1
|
Ozawa Y, Koike S, Aoki K, Okamoto K, Ushijima K, Kayaba T, Nohara S, Yamada M, Odagaki Y, Sakamoto H, Yoshioka K. Optimizing oncological and functional outcomes with wide resection techniques in robot-assisted radical prostatectomy for very high-risk prostate cancer: A single-institution retrospective study. Surg Oncol 2025; 59:102192. [PMID: 39954455 DOI: 10.1016/j.suronc.2025.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVES To assess our wide resection robot-assisted radical prostatectomy techniques in very high-risk prostate cancer. METHODS Among 600 patients, we identified 63 patients with localized or locally advanced very high-risk prostate cancer (cT3b-T4, primary Gleason pattern 5, multiple high-risk features, or ≥5 positive biopsy cores with Grade Group 4-5 pathology) undergoing wide resection robot-assisted radical prostatectomy following six months of vintage hormonal therapy between 2019 and 2023. Clinical staging included digital rectal exams, magnetic resonance imaging, computed tomography, and bone scintigraphy. We assessed the effectiveness of our wide resection techniques in reducing PSM rate by evaluating the perioperative, pathological, and oncological outcomes. RESULTS The overall PSM rate was 19% (6.7% for pT2, 9.1% for pT3a, and 47% for pT3b). The most frequent site for extracapsular extension was the lateral side (30%), followed by the bladder neck (26%). The bladder neck was the most common location of PSM (59%). Over a median follow-up of 18.7 months, patients without PSMs had a 46% higher 2-year prostate-specific antigen-free survival rate than those with PSMs. One patient experienced Clavien-Dindo grade Ⅲa deep vein thrombosis, and 51% achieved immediate continence. A limitation of this study was the use of vintage hormonal therapy and conventional imaging modalities. CONCLUSIONS Our study demonstrated that wider bladder neck dissection, rather than wider apical dissection, can achieve acceptable short-term functional and oncological outcomes. Future studies with longer follow-up are warranted to assess effectiveness of wide resection for local cancer control in very high-risk prostate cancer as a part of a multimodality strategy.
Collapse
Affiliation(s)
- Yu Ozawa
- Department of Urology, Itabashi Chuo Medical Center, Tokyo, Japan.
| | - Shin Koike
- Department of Urology, Itabashi Chuo Medical Center, Tokyo, Japan
| | - Keisuke Aoki
- Department of Urology, Itabashi Chuo Medical Center, Tokyo, Japan
| | - Keita Okamoto
- Department of Urology, Itabashi Chuo Medical Center, Tokyo, Japan
| | - Kei Ushijima
- Department of Urology, Itabashi Chuo Medical Center, Tokyo, Japan
| | - Toshiaki Kayaba
- Department of Urology, Itabashi Chuo Medical Center, Tokyo, Japan
| | - Sunao Nohara
- Department of Urology, Itabashi Chuo Medical Center, Tokyo, Japan
| | - Masumi Yamada
- Department of Urology, Itabashi Chuo Medical Center, Tokyo, Japan
| | - Yu Odagaki
- Department of Urology, Itabashi Chuo Medical Center, Tokyo, Japan
| | - Hideo Sakamoto
- Department of Urology, Itabashi Chuo Medical Center, Tokyo, Japan
| | | |
Collapse
|
2
|
Deng Y, Yuan X, Lu X, Wu J, Luo C, Zhang T, Liu Q, Tang S, Li Z, Mu X, Hu Y, Du Q, Xu J, Xie R. The Use of Gut Organoids: To Study the Physiology and Disease of the Gut Microbiota. J Cell Mol Med 2025; 29:e70330. [PMID: 39968926 PMCID: PMC11836903 DOI: 10.1111/jcmm.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/02/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
The intestinal flora has attracted much attention in recent years. An imbalance in the intestinal flora can cause not only intestinal diseases but also cause a variety of parenteral diseases, such as endocrine diseases, nervous system diseases and cardiovascular diseases. Research on the mechanism of disease is likely to be hampered by sample accessibility, ethical issues, and differences between cellular animal and physiological studies. However, advances in stem cell culture have made it possible to reproduce 3D human tissues in vitro that mimic the cellular, anatomical and functional characteristics of real organs. Recent studies have shown that organoids can be used to simulate the development and disease of the gut and intestinal flora and have a wide range of applications in intestinal flora physiology and disease. Intestinal organoids provide a preeminent in vitro model system for cultivating microbiota that influence GI physiology, as well as for understanding how they encounter intestinal epithelial cells and cause disease. The mechanistic details obtained from such modelling may provide new avenues for the prevention and treatment of many gastrointestinal (GI) disorders. Researchers are now starting to take inspiration from other fields, such as bioengineering, and the rise of interdisciplinary approaches, including organoid chip technology and microfluidics, has greatly accelerated the development of organoids to generate intestinal organoids that are more physiologically relevant and suitable for gut microbiota studies. Here, we describe the development of organoid models of gut biology and the application of organoids to study the pathophysiology of diseases caused by intestinal dysbiosis.
Collapse
Affiliation(s)
- Ya Deng
- Department of Endoscopy and Digestive SystemGuizhou Provincial People's HospitalGuiyangGuizhouChina
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiaolu Yuan
- The Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - XianMin Lu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Jiangbo Wu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Chen Luo
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Ting Zhang
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Qi Liu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Siqi Tang
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhuo Li
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Xingyi Mu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Yanxia Hu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Qian Du
- Department of Endoscopy and Digestive SystemGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Jingyu Xu
- Guizhou Medical UniversityGuiyangGuizhouChina
| | - Rui Xie
- Department of Endoscopy and Digestive SystemGuizhou Provincial People's HospitalGuiyangGuizhouChina
| |
Collapse
|
3
|
Mao Y, Chen H, Zhu W, Ni S, Luo S, Tang S, Chen Z, Wang Q, Xu J, Tu Q, Chen H, Zhu L. Cuproptosis Cell Death Molecular Events and Pathways to Liver Disease. J Inflamm Res 2025; 18:883-894. [PMID: 39867947 PMCID: PMC11760270 DOI: 10.2147/jir.s498340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Chronic liver disease ranks as the 11th leading cause of death worldwide, while hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality, representing a substantial risk to public health. Over the past few decades, the global landscape of chronic liver diseases, including hepatitis, metabolic dysfunction-associated steatotic liver disease (MASLD), liver fibrosis, and HCC, has undergone substantial changes. Copper, a vital trace element for human health, is predominantly regulated by the liver. Both copper deficiency and excess can lead to cellular damage and liver dysfunction. Copper deposition is a genetic process of copper-dependent cell death associated with mitochondrial respiration, which is associated with cardiovascular disease and IBD. However, the roles of copper overload and cuproptosis in liver disease remain largely underexplored. This article examines recent studies on copper metabolism and cuproptosis in chronic liver disease, investigating the potential of targeting copper ions as a therapeutic approach. The objective is to offer insights and guidance for future investigations in this developing field of study.
Collapse
Affiliation(s)
- Yun Mao
- Department of Gerontology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Huilan Chen
- Department of Gerontology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Weihan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Shunlan Ni
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Shengnan Luo
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Shiyue Tang
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Zhiyi Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Qin Wang
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jinxian Xu
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Qi Tu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Haijun Chen
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
4
|
Liu Y, Wang X, Zhang N, He S, Zhang J, Xu X, Song S. Utility of 131I-HLX58-Der for the Precision Treatment: Evaluation of a Preclinical Radio-Antibody-Drug-Conjugate Approach in Mouse Models. Int J Nanomedicine 2025; 20:723-739. [PMID: 39839455 PMCID: PMC11748935 DOI: 10.2147/ijn.s501689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Purpose None of the antibody-drug conjugates (ADCs) targeting Claudin 18.2 (CLDN18.2) have received approval from regulatory authorities due to their limited clinical benefits. Leveraging the radiosensitizing ability of Deruxtecan (DXd) and the internal radiation therapy of 131I for tumors, we aimed to develop the first radio-antibody-drug conjugates (RADCs) for the treatment of gastric cancer. Methods The CLDN18.2-specific antibody HLX58 was conjugated with the payload DXd through a cleavable maleimide glycynglycyn-phenylalanyn-glycyn (GGFG) peptide linker. HLX58-Der was labeled with 131I to produce RADC-131I-HLX58-Der. HLX58 was labeled with 125I for imaging CLDN18.2-positive tumors, providing a reference for RADC treatment in solid tumors. The antigen-binding properties and biodistribution of the RADC were studied both in vitro and in vivo. The cytotoxic effects of the RADC were evaluated in CLDN18.2-positive tumor cell lines and xenografts. Results HLX58 was successfully conjugated with DXd using the cleavable maleimide GGFG peptide linker and labeled with 131I to produce RADC-131I-HLX58-Der. HLX58 was labeled with 125I for imaging CLDN18.2-positive tumors. Both 125I-HLX58 and 131I-HLX58-Der exhibited significant binding affinity for the CLDN18.2-positive cancer cell line. The cytotoxic effect of 131I-HLX58-Der was observed in the CLDN18.2-positive cell line, with an IC50 of 11.28 ng/mL. In terms of cytotoxicity, 131I-HLX58-Der exhibited greater activity compared to HLX58-Der. 125I-HLX58 and 131I-HLX58-Der demonstrated similar biodistribution profiles in CLDN18.2-positive tumor models, achieving 5.72 ± 0.41%ID/g (48 h) and 5.83 ± 0.41%ID/g (72 h) in the tumor tissues postinjection, respectively. The average tumor size in groups treated with 131I-HLX58-Der and HLX58-Der was reduced by factors of 12.15 and 4.80, respectively, compared to the control group. 131I-HLX58-Der demonstrated no toxic effects on hepatorenal function, routine blood tests, or major organs in mice when compared to the control group. Conclusion These findings validate the potential of RADCs targeting CLDN18.2 in treating CLDN18.2-expressing solid tumors.
Collapse
Affiliation(s)
- Yi Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, People’s Republic of China
| | - Xiao Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361102, People’s Republic of China
| | - Ni Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, People’s Republic of China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, People’s Republic of China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, People’s Republic of China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, People’s Republic of China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
5
|
Wang Z, Zhu Y, Luo C, Zhang F, Zhao J, Fu C. Bullatine A suppresses glioma cell growth by targeting SIRT6. Heliyon 2025; 11:e41440. [PMID: 39845013 PMCID: PMC11750491 DOI: 10.1016/j.heliyon.2024.e41440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
Gliomas are the most common primary tumors of the nervous system, which is generally treated using adjuvant chemotherapy following surgical resection. However, patient survival time is still short, and there is currently no successful treatment for highly malignant gliomas. Bullatine A (BLA) is a diterpenoid alkaloid of the genus Aconitum which antirheumatic and anti-inflammatory pharmacological properties. The effects of BLA on gliomas have not yet been elucidated. In this study, we investigated the effects of BLA on human brain malignant glioblastoma cells. Our results showed that BLA inhibited the proliferation of U87MG and U251 cells in a dose-dependent manner and decreased their survival rate. BLA dose-dependently induced apoptosis in U87MG cells, upregulated the expression of cleaved caspase-9, cleaved caspase-3 pro-apoptotic protein, and Bax protein, and downregulated the expression of Bcl-2 anti-apoptotic protein. Moreover, BLA dose-dependently induced U87MG and U251 cell cycle arrest in the G2/M phase, and downregulated the expression of p-ERK and Myc proteins. Further, BLA significantly inhibited the acetylation of histones H3K9 and H3K56, and upregulated the expression of the protein deacetylase SIRT6. Mechanistic studies revealed that the effect of BLA on inducing apoptosis and inhibiting the proliferation of glioma cells was blocked by SIRT6 knockout. In summary, our study indicated that BLA is a potential therapeutic agent for glioma that targets SIRT6 to inhibit glioma cell proliferation and induce apoptosis.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Cerebrovascular Disease, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
- Department of Neurosurgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
| | - Yushuai Zhu
- Department of Cerebrovascular Disease, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
- Department of Neurosurgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
| | - Can Luo
- Department of Cerebrovascular Disease, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
- Department of Neurosurgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
| | - Fan Zhang
- Department of Cerebrovascular Disease, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
| | - Jiannong Zhao
- Department of Neurosurgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
| | - Chuanyi Fu
- Department of Cerebrovascular Disease, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
- Department of Neurosurgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
| |
Collapse
|
6
|
Xu XL, Cheng H. Development of a Prognostic Nomogram Incorporating the Naples Prognostic Score for Postoperative Oral Squamous Cell Carcinoma Patients. J Inflamm Res 2025; 18:325-345. [PMID: 39802503 PMCID: PMC11724622 DOI: 10.2147/jir.s500518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Background The Naples prognostic score (NPS) and its relation to the prognosis of oral squamous cell carcinoma (OSCC) have been inconclusive. This study aimed to investigate the correlation between NPS and the prognosis of postoperative OSCC patients. Additionally, the study sought to develop a new nomogram for predicting disease-free survival (DFS) and overall survival (OS). Methods The study included 576 OSCC patients who underwent surgical treatment at two hospitals between August 2008 and June 2018. Univariate and multivariate Cox regression analyses were conducted to identify independent prognostic factors. Subsequently, two nomograms were developed to predict DFS and OS based on these factors and underwent rigorous validation. Results The median DFS and OS were 31.5 months and 36.5 months, respectively. Significant differences in DFS and OS were observed among patients with different NPS scores. Adjuvant radiotherapy, age-adjusted Charlson comorbidity index (ACCI), extranodal extension (ENE), NPS, American Joint Committee on Cancer (AJCC) stage, surgical safety margin, eastern cooperative oncology group performance status (ECOG PS), and systemic inflammation score (SIS) were identified as independent predictors of DFS and OS. In the training cohort, the nomogram's concordance index (C-index) for predicting DFS and OS was 0.701 and 0.693, respectively. In the validation group, the corresponding values were 0.642 and 0.635, respectively. Calibration plots confirmed a high level of agreement between the model's predictions and actual outcomes. Decision curve analysis (DCA) demonstrated the nomogram's good clinical utility. Additionally, patients in the low-risk group did not benefit from adjuvant radiotherapy, while those in the medium-risk and high-risk group could benefit from adjuvant radiotherapy. Conclusion NPS significantly influences the prognosis of OSCC patients following surgery. The nomogram developed in this study holds significant clinical application potential. The low-risk subgroup of patients was not required to undergo postoperative radiotherapy.
Collapse
Affiliation(s)
- Xue-Lian Xu
- Department of Radiotherapy Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, People’s Republic of China
| | - Hao Cheng
- Department of Radiotherapy Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, People’s Republic of China
- Department of Radiotherapy Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, People’s Republic of China
| |
Collapse
|
7
|
Washino S, Saito K, Yazaki K, Miyagawa T. A novel anterior approach toward robotic radical prostatectomy is associated with earlier continence recovery than the conventional approach. Int J Urol 2025; 32:80-87. [PMID: 39382220 DOI: 10.1111/iju.15599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVES To advance robotic radical prostatectomy, we developed a novel anterior approach that uses a peritoneal incision created between the umbilical ligaments to develop the Retzius space and thus spares vessels that surround the bladder and prostate, with the space being closed after prostatectomy and vesicourethral anastomosis. This approach may improve continence recovery. We investigated continence recovery following the novel anterior approach compared to after the conventional anterior approach. METHODS We retrospectively reviewed 516 patients who underwent robotic radical prostatectomy from January 2019 to July 2023. We compared continence recovery following our novel anterior approach (N = 282) to that after conventional anterior approach (N = 234), and we compared the oncological outcomes and safety profiles of the two groups. RESULTS Patient demographics did not differ significantly between the two groups. Continence recovery in patients undergoing the novel anterior approach was significantly better than that of patients treated via the conventional approach (hazard ratio: 1.651, 95% confidence interval: 1.325-2.057, p < 0.0001). Use of the novel anterior approach in addition to nerve sparing and preservation of the detrusor apron independently predicted continence, and the mixture of these three techniques afforded excellent continence recovery (1- and 2-year total continence rate of 81.1% and 93.7%). Neither the biochemical recurrence-free survival nor the complication rate differed significantly between the two groups. CONCLUSION Our novel anterior approach may improve continence recovery compared to the conventional anterior approach, without compromising the oncological outcomes. Prospective comparative studies are necessary to confirm the benefits of this approach.
Collapse
Affiliation(s)
- Satoshi Washino
- Department of Urology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Kimitoshi Saito
- Department of Urology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Kai Yazaki
- Department of Urology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Tomoaki Miyagawa
- Department of Urology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
8
|
Czarnogórski MC, Settaf-Cherif L, Koper K, Petrasz P, Ostrowski A, Juszczak K, Drewa T, Adamowicz J. Nerve-sparing techniques in robot-assisted radical prostatectomy - anatomical approach. Expert Rev Med Devices 2024; 21:1101-1110. [PMID: 39604130 DOI: 10.1080/17434440.2024.2436123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Nerve-sparing (NS) techniques in robot-assisted radical prostatectomy (RARP) are foundational to preserving sexual function and urinary continence in prostate cancer (PCa) patients. AREAS COVERED This article aims to classify nerve-sparing (NS) techniques in RARP based on an anatomical approach to the prostate. We have identified three main NS approaches in RARP: anterior, lateral, and posterior. The anterior approach, which involves early retrograde nerve release, improves early potency rates. The lateral approach, using hybrid techniques and extra-fascial dissection, provides clear nerve visualization and reduces nerve injuries, enhancing continence and potency recovery. The posterior approach, particularly the hood technique, effectively preserves periurethral structures, leading to high continence rates within a year post-surgery. The posterior approach effectively balances nerve preservation with cancer control. EXPERT OPINION Re-classifying NS techniques in RARP based on an anatomical approach optimizes patient outcomes and the surgeon choice. A personalized approach to those techniques improves functional recovery and maintains oncological safety in PCa surgery. Further studies are needed to confirm those findings and refine the selection criteria.
Collapse
Affiliation(s)
- Michał C Czarnogórski
- Department and Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Layla Settaf-Cherif
- Department and Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Krzysztof Koper
- Department of Oncology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Piotr Petrasz
- Department of Urology and Urological Oncology, Multidisciplinary Regional Hospital in Gorzów Wielkopolski, Gorzów Wielkopolski, Poland
| | - Adam Ostrowski
- Department and Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kajetan Juszczak
- Department and Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Department and Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Jan Adamowicz
- Department and Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
9
|
El Mokbel N, Goyeneche AA, Prakash R, Forgie BN, Abdalbari FH, Zeng X, Tessier-Cloutier B, Annie Leung SO, Telleria CM. Comparison of two-dimensional and three-dimensional culture systems and their responses to chemotherapy in cells representing disease progression of high-grade serous ovarian cancer. Biochem Biophys Rep 2024; 40:101838. [PMID: 39469046 PMCID: PMC11513490 DOI: 10.1016/j.bbrep.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
High-grade serous cancer is the most common type of ovarian cancer and is usually diagnosed at advanced stages with high mortality due to recurrence and eventual resistance to standard platinum therapy. The aim of this study was to compare two-dimensional (2D) versus tridimensional (3D) cell culture as a preclinical model of response to carboplatin, paclitaxel and niraparib using PEO1, PEO4 and PEO6 cell lines, which were generated from the same patient along disease progression. Morphologically, cells formed flat adherent layers versus spheroidal structures with different compaction patterns in 2D and 3D respectively. In 2D, apoptosis was rare whereas in 3D cells formed a multilayered structure with an outer layer of live proliferating cells and an inner core of apoptotic cells. Furthermore, a differential capacity to produce ATP was observed among the cell lines in 3D but not in 2D. While response to carboplatin, paclitaxel and niraparib in both settings followed a similar trend, a lower sensitivity was observed in 3D with respect to 2D. Overall, 3D cell culture is likely more reflective of the in vivo cellular tumor behavior and more suitable of therapeutic evaluation given its added complexity absent in 2D.
Collapse
Affiliation(s)
- Naya El Mokbel
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Alicia A. Goyeneche
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Rewati Prakash
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Benjamin N. Forgie
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Farah H. Abdalbari
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Xing Zeng
- McGill University Health Centre, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Montreal, QC, Canada
| | - Basile Tessier-Cloutier
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Shuk On Annie Leung
- McGill University Health Centre, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Cancer Research Program, Montreal, QC, Canada
| | - Carlos M. Telleria
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Cancer Research Program, Montreal, QC, Canada
| |
Collapse
|
10
|
Wang F, Jiang C, He W, Li H, Guo GF, Xu L. Assessing the Prognostic Value of 13 Inflammation-Based Scores in Patients with Unresectable or Advanced Biliary Tract Carcinoma After Immunotherapy. Immunotargets Ther 2024; 13:541-557. [PMID: 39431245 PMCID: PMC11491092 DOI: 10.2147/itt.s471502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024] Open
Abstract
Purpose The response of patients with biliary tract carcinoma (BTC) to immunotherapy varies widely, and there is an urgent need for biological indicators. The predictive value of inflammation based score (IBS) for the efficacy of immunotherapy in patients with BTC remains unclear, as the evidence is inconsistent. This study aimed to comprehensively examine the predictive value of IBS in peripheral blood on the survival of BTC patients receiving immunotherapy. Patients and Methods We retrospectively assessed 118 patients with advanced BTC who received anti-PD-1 therapy in the first or second line in two medical centers. The Kaplan-Meier, time-dependent ROC, and Harrell's concordance index (C-index) were applied to analyze the predictive value of 13 reported peripheral blood IBS. Results All 13 IBS were identified as significant prognostic factors for OS in univariate analysis. Pan-immune-inflammation value (PIV) (p=0.005), PILE (composed of PIV, lactate dehydrogenase and Eastern Cooperative Oncology Group performance status) (p=0.033), neutrophil-to-lymphocyte ratio (NLR) (p=0.003), platelet-to-lymphocyte ratio (PLR) (p<0.001), lymphocyte-to-monocyte ratio (LMR) (p=0.006), systemic immune inflammation index (SII) (p=0.039), CRP-to-albumin ratio (CAR) (p=0.025), and Albumin-NLR (p=0.008) were identified as independent prognostic factors for OS in multivariate analysis. PIV and PILE scores were superior to other scores, according to time-dependent ROC curves, and their superiority became more pronounced after the 12-month time point. C-index analysis showed PIV (C-index 0.62, 95% CI: 0.55, 0.68) and PILE (C-index 0.62, 95% CI: 0.55, 0.70), both superior to other IBS. Conclusion PIV and PILE scores are independent predictors of OS in patients with BTC after immunotherapy and are superior to other IBS. PIV and PILE may be able to help screen out patients with advanced BTC who are less likely to benefit from anti-PD-1 monotherapy. Due to the retrospective nature of this analysis, the predictive value of PIV and PILE require validation in further prospective studies.
Collapse
Affiliation(s)
- Fang Wang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Chang Jiang
- State Key Laboratory of Oncology in South China, The Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, Guangdong Province, People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, The Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People’s Republic of China
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People’s Republic of China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South China, The Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, Guangdong Province, People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, The Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People’s Republic of China
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People’s Republic of China
| | - Heping Li
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Gui-Fang Guo
- State Key Laboratory of Oncology in South China, The Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, Guangdong Province, People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, The Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People’s Republic of China
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People’s Republic of China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
11
|
Sigawi T, Israeli A, Ilan Y. Harnessing Variability Signatures and Biological Noise May Enhance Immunotherapies' Efficacy and Act as Novel Biomarkers for Diagnosing and Monitoring Immune-Associated Disorders. Immunotargets Ther 2024; 13:525-539. [PMID: 39431244 PMCID: PMC11488351 DOI: 10.2147/itt.s477841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Lack of response to immunotherapies poses a significant challenge in treating immune-mediated disorders and cancers. While the mechanisms associated with poor responsiveness are not well defined and change between and among subjects, the current methods for overcoming the loss of response are insufficient. The Constrained Disorder Principle (CDP) explains biological systems based on their inherent variability, bounded by dynamic boundaries that change in response to internal and external perturbations. Inter and intra-subject variability characterize the immune system, making it difficult to provide a single therapeutic regimen to all patients and even the same patients over time. The dynamicity of the immune variability is also a significant challenge for personalizing immunotherapies. The CDP-based second-generation artificial intelligence system is an outcome-based dynamic platform that incorporates personalized variability signatures into the therapeutic regimen and may provide methods for improving the response and overcoming the loss of response to treatments. The signatures of immune variability may also offer a method for identifying new biomarkers for early diagnosis, monitoring immune-related disorders, and evaluating the response to treatments.
Collapse
Affiliation(s)
- Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Adir Israeli
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
12
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Frank SJ, Das IJ, Simone CB, Davis BJ, Deville C, Liao Z, Lo SS, McGovern SL, Parikh RR, Reilly M, Small W, Schechter NR. ACR-ARS Practice Parameter for the Performance of Proton Beam Therapy. Int J Part Ther 2024; 13:100021. [PMID: 39347377 PMCID: PMC11437389 DOI: 10.1016/j.ijpt.2024.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose This practice parameter for the performance of proton beam radiation therapy was revised collaboratively by the American College of Radiology (ACR) and the American Radium Society (ARS). This practice parameter was developed to serve as a tool in the appropriate application of proton therapy in the care of cancer patients or other patients with conditions in which radiation therapy is indicated. It addresses clinical implementation of proton radiation therapy, including personnel qualifications, quality assurance (QA) standards, indications, and suggested documentation. Materials and Methods This practice parameter for the performance of proton beam radiation therapy was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards) by the Committee on Practice Parameters - Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ARS. Results The qualifications and responsibilities of personnel, such as the proton center Chief Medical Officer or Medical Director, Radiation Oncologist, Radiation Physicist, Dosimetrist and Therapist, are outlined, including the necessity for continuing medical education. Proton therapy standard clinical indications and methodologies of treatment management are outlined by disease site and treatment group (e.g. pediatrics) including documentation and the process of proton therapy workflow and equipment specifications. Additionally, this proton therapy practice parameter updates policies and procedures related to a quality assurance and performance improvement program (QAPI), patient education, infection control, and safety. Conclusion As proton therapy becomes more accessible to cancer patients, policies and procedures as outlined in this practice parameter will help ensure quality and safety programs are effectively implemented to optimize clinical care.
Collapse
Affiliation(s)
- Steven J. Frank
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Indra J. Das
- Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhongxing Liao
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon S. Lo
- University of Washington Medical Center, Seattle, WA 98195, USA
| | - Susan L. McGovern
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rahul R. Parikh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maguire Center, Maywood, IL 60153, USA
| | | |
Collapse
|
14
|
Sheng K, Cao M, Godley A, Lin MH, Henze L, Hammond L, Delombaerde L, Hierholz K, Kouptsidis J. Quantification of Dosimetry Improvement With or Without Patient Surface Guidance. Adv Radiat Oncol 2024; 9:101570. [PMID: 39188998 PMCID: PMC11345286 DOI: 10.1016/j.adro.2024.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/21/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose Noncoplanar beams and arcs are routinely used to improve dosimetry for intracranial cases, but their application for extracranial cases has been hampered by the risk of collision. This has led to conservative beam selection whose impact on plan dosimetry has not been previously studied. Methods and Materials A full-body 3-dimensional patient surface was acquired using optical cameras for a single lung patient at the time of computed tomography simulation. Eight stereotactic body radiation therapy (SBRT) plans were created for the patient, with varying degrees of noncoplanarity and deliverability. The plans included volumetric modulated arc therapy and intensity modulated radiation therapy (IMRT) plans ranging from simple, coplanar arcs to multiple noncoplanar arcs and IMRT beams. A total of 70 fields were created across the 8 plans, of which 21 fields were undeliverable with a 5-cm buffer. Organs-at-risk (OARs) metrics including R50, Dmax 2 cm from the PTV, lung V20, and chest wall V30 were evaluated. Five expert SBRT dosimetrists from 5 institutions evaluated field deliverability, with or without the guidance of the clearance map. Results In the dosimetry evaluation, a clear trend in increasing dosimetric compactness and OAR sparing is observed with increasing plan noncoplanarity. R50, Dmax 2 cm, lung V20, and chest wall V30 decreased 41%, 39%, 43%, and 57%, respectively, from plan 1 (2 coplanar partial arcs) to plan 8 (19 noncoplanar IMRT beams). In the observer tests, the expert dosimetrists' ability to accurately discern beam deliverability because of collision significantly increases with the clearance map. The errors in predicting colliding fields were eliminated using the whole-body surface and clearance map, and the user was able to select fields based on plan quality and patient comfort instead of being overly conservative. Conclusion The study shows that incorporating a personalized, whole-body clearance map in the treatment planning workflow can facilitate the adoption of noncoplanar beams or arcs that benefit the SBRT plan dosimetry.
Collapse
Affiliation(s)
- Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Andrew Godley
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mu-Han Lin
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lukas Henze
- Cancer Center Berlin-Neukölln, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Laura Hammond
- Radiotherapy Department, Raigmore Hospital, Inverness, United Kingdom
| | | | - Kirsten Hierholz
- Klinikum Darmstadt GmbH, Institut für Radionkologie und Strahlentherapie, Darmstadt, Germany
| | - Jana Kouptsidis
- Klinikum Darmstadt GmbH, Institut für Radionkologie und Strahlentherapie, Darmstadt, Germany
| |
Collapse
|
15
|
Sun L, Lan J, Li Z, Zeng R, Shen Y, Zhang T, Ding Y. Transforming Cancer Treatment with Nanotechnology: The Role of Berberine as a Star Natural Compound. Int J Nanomedicine 2024; 19:8621-8640. [PMID: 39188860 PMCID: PMC11346485 DOI: 10.2147/ijn.s469350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Berberine (BBR), recognized as an oncotherapeutic phytochemical, exhibits its anti-cancer properties via multiple molecular pathways. However, its clinical application is hindered by suboptimal tumor accumulation, rapid systemic elimination, and diminished bioactive concentration owing to extensive metabolic degradation. To circumvent these limitations, the strategic employment of nanocarriers and other drugs in combination with BBR is emerging as a focus to potentiate its anti-cancer efficacy. This review introduced the expansive spectrum of BBR's anti-cancer activities, BBR and other drugs co-loaded nanocarriers for anti-cancer treatments, and evaluated the synergistic augmentation of these amalgamated modalities. The aim is to provide an overview of BBR for cancer treatment based on nano-delivery. Berberine (BBR), recognized as an oncotherapeutic phytochemical, exhibits its anti-cancer properties via multiple molecular pathways. However, its clinical application is hindered by suboptimal tumor accumulation, rapid systemic elimination, and diminished bioactive concentration owing to extensive metabolic degradation. To circumvent these limitations, the strategic employment of nanocarriers and other drugs in combination with BBR is emerging as a focus to potentiate its anti-cancer efficacy. Nano-delivery systems increase drug concentration at the tumor site by improving pharmacological activity and tissue distribution, enhancing drug bioavailability. Organic nanocarriers have advantages for berberine delivery including biocompatibility, encapsulation, and controlled release of the drug. While the advantages of inorganic nanocarriers for berberine delivery mainly lie in their efficient loading ability of the drug and their slow release ability of the drug. This review introduced the expansive spectrum of BBR's anti-cancer activities, BBR and other drugs co-loaded nanocarriers for anti-cancer treatments, and evaluated the synergistic augmentation of these amalgamated modalities. The aim is to provide an overview of BBR for cancer treatment based on nano-delivery.
Collapse
Affiliation(s)
- Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
16
|
Taori R, Penmetsa G, Adhikari K, Chiranjeevi T, Kumar A, Raghunath SK. Neurovascular Structure-Adjacent Frozen-Section Examination (NeuroSAFE) Technique of Nerve-Sparing Robot-Assisted Radical Prostatectomy (RARP) in Indian Scenario: Technique, Feasibility, and Early Outcomes. Indian J Surg Oncol 2024; 15:296-301. [PMID: 38741648 PMCID: PMC11088567 DOI: 10.1007/s13193-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/18/2024] [Indexed: 05/16/2024] Open
Abstract
Potency and urinary continence are adversely affected post-prostatectomy. The primary objective is oncological safety by ensuring negative surgical margins (NSM) and best functional recovery through nerve preservation in appropriate patients. NeuroSAFE technique of intra-operative frozen-section (IFS) analysis was devised for comprehensive assessment of surgical margins adjacent to the neurovascular tissue surface of the prostate. We analyzed our initial experience with this technique. Five NS-RARPs were performed utilizing the NeuroSAFE technique between October 2021 and February 2022. Patient demographics, disease stage, operative console time, post-operative complications, final histopathology, biochemical recurrence (BCR), erectile function, and urinary continence were recorded. The mean age of patients was 59.2 ± 1.3 years. All had clinically organ-confined disease with ISUP grade ≤ 3. The mean operative time of NS-RARP with NeuroSAFE was 240 ± 21 min and average NeuroSAFE time was 45 ± 3.8 min. All patients had NSM on IFS. No patient had Clavien-Dindo grade > 1 complications. Margins were negative on final histopathology. No patient had BCR at 6 and 12 weeks. Three patients were able to have sexual intercourse and only one patient required single precaution pad at 12 weeks. NeuroSAFE is feasible and can ensure intra-operative oncological safety of the NS procedure. Moreover, it gives the opportunity to convert positive surgical margin to prognostically favorable NSM by secondary resection. Our initial experience which is the first in India is encouraging with favorable functional outcomes. Large prospective studies and longer follow-up are required specially to evaluate the oncological benefit.
Collapse
Affiliation(s)
- Ravi Taori
- Department of Uro-Oncology and Robotic Surgery, HCG Comprehensive Cancer Care Hospital, Bengaluru, Karnataka India
| | - Gowtham Penmetsa
- Department of Uro-Oncology and Robotic Surgery, HCG Comprehensive Cancer Care Hospital, Bengaluru, Karnataka India
| | - Kinju Adhikari
- Department of Uro-Oncology and Robotic Surgery, HCG Comprehensive Cancer Care Hospital, Bengaluru, Karnataka India
| | - Tejus Chiranjeevi
- Department of Uro-Oncology and Robotic Surgery, HCG Comprehensive Cancer Care Hospital, Bengaluru, Karnataka India
| | - Anil Kumar
- Department of Uro-Oncology and Robotic Surgery, HCG Comprehensive Cancer Care Hospital, Bengaluru, Karnataka India
| | - S. K. Raghunath
- Department of Uro-Oncology and Robotic Surgery, HCG Comprehensive Cancer Care Hospital, Bengaluru, Karnataka India
| |
Collapse
|
17
|
Gupta A, McQuaid D, Dunlop A, Barnes H, Mohajer J, Smith G, Nartey J, Morrison K, Herbert T, Alexander S, McNair H, Newbold K, Nutting C, Bhide S, Harrington KJ, Wong KH. Measurement and Incorporation of Laryngeal Motion Using cine-MRI on an MR-Linear Accelerator to Generate Radiation Therapy Plans for Early-stage Squamous Cell Cancers of the Glottis. Adv Radiat Oncol 2024; 9:101490. [PMID: 38681895 PMCID: PMC11046225 DOI: 10.1016/j.adro.2024.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Swallow-related motion of the larynx is most significant in the cranio-caudal directions and of` short duration. Conventional target definition for radical radiation therapy includes coverage of the whole larynx. This study longitudinally examined respiration- and swallow-related laryngeal motions using cine-magnetic resonance imaging. We further analyzed the dosimetry to organs at risk by comparing 3D-conformal radiation therapy (3D-CRT), volumetric modulated arc therapy (VMAT), and intensity modulated radiation therapy (IMRT) techniques. Methods Fifteen patients with T1-2 N0 glottic squamous cell carcinomas were prospectively recruited for up to 3 cine-MRI scans on the Elekta Unity MR-Linear accelerator, at the beginning, middle, and end of a course of radical radiation therapy. Swallow frequency and motion of the hyoid bone, cricoid and thyroid cartilages, and vocal cords were recorded during swallow and rest. Adapted treatment volumes consisted of gross tumor volume + 0.5-1 cm to a clinical target volume with an additional internal target volume (ITV) for personalized resting-motion. Swallow-related motion was deemed infrequent and was not accounted for in the ITV. We compared radiation therapy plans for 3D-CRT (whole larynx), VMAT (whole larynx), and VMAT and IMRT (ITV for resting motion). Results Resting- and swallow-related motions were most prominent in the cranio-caudal plane. There were no significant changes in the magnitude of motion over the course of radiation therapy. There was a trend of a progressive reduction in the frequency of swallow. Treatment of partial larynx volumes with intensity modulated methods significantly reduced the dose to carotid arteries, compared with treatment of whole larynx volumes. Robustness analysis demonstrated that when accounting for intrafraction swallow, the total dose delivered to the ITV/planning target volume was maintained at above 95%. Conclusions Swallow-related motions are infrequent and accounting for resting motion in an ITV is sufficient. VMAT/IMRT techniques that treat more conformal targets can significantly spare critical organs at risk such as the carotid arteries and thyroid gland, potentially reducing the risk of carotid artery stenosis-related complications and other long-term complications.
Collapse
Affiliation(s)
- Amit Gupta
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Dualta McQuaid
- The Joint Department of Physics, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Alex Dunlop
- The Joint Department of Physics, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Helen Barnes
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Jonathan Mohajer
- The Joint Department of Physics, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Gillian Smith
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Jayde Nartey
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Kian Morrison
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Trina Herbert
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Sophie Alexander
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Helen McNair
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Kate Newbold
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Chris Nutting
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Shreerang Bhide
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Kevin Joseph Harrington
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Head & Neck Unit, London, United Kingdom
| | - Kee Howe Wong
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| |
Collapse
|
18
|
Zhou W, Zhu C, Shen P, Wang JF, Zhu G, Jia Y, Wu Y, Wang S, Sun J, Yang F, Song Y, Han X, Guan X. Hypoxia stimulates CTC-platelet cluster formation to promote breast cancer metastasis. iScience 2024; 27:109547. [PMID: 38660400 PMCID: PMC11039329 DOI: 10.1016/j.isci.2024.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Circulating tumor cell clusters/micro-emboli (CTM) possess greater metastatic capacity and survival advantage compared to individual circulating tumor cell (CTC). However, the formation of CTM subtypes and their role in tumor metastasis remain unclear. In this study, we used a microfluidic Cluster-Chip with easy operation and high efficiency to isolate CTM from peripheral blood, which confirmed their correlation with clinicopathological features and identified the critical role of CTC-platelet clusters in breast cancer metastasis. The correlation between platelets and CTM function was further confirmed in a mouse model and RNA sequencing of CTM identified high-expressed genes related to hypoxia stimulation and platelet activation which possibly suggested the correlation of hypoxia and CTC-platelet cluster formation. In conclusion, we successfully developed the Cluster-Chip platform to realize the clinical capture of CTMs and analyze the biological properties of CTC-platelet clusters, which could benefit the design of potential treatment regimens to prevent CTM-mediated metastasis and tumor malignant progression.
Collapse
Affiliation(s)
- Weijia Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peiliang Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jacqueline F. Wang
- Department of Medicine, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA
| | - Gaoshuang Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Jia
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueyao Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jia Sun
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang Yang
- The Comprehensive cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150081, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
19
|
De la Cerda-Vargas MF, Pantalone MR, Söderberg Nauclér C, Medrano-Guzman R, Jauregui Renaud K, Nettel Rueda B, Reynoso-Sanchez MDJ, Lopez-Quintana B, Rodriguez-Florido MA, Feria-Romero IA, Trejo-Rosales RR, Arreola-Rosales RL, Candelas-Rangel JA, Navarro-Dominguez P, Meza-Mata E, Muñoz- Hernandez MA, Segura-Lopez F, Gonzalez-Martinez MDR, Delgado-Aguirre HA, Sandoval-Bonilla BA. Focal-to-bilateral tonic-clonic seizures and High-grade CMV-infection are poor survival predictors in Tumor-related Epilepsy Adult-type diffuse gliomas-A single-center study and literature review. Heliyon 2024; 10:e28555. [PMID: 38623248 PMCID: PMC11016600 DOI: 10.1016/j.heliyon.2024.e28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Introduction Previous studies have reported a correlation between a high-grade CMV-infection and an unfavorable prognosis in glioblastoma (GB). Coversely, epilepsy has been associated with a more favorable outcome in GB patients. Despites epilepsy and CMV share similar molecular mechanisms in GB tumoral microenvironment, the correlation between Tumor-Related-Epilepsy (TRE) and CMVinfection remains unexplored. The aim of our study is to examine the correlation between the dregree of CMV infection and seizure types on the survival of TRE Adult-type-diffuse-glioma. To achieve this objective, we conducted a comprehensive literature review to assess our results regarding previous publications. Methods We conducted a retrospective-observational study on TRE Adult-type-diffuse-gliomas treated at a single center in Mexico from 2010 to 2018. Tumor tissue and cDNA were analyzed by immunochemistry (IHC) for CMV (IE and LA antigens) at the Karolinska Institute in Sweden, and RT-PCR for CMV-gB in Torreon Mexico, respectively. Bivariate analysis (X2-test) was performed to evaluate the association between subtypes of Adult-type-diffuse-glioma (IDH-mut grade 4 astrocytoma vs. IDH-wt glioblastoma) and the following variables: type of hemispheric involvement (mesial vs. neocortical involvement), degree of CMV infection (<25%vs. >25% infected-tumoral cells) and seizure types [Focal awareness, focal impaired awareness, and FBTCS]. Kaplan Meier and Cox analyses were performed to determine the risk, p < 0.05 was considered statistically significant. Results Sixty patients with TRE Adult type diffuse gliomas were included (80% IDH-wt glioblastoma and 20% IDH-mut grade 4astrocytomas). The mean age was 61.5 SD ± 18.4, and 57% were male. Fifty percent of the patients presented with mesial involvement of the hemysphere. Seizure types included focal awareness (15%), focal impaired awareness (43.3%), and FBTCS (41.7%). Ninety percent of cases were treated with Levetiracetam and 33.3% presented Engel-IA postoperative seizure control. More than 90% of samples were positive for CMV-immunohistochemistry (IHC). However, all cDNA analyzed by RT-PCR return negative results. The median of overall survival (OS) was 15 months. High-grade CMV-IE infection (14 vs. 25 months, p<0.001), mesial involvement (12 vs. 18 months, p<0.001), and FBTCS were associated with worse OS (9 vs.18 months for non-FBTCS). Multivariate analysis demonstrated that high-grade CMV infection (HR = 3.689, p=0.002) and FBTCS (HR=7.007, p<0.001) were independent unfavorable survival factors. Conclusions CMV induces a proinflammatory tumoral microenvironment that contributes to the developmet of epilepsy. Tumor progression could be associated not only with a higher degree of CMV infection but also to epileptogenesis, resulting in a seizure phenotype chracterized by FBTCS and poor survival outcomes. This study represents the first survival analysis in Latin America to include a representative sample of TRE Adult-type diffuse gliomas considering CMV-infection-degree and distinguishing features (such as FBTCS) that might have potential clinical relevance in this group of patients. Further prospective studies are required to validate these results.
Collapse
Affiliation(s)
- Maria F. De la Cerda-Vargas
- Department of Neurosurgery and Neurotechnology, Universitätsklinik Tübingen, Tübingen, Germany
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Mattia Russel Pantalone
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Cecilia Söderberg Nauclér
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64, Stockholm, Sweden
- Department of Biosciences at the University of Turku, InFLAMES Research Flagship Center, MediCity, University of Turku, Finland
| | - Rafael Medrano-Guzman
- Department of Sarcomas, Oncology Hospital, High Specialty Medical Unit (UMAE), National Medical Center, IMSS, Mexico City, Mexico
| | - Kathrine Jauregui Renaud
- Medical Research Unit in Otoneurology, Mexican Institute of Social Security, Mexico City, 06720, Mexico
| | - Barbara Nettel Rueda
- Department of Neurosurgery, Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ma de Jesus Reynoso-Sanchez
- Department of Neuroanesthesiology, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico, 06720
| | - Brenda Lopez-Quintana
- Department of Neuroanesthesiology, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico, 06720
| | | | - Iris A. Feria-Romero
- Medical Research Unit in Neurological Diseases, Specialties Hospital, National Medical Center Siglo XXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Rogelio R. Trejo-Rosales
- Medical Oncology, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City, 06720, Mexico
| | | | - Jose A. Candelas-Rangel
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Pedro Navarro-Dominguez
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Elizabeth Meza-Mata
- Department of Pathology, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon, Coahuila, Mexico
| | - Melisa A. Muñoz- Hernandez
- Department of Health and Research, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - F.K. Segura-Lopez
- Department of Health and Research, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | | | - Hector A. Delgado-Aguirre
- Department of Transplants, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - Bayron A. Sandoval-Bonilla
- Department of Neurosurgery, Epilepsy Surgery Multidisciplinary Board, Functional NeuroOncology Clinic, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| |
Collapse
|
20
|
Yi G, Luo H, Zheng Y, Liu W, Wang D, Zhang Y. Exosomal Proteomics: Unveiling Novel Insights into Lung Cancer. Aging Dis 2024; 16:876-900. [PMID: 38607736 PMCID: PMC11964432 DOI: 10.14336/ad.2024.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Although significant progress has been made in early lung cancer screening over the past decade, it remains one of the most prevalent and deadliest forms of cancer worldwide. Exosomal proteomics has emerged as a transformative field in lung cancer research, with the potential to redefine diagnostics, prognostic assessments, and therapeutic strategies through the lens of precision medicine. This review discusses recent advances in exosome-related proteomic and glycoproteomic technologies, highlighting their potential to revolutionise lung cancer treatment by addressing issues of heterogeneity, integrating multiomics data, and utilising advanced analytical methods. While these technologies show promise, there are obstacles to overcome before they can be widely implemented, such as the need for standardization, gaps in clinical application, and the importance of dynamic monitoring. Future directions should aim to overcome the challenges to fully utilize the potential of exosomal proteomics in lung cancer. This promises a new era of personalized medicine that leverages the molecular complexity of exosomes for groundbreaking advancements in detection, prognosis, and treatment.
Collapse
Affiliation(s)
- Guanhua Yi
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haixin Luo
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yalin Zheng
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wenjing Liu
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Denian Wang
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Piccardo AC, Gurdschinski S, Spieker S, Renner C, Czapiewski P, Wösle M, Ciernik IF. Repeated Radiation Therapy of Recurrent Solitary Fibrous Tumors of the Brain: A Medical Case History Over 20 Years. Adv Radiat Oncol 2024; 9:101426. [PMID: 38435964 PMCID: PMC10906171 DOI: 10.1016/j.adro.2023.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/20/2023] [Indexed: 03/05/2024] Open
Affiliation(s)
| | | | | | | | | | - Markus Wösle
- Radiotherapy and Radiation Oncology, Städtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - I. Frank Ciernik
- University of Zurich (MeF), Zurich, Switzerland
- Radiotherapy and Radiation Oncology, Städtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| |
Collapse
|
22
|
Liu W, Huang X, Luo W, Liu X, Chen W. Progerin Inhibits the Proliferation and Migration of Melanoma Cells by Regulating the Expression of Paxillin. Onco Targets Ther 2024; 17:227-242. [PMID: 38533131 PMCID: PMC10964789 DOI: 10.2147/ott.s442504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Progerin, the underlying cause of Hutchinson-Gilford Progeria Syndrome (HGPS), has been extensively studied for its impact on normal cells and premature aging patients. However, there is a lack of research on its specific effects on tumor cells. Melanoma is one of the most common malignant tumors with high morbidity and mortality. This study aimed to elucidate the potential therapeutic role of progerin in melanoma. Materials and Methods We constructed the melanoma A375 cell line and M14 cell line with stable expression of progerin. The expression of progerin, paxillin, and epithelial-mesenchymal transition (EMT) marker proteins in each cell group was measured using Western blot. The migration, proliferation, and cell cycle of cancer cells were assessed using the transwell assay, wound healing assay, colony formation assay, CCK 8 assay, and flow cytometry. RT-qPCR technology was used to examine the impact of progerin overexpression on microRNA expression. Finally, we transfected paxillin into the progerin overexpression cell group to verify whether progerin regulates the phenotype of tumor cells through paxillin. Results Our study demonstrated that overexpression of progerin leads to decreased expression of paxillin and inhibits cancer cell migration, proliferation, EMT process and cell cycle progression. Additionally, rescue experiments revealed that the migration, proliferation ability, and EMT marker protein expression in progerin overexpressing cancer cells could be partially restored by transfecting a plasmid containing the paxillin gene. Mechanistic investigations further revealed that progerin achieves this inhibition of paxillin expression by upregulating miR-212. Conclusion This study reveals that progerin may inhibit the migration and proliferation of melanoma cells through the miR-212/paxillin axis, which provides a new approach for the future treatment of this disease.
Collapse
Affiliation(s)
- Weixian Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Xinxian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
- School of Medical Technology, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Weizhao Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| |
Collapse
|
23
|
Mills M, Miller J, Liveringhouse C, Bryant JM, Kawahara Y, Feygelman V, Latifi K, Yang G, Johnstone PA, Naghavi AO. Novel Postoperative Hypofractionated Accelerated Radiation Dose-Painting Approach for Soft Tissue Sarcoma. Adv Radiat Oncol 2024; 9:101391. [PMID: 38495036 PMCID: PMC10943519 DOI: 10.1016/j.adro.2023.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/21/2023] [Indexed: 03/19/2024] Open
Abstract
Purpose Hypofractionated radiation therapy (RT) offers benefits in the treatment of soft tissue sarcomas (STS), including exploitation of the lower α/β, patient convenience, and cost. This study evaluates the acute toxicity of a hypofractionated accelerated RT dose-painting (HARD) approach for postoperative treatment of STS. Methods and Materials This is a retrospective review of 53 consecutive patients with STS who underwent resection followed by postoperative RT. Standard postoperative RT dosing for R0/R1/gross disease with sequential boost (50 Gy + 14/16/20 Gy in 32-35 fractions) were replaced with dose-painting, which adapts dose based on risk of disease burden, to 50.4 and 63, 64.4, 70 Gy in 28 fractions, respectively. The first 10 patients were replanned with a sequential boost RT approach and dosimetric indices were compared. Time-to-event outcomes, including local control, regional control, distant control, and overall survival, were estimated with Kaplan-Meier analysis. Results Median follow-up was 25.2 months. Most patients had high-grade (59%) STS of the extremity (63%) who underwent resection with either R1 (40%) or close (36%) margins. Four patients experienced grade 3 acute dermatitis which resolved by the 3-month follow-up visit. The 2-year local control, regional control, distant control, and overall survival were 100%, 92%, 68%, and 86%, respectively. Compared with the sequential boost plan, HARD had a significantly lower field size (total V50 Gy; P = .002), bone V50 (P = .031), and maximum skin dose (P = .008). Overall treatment time was decreased by 4 to 7 fractions, which translated to a decrease in estimated average treatment cost of $3056 (range, $2651-$4335; P < .001). Conclusions In addition to benefits in cost, convenience, and improved biologic effect in STS, HARD regimen offers a safe treatment approach with dosimetric advantages compared with conventional sequential boost, which may translate to improved long-term toxicity.
Collapse
Affiliation(s)
- Matthew Mills
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Justin Miller
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Casey Liveringhouse
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John M. Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yuki Kawahara
- University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Vladimir Feygelman
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - George Yang
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Peter A. Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Arash O. Naghavi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
24
|
Lauwers I, Pachler K, Capala M, Sijtsema N, Van Gent D, Rovituso M, Hoogeman M, Verduijn G, Petit S. Ex vivo radiation sensitivity assessment for individual head and neck cancer patients using deep learning-based automated nuclei and DNA damage foci detection. Clin Transl Radiat Oncol 2024; 45:100735. [PMID: 38380115 PMCID: PMC10877102 DOI: 10.1016/j.ctro.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Tumor biopsy tissue response to ex vivo irradiation is potentially an interesting biomarker for in vivo tumor response, therefore, for treatment personalization. Tumor response ex vivo can be characterized by DNA damage response, expressed by the large-scale presence of DNA damage foci in tumor nuclei. Currently, characterizing tumor nuclei and DNA damage foci is a manual process that takes hours per patient and is subjective to inter-observer variability, which is not feasible in for clinical decision making. Therefore, our goal was to develop a method to automatically segment nuclei and DNA damage foci in tumor tissue samples treated with radiation ex vivo to characterize the DNA damage response, as potential biomarker for in vivo radio-sensitivity. Methods Oral cavity tumor tissue of 21 patients was irradiated ex vivo (5 or 0 Gy), fixated 2 h post-radiation, and used to develop our method for automated nuclei and 53BP1 foci segmentation. The segmentation model used both deep learning and conventional image-analysis techniques. The training (22 %), validation (22 %), and test set (56 %) consisted of thousands of manually segmented nuclei and foci. The segmentations and number of foci per nucleus in the test set were compared to their ground truths. Results The automatic nuclei and foci segmentations were highly accurate (Dice = 0.901 and Dice = 0.749, respectively). An excellent correlation (R2 = 0.802) was observed for the foci per nucleus that outperformed reported inter-observation variation. The analysis took ∼ 8 s per image. Conclusion This model can replace manual foci analysis for ex vivo irradiation of head-and-neck squamous cell carcinoma tissue, reduces the image-analysis time from hours to minutes, avoids the problem of inter-observer variability, enables assessment of multiple images or conditions, and provides additional information about the foci size. Thereby, it allows for reliable and rapid ex vivo radio-sensitivity assessment, as potential biomarker for response in vivo and treatment personalization.
Collapse
Affiliation(s)
- I. Lauwers
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - K.S. Pachler
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M.E. Capala
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - N.D. Sijtsema
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - D.C. Van Gent
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M. Rovituso
- Holland Proton Therapy Center, Delft, the Netherlands
| | - M.S. Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Medical Physics and Informatics, HollandPTC, Delft, the Netherlands
| | - G.M. Verduijn
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - S.F. Petit
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
25
|
Liu R, Yang J, Du Y, Yu X, Liao Y, Wang B, Yuan K, Wang M, Yao Y, Yang P. A "One Arrow Three Eagle" Strategy to Improve CM-272 Primed Bladder Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310522. [PMID: 38064417 DOI: 10.1002/adma.202310522] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Immunotherapy using an immune-checkpoint blockade has significantly improved its therapeutic effects. CM-272, which is a novel epigenetic inhibitor of G9a, induces immunogenic cell death (ICD) for recovering the sensitivity to anti-PD-1 antibodies; however, the efficacy of CM-272 is greatly limited by promoting the transcription activity of HIF-1α to form a hypoxic environment. Here, a Fe3+ -based nanoscale metal-organic framework (MIL-53) is used to load CM-272 (ultra-high loading rate of 56.4%) for realizing an MIL-53@CM-272 nanoplatform. After entering bladder cancer cells, Fe3+ not only promotes the decomposition of H2 O2 into O2 for O2 -compensated sonodynamic therapy but reduces the high level of glutathione in the tumor microenvironment (TME) for enhancing reactive oxygen species, including ferroptosis and apoptosis. MIL-53 carriers can be degraded in response to the TME, accelerating the release of CM-272, which helps achieve the maximum effectiveness in an O2 -sufficient TME by attenuating drug resistance. Furthermore, MIL-53@CM-272 enhances dendritic cell maturation and synergistically combines it with an anti-programmed cell death protein 1 antibody during the study of immune-related pathways in the transcriptomes of bladder cancer cells using RNA-seq. This study presents the first instance of amalgamating nanomedicine with CM-272, inducing apoptosis, ferroptosis, and ICD to achieve the "one arrow three eagle" effect.
Collapse
Affiliation(s)
- Ruiqi Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Yaqian Du
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xuefan Yu
- Department of Gastrointestinal Medical Oncology, Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Kaikun Yuan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Mingxu Wang
- Department of Gastrointestinal Medical Oncology, Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
26
|
Liu S, Jiao B, Zhao H, Liang X, Jin F, Liu X, Hu J. LncRNAs-circRNAs as Rising Epigenetic Binary Superstars in Regulating Lipid Metabolic Reprogramming of Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303570. [PMID: 37939296 PMCID: PMC10767464 DOI: 10.1002/advs.202303570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Indexed: 11/10/2023]
Abstract
As one of novel hallmarks of cancer, lipid metabolic reprogramming has recently been becoming fascinating and widely studied. Lipid metabolic reprogramming in cancer is shown to support carcinogenesis, progression, distal metastasis, and chemotherapy resistance by generating ATP, biosynthesizing macromolecules, and maintaining appropriate redox status. Notably, increasing evidence confirms that lipid metabolic reprogramming is under the control of dysregulated non-coding RNAs in cancer, especially lncRNAs and circRNAs. This review highlights the present research findings on the aberrantly expressed lncRNAs and circRNAs involved in the lipid metabolic reprogramming of cancer. Emphasis is placed on their regulatory targets in lipid metabolic reprogramming and associated mechanisms, including the clinical relevance in cancer through lipid metabolism modulation. Such insights will be pivotal in identifying new theranostic targets and treatment strategies for cancer patients afflicted with lipid metabolic reprogramming.
Collapse
Affiliation(s)
- Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Benzheng Jiao
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Hongguang Zhao
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xinyue Liang
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Fengyan Jin
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xiaodong Liu
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Radiation Medicine Department, School of Public Health and ManagementWenzhou Medical UniversityWenzhou325035China
| | - Ji‐Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Palo Alto Veterans Institute for ResearchStanford University Medical SchoolPalo AltoCA94304USA
| |
Collapse
|
27
|
Khabbazpour M, Tat M, Karbasi A, Abyazi MA, Khodadoustan G, Heidary Z, Zaki-Dizaji M. Advances in blood DNA methylation-based assay for colorectal cancer early detection: a systematic updated review. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2024; 17:225-240. [PMID: 39308542 PMCID: PMC11413380 DOI: 10.22037/ghfbb.v17i3.2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024]
Abstract
Aim A systematic review was conducted to summarize the methylated circulating tumor DNA (ctDNA) markers reported over the last decade for early detection of colorectal cancer (CRC) and to identify the main technical challenges that are impeding their clinical implementation. Background CRC is a major cause of cancer deaths worldwide, but early detection is key for successful treatment. Non-invasive methods such as methylated ctDNA testing show promise for improving detection and monitoring of CRC. Methods A comprehensive search was performed using Web of Science, PubMed, and Scopus up to December 30, 2023, limited to articles published in the last 10 years (after 2012), while including advanced adenoma/stage 0 or stage I/II samples in biomarker validation. Results After identifying 694 articles, removing duplicates and screening titles, abstracts, and full texts, a total of 62 articles were found to meet the inclusion criteria. Among the single biomarkers, MYO1-G, SEPT9, SDC2, and JAM3 revealed the highest sensitivity for polyps and stage I/II CRC. For multi-biomarkers with suitable sensitivity, combinations of SFRP1, SFRP2, SDC2, PRIMA1, or ALX4, BMP3, NPTX2, RARB, SDC2, SEPT9, VIM or ZFHX4, ZNF334, ELOVL2, UNC5C, LOC146880, SFMBT2, GFRA1 were identified for polyps and stage I/II CRC. Conclusion Enhancing sensitivity and specificity of molecular screening methods is crucial for improving CRC detection. Identifying a select few valuable biomarkers is key to reducing costs, despite challenges posed by low ctDNA levels in plasma, particularly in early-stage cancers.
Collapse
Affiliation(s)
- Milad Khabbazpour
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Tat
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ashraf Karbasi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Abyazi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ghazal Khodadoustan
- Department of Cell and Molecular Biology and Microbiology, Faculty of biological science and technology, University of Isfahan, Isfahan, Iran
| | - Zohreh Heidary
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Li H, Liang C, Kuang D, Huang G, Zhang M, Chen P, Zheng Q, Xu W, Ren J, Han X, Duan X. The impact of drug-eluting bead (vs. conventional) transarterial chemoembolization on hepatic fibrosis in treating intermediate or advanced hepatocellular carcinoma. Cancer Biol Ther 2023; 24:2166335. [PMID: 36751709 PMCID: PMC9928450 DOI: 10.1080/15384047.2023.2166335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVE Limited studies have reported the impact of drug-eluting bead transarterial chemoembolization (DEB-TACE) on hepatic fibrosis in hepatocellular carcinoma (HCC). This study evaluated multiple hepatic fibrosis indicators, aiming to comprehensively compare the influence of DEB-TACE and conventional transarterial chemoembolization (cTACE) on hepatic fibrosis in treating HCC patients. METHODS Intermediate/advanced HCC patients (N = 121) were divided into the DEB-TACE group (n = 62) and the cTACE group (n = 59) based on their chosen treatment. Serum hyaluronic acid (HA), pro-collagen type-III (PC-III), collagen type-IV (IV-C), and laminin (LN) were detected; aminotransferase to platelet ratio index (APRI) and fibrosis index based on the four factors (FIB-4) were calculated; liver stiffness measurement (LSM) was assessed by real-time shear wave elastography. RESULTS HA, PC-III, IV-C, and LN at 1 month after the second TACE and at 12 months after the first TACE were all decreased in DEB-TACE group compared with cTACE group (all P < .050). Then, APRI, FIB-4, and LSM were further assessed, which also showed a decreasing trend at aforementioned timepoints in DEB-TACE group compared with cTACE group (all P < .050). Additionally, the multivariate logistic regression analysis revealed that DEB-TACE (vs. cTACE) was independently associated with reduced occurrence of severe hepatic fibrosis at 12 months (OR = 0.215, 95%CI: 0.058-0.802, P = .022). Concerning the liver function indexes, alanine aminotransferase, aspartate aminotransferase, and total bilirubin after treatment were not different between the two groups (all P > .050). CONCLUSION DEB-TACE displays attenuated hepatic fibrosis progression and noninferior tolerance compared to cTACE in treating intermediate- or advanced-stage HCC patients.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Chao Liang
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Donglin Kuang
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Guohao Huang
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Mengfan Zhang
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Pengfei Chen
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Qingzhu Zheng
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Wenze Xu
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xuhua Duan
- Department of Interventional Radiology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Hsu HM, Tsai HI, Lee WC, Wang CC, Yu MC, Lin SM, Lin CY, Wu CH, Lee CW. The Extended Surgical Concepts for Hepatocellular Carcinoma in the Era of Immune Checkpoint Inhibitors. J Hepatocell Carcinoma 2023; 10:1873-1880. [PMID: 37901716 PMCID: PMC10612521 DOI: 10.2147/jhc.s433598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023] Open
Abstract
Surgical resection remains one of the most effective curative therapies for HCC. However, the majority of patients have advanced unresectable diseases upon presentation. It is of paramount importance to raise the resectability of patients with HCC. The remarkable objective response rate reported by Phase III IMbrave150 trial has led to the concept of "Atezo/Bev followed by curative conversion (ABC conversion)" for initially unresectable HCC. With this revolutionary treatment strategy, the concept of surgical resection for HCC should be amended. The current opinion illustrated three extended surgical concepts, which could be integrated into clinical practice in the era of immune checkpoint inhibitors (ICI).
Collapse
Affiliation(s)
- Hsiao-Mei Hsu
- Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsin-I Tsai
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chen Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of General Surgery, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chi Wang
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Division of General Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Chin Yu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Surgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Shi-Ming Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yen Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Huan Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chao-Wei Lee
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of General Surgery, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
30
|
Han Y, Wu Y, He B, Wu D, Hua J, Qian H, Zhang J. DNA nanoparticles targeting FOXO4 selectively eliminate cigarette smoke-induced senescent lung fibroblasts. NANOSCALE ADVANCES 2023; 5:5965-5973. [PMID: 37881696 PMCID: PMC10597553 DOI: 10.1039/d3na00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
The pathogenesis and development of chronic obstructive pulmonary disease (COPD) are significantly related to cellular senescence. Strategies to eliminate senescent cells have been confirmed to benefit several senescence-related diseases. However, there are few reports of senolytic drugs in COPD management. In this study, we demonstrated elevated FOXO4 expression in cigarette smoke-induced senescent lung fibroblasts both in vitro and in vivo. Additionally, self-assembled DNA nanotubes loaded with single-stranded FOXO4 siRNA (siFOXO4-NT) were designed and synthesized to knockdown FOXO4 in senescent fibroblasts. We found that siFOXO4-NT can concentration- and time-dependently enter human lung fibroblasts (HFL-1 cells), thereby reducing FOXO4 levels in vitro. Most importantly, siFOXO4-NT selectively cleared senescent HFL-1 cells by reducing BCLXL expression and the BCL2/BAX ratio, which were increased in CSE-induced senescent HFL-1 cells. The findings from our work present a novel strategy for senolytic drug development for COPD therapy.
Collapse
Affiliation(s)
- Yaopin Han
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| | - Yixing Wu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| | - Binfeng He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
- Department of General Practice, Xinqiao Hospital, Third Military Medical University Chongqing 400037 China
| | - Di Wu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University Chongqing 400037 China
| | - Jianlan Hua
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University Chongqing 400037 China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| |
Collapse
|
31
|
Doussan AF, Lloyd S, Murphy EK, Halter RJ. Towards intraoperative surgical margin assessment: Validation of an electrical impedance-based probe with ex vivo bovine tissue. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083704 DOI: 10.1109/embc40787.2023.10340037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Radical prostatectomy (RP) is a common surgical therapy to treat prostate cancer. The procedure has a high positive surgical margin (PSM) rate ranging from 4-48%. Patients with PSMs have a higher rate of cancer recurrence and often undergo noxious adjuvant therapy. Intraoperative surgical margin assessment (SMA) with an electrical impedance-based probe can potentially identify PSMs in real-time. This would enable surgeons to make data-based decisions in the operating room to improve patient outcomes. This paper focuses on characterizing an impedance sensing SMA probe with specialized electrodes to improve speed and bandwidth while maintaining accuracy. 3D electrical impedance tomography (EIT) reconstructions were generated from ex vivo bovine tissue to characterize probe imaging and to determine an optimal applied pressure range (15 Pa to 38 Pa). Classification accuracy of adipose and muscle tissue was evaluated by comparing the experimental data set to simulated data based on a ground truth binary map of the tissue. Experimental AUCs ≥0.83 were maintained up to 50 kHz. The developed impedance sensing probe successfully classified between muscle and adipose tissue in an ex vivo bovine model. Future work includes improving performance of the SMA probe with custom hardware and collecting data from ex vivo and in vivo prostatic tissues.Clinical Relevance-This technology is expected to reduce the rate of PSMs in RP and decrease the use of post-surgical adjuvant therapies. It is also anticipated that intraoperative impedance measurements will increase efficacy of nerve sparing procedures and reduce complications such as incontinence and erectile dysfunction.
Collapse
|
32
|
Gyftopoulos K. Radical Prostatectomy and Anatomical Controversies: The Urethral Sphincter and the Elusive Continence Mechanisms. Cancers (Basel) 2023; 15:3410. [PMID: 37444520 DOI: 10.3390/cancers15133410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer incidence is rising [...].
Collapse
Affiliation(s)
- Kostis Gyftopoulos
- Department of Anatomy, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
33
|
Hermansyah D, Paramita DA, Paramita DA, Amalina ND. Combination Curcuma longa and Phyllanthus niruri Extract Potentiate Antiproliferative in Triple Negative Breast Cancer MDAMB-231 Cells. Asian Pac J Cancer Prev 2023; 24:1495-1505. [PMID: 37247268 PMCID: PMC10495890 DOI: 10.31557/apjcp.2023.24.5.1495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Triple negative breast cancer cells (TNBC) are a small part of cancer-inducing cells in breast cancer, which are characterized by high metastatic and self-renewal. Self-renewal has the ability to renew itself and loses control of proliferation. Curcuma longa extract (CL) and Phyllanthus niruri extract (PN) known to have anti-proliferative effects on cancer cells. However, the effects of combination CL and PN on TNBC proliferation still unclear. AIMS This study aimed to evaluate the antiproliferative effects of the combination CL and PN on TNBC MDAMB-231 and attempted to elucidate the underlying molecular mechanisms. SUBJECTS AND METHODS The dried rhizomes of Curcuma longa and the herbs of Phyllanthus niruri were macerated with ethanol for 72 h.The antiproliferative and synergistic effects of combination CL and PN were investigated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Combination index values were calculated using CompuSyn (ComboSyn, Inc, Paramus, NJ). The cell cycle and apoptosis assay were determined by propidium iodide (PI) and PI-AnnexinV assay under flow cytometer, respectively. The intracellular ROS levels were evaluated using 2',7'-Dichlorodihydrofluorescein diacetate (DCFDA) assay. The mRNA expressions of proliferation-related genes in the cells were determined using bioinformatic assay. RESULTS The CL and PN single treatment caused a potent and dose-dependent decrease in the percentage of viable cells with IC50 value of 13 μg/mL and 45 μg/mL for 24 h, respectively. The combination index values of the different combinations ranged from 0.08 - 0.90, indicating slightly strong to very strong synergistic effects. The combination of CL and PN also remarkably induced the S- and G2/M-phases cell cycle arrest that leading to apoptosis induction. Furthermore, the combination of CL and PN treatment induced the intracellular reactive oxygen species (ROS) levels. Mechanistically, the AKT1, EP300, STAT3 and EGFR signaling as potential targets of combination CL and PN in antiproliferation and antimetastatic of TNBC. CONCLUSIONS The combination of CL and PN exerted promising antiproliferative effects in TNBC. Therefore, CL and PN may be considered a potential source for the development of potent anticancer drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Dedy Hermansyah
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | | | | | - Nur Dina Amalina
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Indonesia.
| |
Collapse
|
34
|
Malalasekera AP, Neththikumara N, Somasundaram P, Pathirana S, Ediriweera C, Ediriweera D, Goonewardena SAS, Perera ND, Abeygunasekara A, Jayasekara RW, Wettasinghe K, Lokuhetty MDS, Dissanayake VHW. Clinical Exome Gene Panel Analysis of a Cohort of Urothelial Bladder Cancer Patients from Sri Lanka. Asian Pac J Cancer Prev 2023; 24:1533-1542. [PMID: 37247272 PMCID: PMC10495915 DOI: 10.31557/apjcp.2023.24.5.1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Bladder cancer has a high rate of recurrence and high mortality rates in those who progress to muscle invasive disease. Biomarkers and molecular sub classification of tumours beyond standard histopathology has been proposed to address therapeutic dilemmas. The Cancer Genome Atlas project and other studies have contributed to the enhanced knowledge base of the mutational landscape of urothelial bladder cancer. Once again, these are mostly from Caucasian and Chinese patients, with data from the rest of Asia and Sri Lanka being sparse. The objective of this study was to assess the genomic variations of a cohort of urothelial bladder cancer patients in Sri Lanka. METHODS The molecular genetic study was conducted on formalin fixed paraffin embedded tumour samples of 24 patients, prospectively enrolled from 2013 to 2017. The samples were sequenced and variant distribution performed based on a 70-gene panel. RESULTS Total number of filtered mutations in the 24 patients was 10453. Median mutations per patient were 450 (range 22-987). The predominant mutational change was C>T and G>A. The top 5 mutated genes in our cohort were SYNE1, SYNE2, KMT2C, LRP2, and ANK2. The genes were clustered into 3 groups dependent on the number of mutations per patient per gene. The genes of cluster 1 and 2 mapped to Chromatin modifying enzymes and Generic Transcription Pathway. The chromatin remodelling pathway accounted for the largest proportion (22%) of mutations. CONCLUSIONS Clinical exome sequencing utilising a gene panel yielded a high mutation rate in our patients. The predominant mutational change was C>T and G>A. Three clusters of genes were identified. SYNE1 was the gene with the most mutations. The mutations comprised predominantly of genes of the chromatin remodelling pathway.
Collapse
Affiliation(s)
- Ajith P Malalasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Nilaksha Neththikumara
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Praveenan Somasundaram
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Sajeewani Pathirana
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | | | - Dileepa Ediriweera
- Health Data Science Unit, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.
| | | | - Neville D Perera
- Department of Urology, National Hospital of Sri Lanka, Colombo, Sri Lanka.
| | | | - Rohan W Jayasekara
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Kalum Wettasinghe
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - M Dilani S Lokuhetty
- Department of Pathology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Vajira H W Dissanayake
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| |
Collapse
|
35
|
Hu M, Ye L. Re: Jihad H. Kaouk, Ethan L. Ferguson, Alp Tuna Beksac, et al. Single-port Robotic Transvesical Partial Prostatectomy for Localized Prostate Cancer: Initial Series and Description of Technique. Eur Urol. 2022;82:551-58. Eur Urol 2023; 83:e52-e53. [PMID: 36357297 DOI: 10.1016/j.eururo.2022.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Minxiong Hu
- Fujian Medical University Provincial Clinical Medical College; Department of Urology, Fujian Provincial Hospital, Fuzhou, China; Urology Department, Fujian Provincial Hospital, Fuzhou, P.R. China.
| | - Liefu Ye
- Fujian Medical University Provincial Clinical Medical College; Department of Urology, Fujian Provincial Hospital, Fuzhou, China; Urology Department, Fujian Provincial Hospital, Fuzhou, P.R. China.
| |
Collapse
|
36
|
Xu T, Karschnia P, Cadilha BL, Dede S, Lorenz M, Seewaldt N, Nikolaishvili E, Müller K, Blobner J, Teske N, Herold JJ, Rejeski K, Langer S, Obeck H, Lorenzini T, Mulazzani M, Zhang W, Ishikawa-Ankerhold H, Buchholz VR, Subklewe M, Thon N, Straube A, Tonn JC, Kobold S, von Baumgarten L. In vivo dynamics and anti-tumor effects of EpCAM-directed CAR T-cells against brain metastases from lung cancer. Oncoimmunology 2023; 12:2163781. [PMID: 36687005 PMCID: PMC9851202 DOI: 10.1080/2162402x.2022.2163781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lung cancer patients are at risk for brain metastases and often succumb to their intracranial disease. Chimeric Antigen Receptor (CAR) T-cells emerged as a powerful cell-based immunotherapy for hematological malignancies; however, it remains unclear whether CAR T-cells represent a viable therapy for brain metastases. Here, we established a syngeneic orthotopic cerebral metastasis model in mice by combining a chronic cranial window with repetitive intracerebral two-photon laser scanning-microscopy. This approach enabled in vivo-characterization of fluorescent CAR T-cells and tumor cells on a single-cell level over weeks. Intraparenchymal injection of Lewis lung carcinoma cells (expressing the tumor cell-antigen EpCAM) was performed, and EpCAM-directed CAR T-cells were injected either intravenously or into the adjacent brain parenchyma. In mice receiving EpCAM-directed CAR T-cells intravenously, we neither observed substantial CAR T-cell accumulation within the tumor nor relevant anti-tumor effects. Local CAR T-cell injection, however, resulted in intratumoral CAR T-cell accumulation compared to controls treated with T-cells lacking a CAR. This finding was accompanied by reduced tumorous growth as determined per in vivo-microscopy and immunofluorescence of excised brains and also translated into prolonged survival. However, the intratumoral number of EpCAM-directed CAR T-cells decreased during the observation period, pointing toward insufficient persistence. No CNS-specific or systemic toxicities of EpCAM-directed CAR T-cells were observed in our fully immunocompetent model. Collectively, our findings indicate that locally (but not intravenously) injected CAR T-cells may safely induce relevant anti-tumor effects in brain metastases from lung cancer. Strategies improving the intratumoral CAR T-cell persistence may further boost the therapeutic success.
Collapse
Affiliation(s)
- Tao Xu
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany,CONTACT Philipp Karschnia
| | - Bruno Loureiro Cadilha
- Department of Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science Munich, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sertac Dede
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Lorenz
- Department of Medicine I, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Niklas Seewaldt
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elene Nikolaishvili
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katharina Müller
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Blobner
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Nico Teske
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Julika J. Herold
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kai Rejeski
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany,Department of Medicine III, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sigrid Langer
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hannah Obeck
- Department of Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science Munich, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Theo Lorenzini
- Department of Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science Munich, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Mulazzani
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Wenlong Zhang
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universitaet Muenchen (TUM), Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andreas Straube
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Sebastian Kobold
- Department of Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science Munich, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany,Louisa von Baumgarten Department of Neurosurgery, Division of Neuro-Oncology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistrasse 15/81377, Munich, Germany
| |
Collapse
|
37
|
Miao Q, Wei Z, Liu C, Ye Y, Cheng G, Song Z, Chen K, Zhang Y, Chen J, Yue C, Ruan H, Zhang X. Overall survival and cancer-specific survival were improved in local treatment of metastatic prostate cancer. Front Oncol 2023; 13:1130680. [PMID: 37207146 PMCID: PMC10189015 DOI: 10.3389/fonc.2023.1130680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Background For metastatic prostate cancer (mPCa), radical prostatectomy (RP) and radiation therapy (RT) may improve overall survival (OS) and cancer-specific survival (CSS). Compared with RT, RP shows significant advantages in improving patient outcomes. External beam radiation therapy (EBRT) even slightly elevates CSM with no statistical difference in OS compared with no local treatment (NLT). Objective To evaluate OS and CSS after local treatment (LT) (including RP and RT) versus NLT in mPCa. Design, setting, and participants Within the Surveillance, Epidemiology and End Results (SEER) database (2000-2018), 20098 patients with metastatic prostate cancer were selected in this study, of which 19433 patients had no local treatment, 377 patients with radical prostate treatment, and 288 patients with RT. Outcome measurements and statistical analysis Multivariable competing risks regression analysis after propensity score matching (PSM) was used to calculate CSM. Multivariable Cox regression analysis was used to identify the risk factors. Kaplan-Meier methods were used to calculate OS. Results and limitations A total of 20098 patients were included: NLT (n = 19433), RP (n=377) and RT (n=288). In a competing risk regression analysis after PSM (ratio 1:1), RP resulted in a significantly lower CSM (hazard ratio [HR] 0.36, 95% confidence interval [CI] 0.29-0.45) than NLT, while RT showed a slightly lower CSM (HR 0.77, 95% CI 0.63-0.95). In a competing risk regression analysis after PSM (ratio 1:1), RP led to a lower CSM (HR 0.56, 95% CI 0.41-0.76) versus RT. As for all-cause mortality (ACM), RP (HR 0.37, 95% CI 0.31-0.45) and RT (HR 0.66, 95% CI 0.56-0.79). also showed a downward trend. In terms of OS, RP and RT significantly improved the survival probability compared with NLT, with the effect of RP being more pronounced. Obviously, older age, Gleason scores ≥8, AJCC T3-T4 stage, AJCC N1, AJCC M1b-M1c were all associated with higher CSM (P <0.05). The same results held true for ACM. The limitation of this article is that it is not possible to assess the effect of differences in systemic therapy on CSM in mPCa patients and clinical trials are needed to verify the results. Conclusions For patients with mPCa, both RP and RT are beneficial to patients, and the efficacy of RP is better than RT from the perspective of CSM and ACM. Older age, higher gleason scores and the more advanced AJCC TNM stage all put patients at higher risk of dying. Patient summary A large population-based cancer database showed that in addition to first-line therapy (hormonal treatment), RP and radiotherapy can also benefit patients with mPCa.
Collapse
Affiliation(s)
- Qi Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhong Ye
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxuan Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changjie Yue
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiaoping Zhang, ; Hailong Ruan,
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiaoping Zhang, ; Hailong Ruan,
| |
Collapse
|
38
|
Martinez-Turtos A, Paul R, Grima-Reyes M, Issaoui H, Krug A, Mhaidly R, Bossowski JP, Chiche J, Marchetti S, Verhoeyen E, Chevet E, Ricci JE. IRE1α overexpression in malignant cells limits tumor progression by inducing an anti-cancer immune response. Oncoimmunology 2022; 11:2116844. [PMID: 36046811 PMCID: PMC9423862 DOI: 10.1080/2162402x.2022.2116844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
IRE1α is one of the three ER transmembrane transducers of the Unfolded Protein Response (UPR) activated under endoplasmic reticulum (ER) stress. IRE1α activation has a dual role in cancer as it may be either pro- or anti-tumoral depending on the studied models. Here, we describe the discovery that exogenous expression of IRE1α, resulting in IRE1α auto-activation, did not affect cancer cell proliferation in vitro but resulted in a tumor-suppressive phenotype in syngeneic immunocompetent mice. We found that exogenous expression of IRE1α in murine colorectal and Lewis lung carcinoma cells impaired tumor growth when syngeneic tumor cells were subcutaneously implanted in immunocompetent mice but not in immunodeficient mice. Mechanistically, the in vivo tumor-suppressive effect of overexpressing IRE1α in tumor cells was associated with IRE1α RNAse activity driving both XBP1 mRNA splicing and regulated IRE1-dependent decay of RNA (RIDD). We showed that the tumor-suppressive phenotype upon IRE1α overexpression was characterized by the induction of apoptosis in tumor cells along with an enhanced adaptive anti-cancer immunosurveillance. Hence, our work indicates that IRE1α overexpression and/or activation in tumor cells can limit tumor growth in immunocompetent mice. This finding might point toward the need of adjusting the use of IRE1α inhibitors in cancer treatments based on the predominant outcome of the RNAse activity of IRE1α.
Collapse
Affiliation(s)
- Adriana Martinez-Turtos
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rachel Paul
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Manuel Grima-Reyes
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Hussein Issaoui
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Adrien Krug
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rana Mhaidly
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Jozef P. Bossowski
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Johanna Chiche
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Sandrine Marchetti
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Els Verhoeyen
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
- CIRIINSERM U1111, Université de Lyon, Lyon, France
| | - Eric Chevet
- Inserm U1242, Université de Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Jean-Ehrland Ricci
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
39
|
Ashok D, Thara G, Kumar BK, Srinivas G, Ravinder D, Vishnu T, Sarasija M, Sushmitha B. Microwave-assisted synthesis, molecular docking studies of 1,2,3-triazole-based carbazole derivatives as antimicrobial, antioxidant and anticancer agents. RSC Adv 2022; 13:25-40. [PMID: 36545291 PMCID: PMC9761696 DOI: 10.1039/d2ra05960f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Herein, a new series of N-substituted 1,2,3-triazolylmethyl indole derivatives 4(a-u) was synthesized by rationally incorporating a pharmacophoric active heterocyclic ring containing indole and triazole moieties in one molecular frame via the conventional and microwave irradiation methods. Briefly, the new compounds 4(a-u) were synthesized via the N-alkylation of tetrahydro-1H-carbazoles followed by click reaction and copper-catalyzed Huisgen [3 + 2] cycloaddition in the presence of copper sulphate and sodium ascorbate with various aromatic azides 3(a-m). All the newly synthesized compounds were characterized via 1H and 13C NMR, mass, and IR spectroscopy and evaluated for their antimicrobial, antioxidant and anticancer activities. Among the synthesized compounds, 4d, 4j, 4n, 4p, 4s and 4r were found to exhibit good antimicrobial, antioxidant, anticancer activities. The biological activity of the synthesized compounds was further supplemented by molecular docking studies against the target receptors caspase-3 and 17-beta-hydroxy steroid dehydrogenase type 1, revealing that the reported structures best fit into the active site pocket of the target molecules.
Collapse
Affiliation(s)
- Dongamanti Ashok
- Green and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania UniversityHyderabad-500007TelanganaIndia
| | - Gugulothu Thara
- Department of Pharmacy, University College of Technology, Osmania UniversityHyderabad-500007TelanganaIndia
| | - Bhukya Kiran Kumar
- Department of Microbiology, University College of Science, Osmania UniversityHyderabad-500007TelanganaIndia
| | - Gundu Srinivas
- Green and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania UniversityHyderabad-500007TelanganaIndia
| | - Dharavath Ravinder
- Green and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania UniversityHyderabad-500007TelanganaIndia
| | - Thumma Vishnu
- Deparment of Sciences and Humanities, Matrusri Engineering CollegeHyderabad-500059TelanganaIndia
| | - Madderla Sarasija
- Department of Chemistry, Satavahana UniversityKarimnagar-505001TelanganaIndia
| | - Bujji Sushmitha
- Department of Pharmacy, University College of Technology, Osmania UniversityHyderabad-500007TelanganaIndia
| |
Collapse
|
40
|
Farhangnia P, Akbarpour M, Yazdanifar M, Aref AR, Delbandi AA, Rezaei N. Advances in therapeutic targeting of immune checkpoints receptors within the CD96-TIGIT axis: clinical implications and future perspectives. Expert Rev Clin Immunol 2022; 18:1217-1237. [PMID: 36154551 DOI: 10.1080/1744666x.2022.2128107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The development of therapeutic antibodies targeting immune checkpoint molecules (ICMs) that induce long-term remissions in cancer patients has revolutionized cancer immunotherapy. However, a major drawback is that relapse after an initial response may be attributed to innate and acquired resistance. Additionally, these treatments are not beneficial to all patients. Therefore, the discovery and targeting of novel ICMs and their combination with other immunotherapeutics are urgently needed. AREAS COVERED There has been increasing evidence of the CD96-TIGIT axis as ICMs in cancer immunotherapy in the last five years. This review will highlight and discuss the current knowledge about the role of CD96 and TIGIT in hematological and solid tumor immunotherapy in the context of empirical studies and clinical trials, and provide a comprehensive list of ongoing cancer clinical trials on the blockade of these ICMs, as well as the rationale behind combinational therapies with anti-PD-1/PD-L1 agents, chemotherapy drugs, and radiotherapy. Moreover, we share our perspectives on anti-CD96/TIGIT-related combination therapies. EXPERT OPINION CD96-TIGIT axis regulates anti-tumor immune responses. Thus, the receptors within this axis are the potential candidates for cancer immunotherapy. Combining the inhibition of CD96-TIGIT with anti-PD-1/PD-L1 mAbs and chemotherapy drugs has shown relatively effective results in the context of preclinical studies and tumor models.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Li Y, Zhao J, Zhang W, Wang A, Jiao M, Cai X, Zhu J, Liu Z, Huang JA. LINC02535/miR-30a-5p/GALNT3 axis contributes to lung adenocarcinoma progression via the NF- κ B signaling pathway. Cell Cycle 2022; 21:2455-2470. [PMID: 35852407 PMCID: PMC9677982 DOI: 10.1080/15384101.2022.2101336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (LncRNA) play important roles in multiple types of cancers. We addressed the role of LINC02535 by regulating the miR-30a-5p /GalNAc Transferase 3 (GALNT3) axis to promote the proliferation, migration, and invasion in lung adenocarcinoma (LUAD) cells. The Cancer Genome Atlas (TCGA) database screened differentially expressed lncRNAs. Quantitative real-time PCR analysis (qRT-PCR) confirmed that LINC02535 is highly expressed in LUAD tissues and cells. In vitro experiments showed that LINC02535 promotes the proliferation, migration, and invasion of LUAD cells. A xenograft mouse model was used to show that LINC02535 promotes tumor growth in vivo. RNA immunoprecipitation (RIP) and Dual-luciferase reporter assay results confirmed that LINC02535 targets miR-30a-5p. The Vicia villosa lectin (VVA) pull-down assay indicated that MUC1 is the glycosylation target of GALNT3, and western blot verified that NF-κB is the downstream signaling pathway of MUC1. We found that LINC02535 was increased in LUAD tissues and cells, and LINC02535 was correlated with the poor prognosis of LUAD patients. miR-30a-5p acts as a tumor suppressor in LUAD by targeting GALNT3. We also demonstrated that LINC02535 might function as the sponge of miR-30a-5p to up-regulate GALNT3, and consequently promote the proliferation and metastasis of LUAD. LINC02535 acts as a competing endogenous RNA (ceRNA) to interact with miR-30a-5p, thereby upregulating the expression of GALNT3, enhancing the function of MUC1, and activating the NF-κB signaling pathway, promoting the malignant progression of LUAD cells.Abbreviations: LncRNA:long non-coding RNA; LUAD: lung adenocarcinoma; TCGA: The Cancer Genome Atlas; GALNT3: GalNAc Transferase 3; qRT-PCR: quantitative real-time PCR analysis; RIP: RNA immunoprecipitation; SPF: specific pathogen-free; VVA: Vicia villosa lectin; ceRNA: competing endogenous RNA; MiRNAs: microRNAs; FBS: fetal bovine serum; PBS: Phosphate buffered saline; CCK-8: Cell Counting Kit-8; NSCLC: non-small cell lung cancer; OC: ovarian cancer; HCC: hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yue Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Jian Zhao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Weijie Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Min Jiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Xin Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,Institute of Respiratory Diseases, Soochow University, Suzhou, China,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,Institute of Respiratory Diseases, Soochow University, Suzhou, China,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China,CONTACT Zeyi Liu ; ; Jian-an Huang Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou215006, China
| | - Jian-an Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,Institute of Respiratory Diseases, Soochow University, Suzhou, China,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| |
Collapse
|
42
|
Duggan C, Tapsoba JDD, Scheel J, Wang CY, McTiernan A. Weight loss reduces circulating micro-RNA related to obesity and breast cancer in postmenopausal women. Epigenetics 2022; 17:2082-2095. [PMID: 35938852 PMCID: PMC9665139 DOI: 10.1080/15592294.2022.2107841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/18/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
Postmenopausal women with overweight or obesity have an increased risk of developing breast cancer but many of the mechanisms underlying this association remain to be elucidated. MicroRNAs (miRNAs), short non-coding single-stranded RNAs, regulate many physiological processes by controlling post-transcriptional regulation of mRNA. We measured circulating miRNA from 192 overweight/obese postmenopausal women (50-75 years) who were part of a randomized controlled trial, comparing independent and combined effects of a 12-month reduced-calorie weight-loss diet and exercise programme, versus control. RNA was extracted from stored plasma samples, and 23 a priori selected miRNA targets related to aetiology of breast cancer or obesity were measured using NanoString nCounter miRNA Expression assays. Changes from baseline to 12-months between controls and women in the diet/exercise weight loss arms were analysed using generalized estimating equations modification of linear regression, adjusted for confounders. We next examined changes in levels of circulating miRNA by amount of weight loss (0-10% versus ≥10%). Participants randomized to weight-loss interventions had statistically significantly greater reductions in miR-122 (-7.25%), compared to controls (+ 33.5%, P = 0.009), and miR-122 levels were statistically significantly correlated with weight loss (rho = 0.24; P = 0.001) Increasing weight loss was associated with greater reductions in miR-122 vs. controls (-11.7% (≥10% weight loss); +2.0% (0-10% weight loss) +33.5% (controls); Ptrend = 0.006), though this was not significant after correction for multiple testing (P = 0.05/23) Our study supports the effect of weight loss on regulation of miRNA.
Collapse
Affiliation(s)
- Catherine Duggan
- Division of Public Health Sciences Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jean de Dieu Tapsoba
- Division of Public Health Sciences Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Scheel
- Division of Public Health Sciences Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Radiology, University of Washington, Seattle Cancer Care Alliance, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Ching-Yun Wang
- Division of Public Health Sciences Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anne McTiernan
- Division of Public Health Sciences Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- School of Public Health, Department of Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Abdel-Hamid NM, Sherif MH, Al Samahy AE, Abdelhamid MS. Plasma Insulin/Erythrocytic Aldose Reductase Ratio as a Predictor for Hepatocellular Carcinoma among Type II Diabetics and Hepatitis C Virus-infected Patients. Asian Pac J Cancer Prev 2022; 23:3815-3823. [PMID: 36444594 PMCID: PMC9930971 DOI: 10.31557/apjcp.2022.23.11.3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a possible oncogenic progression during persistent hepatitis C-infection +/- type II diabetes mellitus (DM). We aim to investigate the plasma insulin, erythrocytic aldose reductase (AR) and sorbitol dehydrogenase (SDH) as possible predictive tools for HCC in hepatitis C-infected patients (HCV) +/- DM. Erythrocytes (RBCs) were adopted as a possible vehicle for pre-malignant variations being of short life span. Methods: The study included 20 healthy control and 100 patients of 48-64 years old, divided into 5 equal groups as; type II DM, HCC, HCC with DM, DM- HCV infected and non-DM HCV infected. Plasma levels of AFP and insulin were measured. RESULTS It showed an elevated AR, significant reduction of SDH in RBCs and plasma of DM patients. These values were greatly elevated among HCV, HCC, diabetic HCV, and diabetic HCC patients. All DM patients showed elevated insulin levels than normoglycemic controls. CONCLUSION The study substantiated the use of RBCs as a vehicle for early diagnostic markers better than plasma. We recommend the use of insulin/ erythrocytic AR ratio as a new laboratory marker for predicting HCC among type II diabetics or non-treated HCV-infected patients with control insulin/ erythrocytic AR ratio by each laboratory.
Collapse
Affiliation(s)
| | - Mohamad H Sherif
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | - Asmaa E Al Samahy
- Biochemistry Division, Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | | |
Collapse
|
44
|
Wu Y, Zhang M, Ni T, Zhang X, Wang R, Zhu L, Du J, Zhu Y, Zhao Y, Yang Y. Prognosis of systemic inflammation at an early stage of cirrhosis using the monocyte-to-lymphocyte ratio during malnutrition risk screening: a prospective cohort study. Postgrad Med 2022; 134:801-809. [PMID: 35929972 DOI: 10.1080/00325481.2022.2110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine whether the monocyte-to-lymphocyte ratio (MLR), as a systemic inflammation index, predicts malnutrition risk during the early stages of cirrhosis. METHODS We conducted a single-center prospective cohort study, enrolling patients from June 2016 to September 2020. The patients underwent malnutrition risk assessments upon admission. The patients were classified into five clinical stages according to portal hypertension. The malnutrition risk was scored using the Royal Free Hospital-Nutritional Prioritizing Tool (RFH-NPT) and validated by the Nutritional Risk Screening 2002 (NRS-2002) or Liver Disease Undernutrition Screening Tool (LDUST). Routine clinical laboratory measurements were performed to calculate the MLR, Child-Turcotte-Pugh (CTP) class, and model for end-stage liver disease (MELD) score. The patients were followed up for 2 years. RESULTS Among the 154 patients with cirrhosis, 60 had compensated cirrhosis and 94 had decompensated cirrhosis. The optimal cutoff value of the MLR, >0.4, was effective in predicting malnutrition related to death or liver transplantation. Those with a high malnutrition risk defined by the NRS-2002 or RFH-NPT had a higher MLR than those with a low malnutrition risk. For patients with class A CTP cirrhosis or a MELD score of <10, an MLR cutoff of <0.4 significantly distinguished more patients with a low malnutrition risk than those with a high malnutrition risk. Both the RFH-NPT score and MLR increased significantly across the decompensated cirrhosis substages. Interestingly, the MLR exhibited a positive correlation with the RFH-NPT score until varices appeared, but the correlation was the highest at the substage of a history of variceal bleeding (r = 0.714, P = 0.009). Multivariable analysis demonstrated that an MLR of >0.4 was an independent factor for malnutrition risk by screening with the RFH-NPT, and this was confirmed using the LDUST and NRS-2002. CONCLUSION Immune-related inflammatory dysfunction predicts malnutrition risk during the early stages of cirrhosis.
Collapse
Affiliation(s)
- Yuchao Wu
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengmeng Zhang
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianzhi Ni
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Zhang
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruojing Wang
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Du
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yage Zhu
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingren Zhao
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Yang
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
45
|
Inmutto N, Nimitrungtawee N, Srisuwan T, Kattipathanapong T, Jantarangkoon A, Puttisri O. Investigating Up-to-Seven Criteria and APRI (AST Platelet Ratio) as Prognostic Factors in Intermediate-Stage Hepatocellular Carcinoma Patients Who Received Transarterial Chemoembolization. Asian Pac J Cancer Prev 2022; 23:3939-3946. [PMID: 36444608 PMCID: PMC9930952 DOI: 10.31557/apjcp.2022.23.11.3939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Transarterial chemoembolization (TACE) is one of the locoregional treatments for intermediate-stage hepatocellular carcinoma (HCC). Multidetector computed tomography (MDCT) is a widely used diagnostic tool for HCC. It can also evaluate tumor size, tumor number, and tumor invasion. This study aimed to determine the median survival time in intermediate-stage HCC patients who underwent TACE and to find out prognostic factors influencing patients' survival time after TACE. METHODS A computerized search of medical record database in Maharaj Nakorn ChiangMai Hospital from January 2016 to December 2019 revealed 187 intermediate-stage HCC patients who received TACE as the first-line treatment. RESULTS The median survival time of patients in this study was 9.9 months (95% CI: 8.3-11.6). The patients with aspartate aminotransferase-to-platelet ratio (APRI) less than 0.5 had a significantly better median survival time as compared with patients with APRI ratio more than 0.5; (13.2 months versus 9.9 months, p-value < 0.05). Univariate and multivariate Cox regression analysis demonstrated that tumor number > 7 and tumor size > 5 centimeters (cm) could be considered as independent parameters predicting poor overall survival time in the sufferers (HR 2.64 95%CI 1.68-4.15 and HR 2.38 95%CI 1.32-4.31, respectively). CONCLUSION Based on our findings, patients with intermediate-stage HCC who received TACE had a lower median survival time compared to previous studies. However, we identified APRI less than 0.5, tumor size less than 5 cm, and tumor number less than 7 as prognostic factors improving survival time in intermediate-stage HCC patients.
Collapse
|
46
|
A Novel PSMA-Targeted Probe for NIRF-Guided Surgery and Photodynamic Therapy: Synthesis and Preclinical Validation. Int J Mol Sci 2022; 23:ijms232112878. [PMID: 36361667 PMCID: PMC9657290 DOI: 10.3390/ijms232112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
A total of 20% to 50% of prostate cancer (PCa) patients leave the surgery room with positive tumour margins. The intraoperative combination of fluorescence guided surgery (FGS) and photodynamic therapy (PDT) may be very helpful for improving tumour margin delineation and cancer therapy. PSMA is a transmembrane protein overexpressed in 90−100% of PCa cells. The goal of this work is the development of a PSMA-targeted Near InfraRed Fluorescent probe to offer the surgeon a valuable intraoperative tool for allowing a complete tumour removal, implemented with the possibility of using PDT to kill the eventual not resected cancer cells. PSMA-617 binding motif was conjugated to IRDye700DX-NHS and the conjugation did not affect the photophysical characteristics of the fluorophore. The affinity of IRDye700DX-PSMA-617 towards PCa cells followed the order of their PSMA expression, i.e., PC3-PIP > LNCaP > PC3, PC3-FLU. NIRF imaging showed a significant PC3-PIP tumour uptake after the injection of 1 or 5 nmol with a maximum tumour-to-muscle ratio (ca. 60) observed for both doses 24 h post-injection. Importantly, urine, healthy prostate, and the bladder were not fluorescent at 24 h post-injection. Flow cytometry and confocal images highlighted a co-localization of PSMA+ cells with IRDye700DX-PSMA uptake. Very interestingly, ex vivo analysis on a tumour specimen highlighted a significant PSMA expression by tumour-associated macrophages, likely attributable to extracellular vesicles secreted by the PSMA(+) tumour cells. FGS proved that IRDye700DX-PSMA was able to easily delineate tumour margins. PDT experiments showed a concentration-dependent decrease in cell viability (from 75% at 10 nM to 12% at 500 nM), whereas controls did not show any cytotoxicity. PC3-PIP tumour-bearing mice subjected to photodynamic therapy showed a delayed tumour growth. In conclusion, a novel PSMA-targeted NIRF dye with dual imaging-PDT capabilities was synthesized and displayed superior specificity compared to other small PSMA targeted molecules.
Collapse
|
47
|
Fuller RN, Kabagwira J, Vallejos PA, Folkerts AD, Wall NR. Survivin Splice Variant 2β Enhances Pancreatic Ductal Adenocarcinoma Resistance to Gemcitabine. Onco Targets Ther 2022; 15:1147-1160. [PMID: 36238134 PMCID: PMC9553431 DOI: 10.2147/ott.s341720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis, as it is difficult to predict or circumvent, and it develops chemoresistance quickly. One cellular mechanism associated with chemoresistance is alternative splicing dysfunction, a process through which nascent mRNA is spliced into different isoforms. Survivin (Baculoviral IAP Repeat-Containing Protein 5 (BIRC5)), a member of the inhibitor of apoptosis (IAP) protein family and a cell cycle-associated oncoprotein, is overexpressed in most cancers and undergoes alternative splicing (AS) to generate six different splicing isoforms. Methods To determine if survivin splice variants (SSV) could be involved in PDAC chemoresistance, a Gemcitabine (Gem) resistant (GR) cell line, MIA PaCa-2 GR, was created and assessed for its SSV levels and their potential association with GR. Cross-resistance was assessed in MIA-PaCa-2 GR cells to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin). Once chemoresistance was confirmed, RT-qPCR was used to assess the expression of survivin splice variants (SSVs) in PDAC cell lines. To confirm the effect of SSVs on chemoresistance, we used siRNA to knockdown all SSVs or SSV 2β. Results The MIA PaCa-2 GR cell line was 40 times more resistant to Gem and revealed increased resistance to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin); when compared to the parental MIA-PaCa-2 cells. RT-qPCR studies revealed an 8-fold relative expression increase in SSV 2β and a 2- to 8-fold increase in the other five SSVs in the GR cells. Knockdown of all SSV or SSV 2β only, using small inhibitory RNA (siRNA), sensitized the GR cells to Gem, indicating that these SSVs play a role in PDAC chemoresistance. Conclusion These findings provide evidence for the potential role of SSV 2β and other SSVs in innate and acquired PDAC chemoresistance. We also show that the expression of SSVs is not affected by the type of chemoresistance, therefore targeting survivin splice variants in combination with chemotherapy could benefit a wide range of patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Paul A Vallejos
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Andrew D Folkerts
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nathan R Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,Correspondence: Nathan R Wall, Center for Health Disparities & Molecular Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda University, Loma Linda, CA, 92350, USA, Tel +909-558-4000 x81397, Email
| |
Collapse
|
48
|
Saber Amoli S, Hasanzadeh A, Sadeghi F, Chehrazi M, Seyedmajidi M, Zebardast A, Yahyapour Y. Prevalence of Co-infection by Human Papillomavirus, Epstein- Barr Virus and Merkel Cell Polyomavirus in Iranian Oral Cavity Cancer and Pre-malignant Lesions. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:64-77. [PMID: 36397808 PMCID: PMC9653548 DOI: 10.22088/ijmcm.bums.11.1.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 01/25/2023]
Abstract
Human papillomavirus (HPV) is recognized as the most important risk factor in oral cavity cancer and pre-malignant lesions; however, the etiological association of concomitant infection with other oncogenic viruses as a co-factor has not been definitively proven. The present study aimed to determine the prevalence of co-infection with HPV, Epstein-Barr virus (EBV) and Merkel Cell PolyomaVirus (MCPyV) in oral cavity lesions in Iranian patients. One hundred and fourteen oral cavity samples, including 33 oral squamous cell carcinoma, 28 oral lichen planus, 16 oral epithelial dysplasia and 37 oral irritation fibromas were analyzed for the HPV, EBV and MCPyV infection by quantitative real-time PCR. According to histological features 32.5% and 28.9% of cases were oral irritation fibroma and oral squamous cell carcinoma, respectively. Infection with at least two viruses was detected in 21.1% of patients. In this group, co-infection with HPV/EBV was identified in 37.5% of cases, HPV/MCPyV in 29.2%, EBV/MCPyV in 12.5%, and HPV/EBV/MCPyV in 20.8%. There was no statistically significant difference between multiple infections and anatomical locations of cancer. The prevalence of triple viral infection (HPV/EBV/MCPyV) in well differentiated tumors was higher than EBV or MCPyV single infection. This study revealed that co-infection of HPV, EBV and MCPyV can be detected in both malignant and non-malignant oral cavity tissues, and co-infection with all three viruses in well differentiated tumors can be shown as a synergistic hypothesis of the pathogenic role of these viruses in oral malignant transformation.
Collapse
Affiliation(s)
- Sagahr Saber Amoli
- Department of Medical Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Ali Hasanzadeh
- Department of Medical Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mohammad Chehrazi
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran.
| | - Maryam Seyedmajidi
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Arghavan Zebardast
- Department Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yousef Yahyapour
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
49
|
Laureano RS, Sprooten J, Vanmeerbeerk I, Borras DM, Govaerts J, Naulaerts S, Berneman ZN, Beuselinck B, Bol KF, Borst J, Coosemans A, Datsi A, Fučíková J, Kinget L, Neyns B, Schreibelt G, Smits E, Sorg RV, Spisek R, Thielemans K, Tuyaerts S, De Vleeschouwer S, de Vries IJM, Xiao Y, Garg AD. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology 2022; 11:2096363. [PMID: 35800158 PMCID: PMC9255073 DOI: 10.1080/2162402x.2022.2096363] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/01/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8+/CD4+ T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Raquel S Laureano
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M Borras
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Zwi N Berneman
- Department of Haematology, Antwerp University Hospital, Edegem, Belgium
- Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | | | - Kalijn F Bol
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - an Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Ku Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Jitka Fučíková
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Lisa Kinget
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Bart Neyns
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
| | - Gerty Schreibelt
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Smits
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - I Jolanda M de Vries
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Tan Q, Ma X, Yang B, Liu Y, Xie Y, Wang X, Yuan W, Ma J. Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils. Gut Microbes 2022; 14:2073785. [PMID: 35549648 PMCID: PMC9116393 DOI: 10.1080/19490976.2022.2073785] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intratumor microbiome shapes the immune system and influences the outcome of various tumors. Porphyromonas gingivalis (P. gingivalis), the keystone periodontal pathogen, is highly epidemically connected with pancreatic cancer (PC). However, its causative role and the underlining mechanism in promoting PC oncogenesis remain unclear. Here, we illustrated the landscape of intratumor microbiome and its bacterial correlation with oral cavity in PC patients, where P. gingivalis presented both in the oral cavity and tumor tissues. When exposed to P. gingivalis, tumor development was accelerated in orthotopic and subcutaneous PC mouse model, and the cancerous pancreas exhibited a neutrophils-dominated proinflammatory tumor microenvironment. Mechanistically, the intratumoral P. gingivalis promoted PC progression via elevating the secretion of neutrophilic chemokines and neutrophil elastase (NE). Collectively, our study disclosed the bacterial link between periodontitis and PC, and revealed a previously unrecognized mechanism of P. gingivalis in PC pathophysiology, hinting at therapeutic implications.
Collapse
Affiliation(s)
- Qin Tan
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xiao Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China,Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Bing Yang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ye Liu
- The Key Laboratory of Geriatrics, Beijing Institution of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yibin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, P.R. China
| | - Xijun Wang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China,Wei Yuan State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China,CONTACT Jie Ma Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing100730, P.R. China
| |
Collapse
|