECIST (minor response of -20% to -29%, partial and complete response) within the first 24 weeks of therapy. Trial Registration Number: NCT01723202. Results: A total of 53 patients were enrolled. The objective response rate (modified RECIST) was 42% (11/26 [95% confidence interval {CI} 23-63%]) with dabrafenib versus 48% (13/27 [CI 29-68%]) with dabrafenib + trametinib (p = 0.67). Objective response rate (RECIST 1.1) was 35% (9/26 [CI 17-56%]) with dabrafenib and 30% (8/27 [CI 14-51%]) with dabrafenib + trametinib. Most common treatment-related adverse events included skin and subcutaneous tissue disorders (17/26, 65%), fever (13/26, 50%), hyperglycemia (12/26, 46%) with dabrafenib alone and fever (16/27, 59%), nausea, chills, fatigue (14/27, 52% each) with dabrafenib + trametinib. There were no treatment-related deaths. Conclusions: Combination dabrafenib + trametinib was not superior in efficacy compared to dabrafenib monotherapy in patients with BRAF-mutated radioiodine refractory progressive DTC.
Collapse
Affiliation(s)
- Naifa L. Busaidy
- Division of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bhavana Konda
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Lai Wei
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Lori J. Wirth
- Division of Hematology and Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine Devine
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory A. Daniels
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | - Jonas A. DeSouza
- Division of Medical Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Ming Poi
- Department of Pharmacology, The Ohio State University, Columbus, Ohio, USA
| | - Nathan D. Seligson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Maria E. Cabanillas
- Division of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer A. Sipos
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ann-Kathrin Eisfeld
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Cynthia Timmers
- Translational Sciences Discovery Lab, Incyte Corporation, Wilmington, Delaware, USA
| | - Manisha H. Shah
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
24
|
Landa I. Advances in Thyroid Carcinoma. Cancers (Basel) 2022; 14:cancers14122908. [PMID: 35740572 PMCID: PMC9221251 DOI: 10.3390/cancers14122908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
"Thyroid cancer" encompasses a heterogeneous group of tumors that range from the predominant papillary thyroid cancer (PTC) subtype, which shows excellent survival rates, to the poorly differentiated (PDTC) and anaplastic thyroid cancer (ATC) forms, accounting for most of the disease-related morbidity and mortality [...].
Collapse
Affiliation(s)
- Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|