1
|
Lang J, Ding A, Henninger E, Reese S, Helzer K, Hazelberg X, de Diego CS, Kerr S, Sethakorn N, Bootsma M, Zhao S, Beebe D. Live Cell Sorting of Differentiated Primary Human Osteoclasts Allows Generation of Transcriptomic Signature Matrix. RESEARCH SQUARE 2025:rs.3.rs-6157400. [PMID: 40235499 PMCID: PMC11998790 DOI: 10.21203/rs.3.rs-6157400/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Osteoclasts are specialized cells that degrade the bone matrix to create space for bone regeneration. During tumorigenesis, cancer cells metastasize to bone by disrupting bone's natural remodeling cycle. However, the mechanisms underlying critical bone-tumor interactions are poorly understood due to challenges in isolating osteoclasts from human bone. Thus, the conventional method to obtain osteoclasts for in vitro studies is via the differentiation of peripheral blood monocytes, which results in mixed cultures containing progenitor cells and osteoclasts of varying maturity and nuclearity. Presently, we hypothesized that the transcriptomic signatures of mature, multinucleated osteoclasts are distinct from osteoclasts with fewer nuclei. We established a live cell biomarker expression-based sorting protocol to allow purification of mature osteoclasts while maintaining viability and function. We observed that mature, multinucleated osteoclasts were transcriptomically distinct from those with fewer nuclei and that mature osteoclasts showed higher expression of genes that are associated with osteoclast fusion and function.
Collapse
|
2
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
3
|
Dawalibi A, Alosaimi AA, Mohammad KS. Balancing the Scales: The Dual Role of Interleukins in Bone Metastatic Microenvironments. Int J Mol Sci 2024; 25:8163. [PMID: 39125732 PMCID: PMC11311339 DOI: 10.3390/ijms25158163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Bone metastases, a common and debilitating consequence of advanced cancers, involve a complex interplay between malignant cells and the bone microenvironment. Central to this interaction are interleukins (ILs), a group of cytokines with critical roles in immune modulation and inflammation. This review explores the dualistic nature of pro-inflammatory and anti-inflammatory interleukins in bone metastases, emphasizing their molecular mechanisms, pathological impacts, and therapeutic potential. Pro-inflammatory interleukins, such as IL-1, IL-6, and IL-8, have been identified as key drivers in promoting osteoclastogenesis, tumor proliferation, and angiogenesis. These cytokines create a favorable environment for cancer cell survival and bone degradation, contributing to the progression of metastatic lesions. Conversely, anti-inflammatory interleukins, including IL-4, IL-10, and IL-13, exhibit protective roles by modulating immune responses and inhibiting osteoclast activity. Understanding these opposing effects is crucial for developing targeted therapies aimed at disrupting the pathological processes in bone metastases. Key signaling pathways, including NF-κB, JAK/STAT, and MAPK, mediate the actions of these interleukins, influencing tumor cell survival, immune cell recruitment, and bone remodeling. Targeting these pathways presents promising therapeutic avenues. Current treatment strategies, such as the use of denosumab, tocilizumab, and emerging agents like bimekizumab and ANV419, highlight the potential of interleukin-targeted therapies in mitigating bone metastases. However, challenges such as therapeutic resistance, side effects, and long-term efficacy remain significant hurdles. This review also addresses the potential of interleukins as diagnostic and prognostic biomarkers, offering insights into patient stratification and personalized treatment approaches. Interleukins have multifaceted roles that depend on the context, including the environment, cell types, and cellular interactions. Despite substantial progress, gaps in research persist, particularly regarding the precise mechanisms by which interleukins influence the bone metastatic niche and their broader clinical implications. While not exhaustive, this overview underscores the critical roles of interleukins in bone metastases and highlights the need for continued research to fully elucidate their complex interactions and therapeutic potential. Addressing these gaps will be essential for advancing our understanding and treatment of bone metastases in cancer patients.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Amal Ahmed Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
4
|
Zhang Y, Xiao L, LYu L, Zhang L. Construction of a predictive model for bone metastasis from first primary lung adenocarcinoma within 3 cm based on machine learning algorithm: a retrospective study. PeerJ 2024; 12:e17098. [PMID: 38495760 PMCID: PMC10944632 DOI: 10.7717/peerj.17098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Background Adenocarcinoma, the most prevalent histological subtype of non-small cell lung cancer, is associated with a significantly higher likelihood of bone metastasis compared to other subtypes. The presence of bone metastasis has a profound adverse impact on patient prognosis. However, to date, there is a lack of accurate bone metastasis prediction models. As a result, this study aims to employ machine learning algorithms for predicting the risk of bone metastasis in patients. Method We collected a dataset comprising 19,454 cases of solitary, primary lung adenocarcinoma with pulmonary nodules measuring less than 3 cm. These cases were diagnosed between 2010 and 2015 and were sourced from the Surveillance, Epidemiology, and End Results (SEER) database. Utilizing clinical feature indicators, we developed predictive models using seven machine learning algorithms, namely extreme gradient boosting (XGBoost), logistic regression (LR), light gradient boosting machine (LightGBM), Adaptive Boosting (AdaBoost), Gaussian Naive Bayes (GNB), multilayer perceptron (MLP) and support vector machine (SVM). Results The results demonstrated that XGBoost exhibited superior performance among the four algorithms (training set: AUC: 0.913; test set: AUC: 0.853). Furthermore, for convenient application, we created an online scoring system accessible at the following URL: https://www.xsmartanalysis.com/model/predict/?mid=731symbol=7Fr16wX56AR9Mk233917, which is based on the highest performing model. Conclusion XGBoost proves to be an effective algorithm for predicting the occurrence of bone metastasis in patients with solitary, primary lung adenocarcinoma featuring pulmonary nodules below 3 cm in size. Moreover, its robust clinical applicability enhances its potential utility.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lixia Xiao
- Department of Thoracic Surgery, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, Shandong, China
| | - Lan LYu
- Department of Plastic Surgery, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, Shandong, China
| | - Liwei Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Elaasser B, Arakil N, Mohammad KS. Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective. Int J Mol Sci 2024; 25:2846. [PMID: 38474093 PMCID: PMC10932255 DOI: 10.3390/ijms25052846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of patients with advanced cancer poses clinical problems due to the complications that arise as the disease progresses. Bone metastases are a common problem that cancer patients may face, and currently, there are no effective drugs to treat these individuals. Prostate, breast, and lung cancers often spread to the bone, causing significant and disabling health conditions. The bone is a highly active and dynamic tissue and is considered a favorable environment for the growth of cancer. The role of osteoblasts and osteoclasts in the process of bone remodeling and the way in which their interactions change during the progression of metastasis is critical to understanding the pathophysiology of this disease. These interactions create a self-perpetuating loop that stimulates the growth of metastatic cells in the bone. The metabolic reprogramming of both cancer cells and cells in the bone microenvironment has serious implications for the development and progression of metastasis. Insight into the process of bone remodeling and the systemic elements that regulate this process, as well as the cellular changes that occur during the progression of bone metastases, is critical to the discovery of a cure for this disease. It is crucial to explore different therapeutic options that focus specifically on malignancy in the bone microenvironment in order to effectively treat this disease. This review will focus on the bone remodeling process and the effects of metabolic disorders as well as systemic factors like hormones and cytokines on the development of bone metastases. We will also examine the various therapeutic alternatives available today and the upcoming advances in novel treatments.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (B.E.); (N.A.)
| |
Collapse
|
6
|
Chao B, Jiao J, Yang L, Wang Y, Yu T, Liu H, Zhang H, Li M, Wang W, Cui X, Du S, Wang Z, Wu M. Comprehensive evaluation and advanced modification of polymethylmethacrylate cement in bone tumor treatment. J Mater Chem B 2023; 11:9369-9385. [PMID: 37712890 DOI: 10.1039/d3tb01494k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Bone tumors are invasive diseases with a tendency toward recurrence, disability, and high mortality rates due to their grievous complications. As a commercial polymeric biomaterial, polymethylmethacrylate (PMMA) cement possesses remarkable mechanical properties, injectability, and plasticity and is, therefore, frequently applied in bone tissue engineering. Numerous positive effects in bone tumor treatment have been demonstrated, including biomechanical stabilization, analgesic effects, and tumor recurrence prevention. However, to our knowledge, a comprehensive evaluation of the application of the PMMA cement in bone tumor treatment has not yet been reported. This review comprehensively evaluates the efficiency and complications of the PMMA cement in bone tumor treatment, for the first time, and introduces advanced modification strategies, providing an objective and reliable reference for the application of the PMMA cement in treating bone tumors. We have also summarized the current research on modifications to enhance the anti-tumor efficacy of the PMMA cement, such as drug carriers and magnetic hyperthermia.
Collapse
Affiliation(s)
- Bo Chao
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Jianhang Jiao
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Lili Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Tong Yu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Han Zhang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Mufeng Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Wenjie Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Xiangran Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Shangyu Du
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Minfei Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
7
|
Holladay L, Luu J, Balendra V, Kmetz K. Current and potential treatment of colorectal cancer metastasis to bone. Cancer Treat Res Commun 2023; 37:100763. [PMID: 37839182 DOI: 10.1016/j.ctarc.2023.100763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) with subsequent bone metastasis is associated with a poor prognosis compared with patients who do not develop bone metastasis. However, metastasis in bone is rare, contrasted with more common locations such as the liver and lungs. As a result, the treatment methods targeting CRC bone lesions are limited. This review aims to compile information regarding current and potential medical and surgical treatment methods for colorectal cancer with specific regard to bone metastasis. METHODS A computer-based literature review of animal- and human-based studies was conducted using multiple database searches. Case reports were excluded. RESULTS Preliminary findings demonstrate that treatments specifically targeting bone metastasis due to colorectal cancer are categorized by local vs. systemic treatment. The primary goals are the alleviation of skeletal-related events and improvement in quality of life. Current options include: chemotherapy, radiation, monoclonal antibodies, and surgery. Emerging options include intratumoral mellitin, MRgFUS, and bone microenvironment targeting. CONCLUSION Treatment of CRC metastasis to bone is necessary to slow down metastatic progression, alleviate symptoms, and improve quality of life. With a possible rise in bone metastasis due to increased overall CRC survival rates, more clinical trials should be performed to address this growing concern.
Collapse
Affiliation(s)
- Lauren Holladay
- Anne Burnett Marion School of Medicine at Texas Christian University, Fort Worth, TX, USA.
| | - Jennie Luu
- The University of the Incarnate Word School of Osteopathic Medicine, San Antonio, TX, USA
| | | | - Kevin Kmetz
- Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Sanchez-de-Diego C, Virumbrales-Muñoz M, Hermes B, Juang TD, Juang DS, Riendeau J, Guzman EC, Reed-McBain CA, Abizanda-Campo S, Patel J, Hess NJ, Skala MC, Beebe DJ, Ayuso JM. Griddient: a microfluidic array to generate reconfigurable gradients on-demand for spatial biology applications. Commun Biol 2023; 6:925. [PMID: 37689746 PMCID: PMC10492845 DOI: 10.1038/s42003-023-05282-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023] Open
Abstract
Biological tissues are highly organized structures where spatial-temporal gradients (e.g., nutrients, hypoxia, cytokines) modulate multiple physiological and pathological processes including inflammation, tissue regeneration, embryogenesis, and cancer progression. Current in vitro technologies struggle to capture the complexity of these transient microenvironmental gradients, do not provide dynamic control over the gradient profile, are complex and poorly suited for high throughput applications. Therefore, we have designed Griddent, a user-friendly platform with the capability of generating controllable and reversible gradients in a 3D microenvironment. Our platform consists of an array of 32 microfluidic chambers connected to a 384 well-array through a diffusion port at the bottom of each reservoir well. The diffusion ports are optimized to ensure gradient stability and facilitate manual micropipette loading. This platform is compatible with molecular and functional spatial biology as well as optical and fluorescence microscopy. In this work, we have used this platform to study cancer progression.
Collapse
Affiliation(s)
- Cristina Sanchez-de-Diego
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - María Virumbrales-Muñoz
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Brock Hermes
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Terry D Juang
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Duane S Juang
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Jeremiah Riendeau
- Morgridge Institute for Research, 330 N, Orchard street, Madison, WI, USA
| | | | - Catherine A Reed-McBain
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Sara Abizanda-Campo
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Janmesh Patel
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Nicholas J Hess
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Medicine, Division of Hematology, Medical Oncology and Palliative Care, Madison, WI, USA
| | - Melissa C Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, 330 N, Orchard street, Madison, WI, USA
| | - David J Beebe
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Jose M Ayuso
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- Department of Dermatology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
9
|
Sobierajska P, Wiatrak B, Jawien P, Janeczek M, Wiglusz K, Szeląg A, Wiglusz RJ. Imatinib-Functionalized Galactose Hydrogels Loaded with Nanohydroxyapatite as a Drug Delivery System for Osteosarcoma: In Vitro Studies. ACS OMEGA 2023; 8:17891-17900. [PMID: 37251195 PMCID: PMC10210190 DOI: 10.1021/acsomega.3c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
This study reports an impact of structure (XRPD, FT-IR) and surface morphology (SEM-EDS) of imatinib-functionalized galactose hydrogels, loaded and unloaded with nHAp, on osteosarcoma cell (Saos-2 and U-2OS) viability, levels of free oxygen radicals, and nitric oxide, levels of BCL-2, p53, and caspase 3 and 9, as well as glycoprotein-P activity. It was investigated how the rough surface of the crystalline hydroxyapatite-modified hydrogel affected amorphous imatinib (IM) release. The imatinib drug effect on cell cultures has been demonstrated in different forms of administration-directly to the culture or the hydrogels. Administration of IM and hydrogel composites could be expected to reduce the risk of multidrug resistance development by inhibiting Pgp.
Collapse
Affiliation(s)
- Paulina Sobierajska
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, Wroclaw 50-422, Poland
| | - Benita Wiatrak
- Department
of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, Wroclaw 50-345, Poland
| | - Paulina Jawien
- Department
of Biostructure and Animal Physiology, Wroclaw
University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Maciej Janeczek
- Department
of Biostructure and Animal Physiology, Wroclaw
University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Katarzyna Wiglusz
- Department
of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-566 Wroclaw, Poland
| | - Adam Szeląg
- Department
of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, Wroclaw 50-345, Poland
| | - Rafal J. Wiglusz
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, Wroclaw 50-422, Poland
| |
Collapse
|
10
|
Wang J, Chen Q, Wang X, Huang D, Jiang R. Bevacizumab/PD-1 inhibitor plus chemotherapy as first-line treatment of advanced non-squamous non-small-cell lung cancer. J Comp Eff Res 2023; 12:e230006. [PMID: 37067955 PMCID: PMC10402762 DOI: 10.57264/cer-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Aim: To compare the effectiveness of PD-1 inhibitor or bevacizumab plus chemotherapy in advanced non-squamous non-small cell lung cancer (nsNSCLC). Methods: We retrospectively collected data for patients with advanced nsNSCLC who underwent first-line treatment with PD-1 inhibitor or bevacizumab plus chemotherapy (IC and BC groups). Propensity score matching (PSM) was adopted to balance covariates. Results: 278 patients were enrolled, after PSM (n = 104/group), the objective response rate was 45.1% and 24.0% in the IC and BC groups (p = 0.001). Median progression-free survival (PFS) was 13.5 and 8.2 months (p = 0.007), and duration of response was 14.8 versus 8.1 months (p = 0.007), respectively. In subgroup analysis, the PFS for those patients with PD-L1≥1% (16.2 vs 6.8 months, p = 0.000) was significantly longer in the IC group than that in BC group, but not in the PD-L1<1% subgroup (8.9 vs12.7 months, p = 0.719). Conclusion: PD-1 inhibitor plus chemotherapy was superior to bevacizumab plus chemotherapy as first-line treatment for advanced nsNSCLC, which is debatable for patients with PD-L1<1%.
Collapse
Affiliation(s)
- Jing Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention & Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, China
- Department of Medical Oncology, Beijing Chaoyang Sanhuan Cancer Hospital, Beijing, 100122, China
| | - Qin Chen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention & Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Xinyue Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention & Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention & Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention & Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, China
| |
Collapse
|
11
|
Lu J, Hu D, Zhang Y, Ma C, Shen L, Shuai B. Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials. Front Oncol 2023; 13:1133828. [PMID: 36860316 PMCID: PMC9969102 DOI: 10.3389/fonc.2023.1133828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Denosumab, a fully humanized monoclonal neutralizing antibody, inhibits activation of the RANK/RANKL/OPG signaling pathway through competitive binding with RANKL, thereby inhibiting osteoclast-mediated bone resorption. Denosumab inhibits bone loss; therefore, it is used to treat metabolic bone diseases (including postmenopausal osteoporosis, male osteoporosis, and glucocorticoid-induced osteoporosis), in clinical practice. Since then, multiple effects of denosumab have been discovered. A growing body of evidence suggests that denosumab has a variety of pharmacological activities and broad potential in clinical diseases such as osteoarthritis, bone tumors, and other autoimmune diseases. Currently, Denosumab is emerging as a treatment for patients with malignancy bone metastases, and it also shows direct or indirect anti-tumor effects in preclinical models and clinical applications. However, as an innovative drug, its clinical use for bone metastasis of malignant tumors is still insufficient, and its mechanism of action needs to be further investigated. This review systematically summarizes the pharmacological mechanism of action of denosumab and the current understanding and clinical practice of the use of denosumab for bone metastasis of malignant tumors to help clinicians and researchers deepen their understanding of denosumab.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Shen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Bo Shuai,
| |
Collapse
|
12
|
Wang Y, Zhong Z, Ma M, Zhao Y, Zhang C, Qian Z, Wang B. The role played by ailanthone in inhibiting bone metastasis of breast cancer by regulating tumor-bone microenvironment through the RANKL-dependent pathway. Front Pharmacol 2023; 13:1081978. [PMID: 36686653 PMCID: PMC9849906 DOI: 10.3389/fphar.2022.1081978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction: Bone metastasis of breast cancer (BC) is a process in which the disruption of the bone homeostatic microenvironment leads to an increase in osteoclast differentiation. Ailanthus altissima shows an inhibitory effect on osteoclast differentiation. Ailanthone (AIL) refers to a natural compound isolated from Ailanthus altissima, a Chinese herbal medicine, and has effective anti-tumor activity in numerous cell lines. Its impact on bone metastases for BC is yet unclear. Methods: We measured the effect of AIL on MDA-MB-231 cells by wound healing experiments, Transwell and colony formation experiment. Using the Tartrate-resistant Acid Phosphatase (TRAP) staining tests, filamentous (F-actin) staining and bone resorption test to detect the effect of AIL on the osteoclast cell differentiation of the Bone Marrow-derived Macrophages (BMMs), activated by the MDA-MB-231 cell Conditioned Medium (MDA-MB-231 CM) and the Receptor Activator of Nuclear factor-κB Ligand (RANKL),and to explore its possibility Mechanisms. In vivo experiments verified the effect of AIL on bone destruction in breast cancer bone metastasis model mice. Results: In vitro, AIL significantly decrease the proliferation, migration and infiltration abilities of MDA-MB-231 cells at a safe concentration, and also reduced the expression of genes and proteins involved in osteoclast formation in MDA-MB-231 cells. Osteoclast cell differentiation of the BMMs, activated by MDA-MB-231 CM and RANKL, were suppressed by AIL in the concentration-dependent manner. Additionally, it inhibits osteoclast-specific gene and protein expression. It was noted that AIL inhibited the expression of the osteoclast differentiation-related cytokines RANKL and interleukin-1β (IL-1β) that were secreted by the MDA-MB-231 cells after upregulating the Forkhead box protein 3 (FOXP3) expression. Furthermore, AIL also inhibits the expression of the Mitogen-Activated Protein Kinase (MAPK), Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and Nuclear factor-κB Ligand (NF-κB) signaling pathways, which then suppresses the MDA-MB-231CM-induced development of Osteoclasts. Conclusion: Our study shows that AIL blocks osteoclast differentiation in the bone metastasis microenvironment by inhibiting cytokines secreted by BC cells, which may be a potential agent for the treatment of BC and its secondary bone metastasis.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zeyuan Zhong
- Shanghai Medical College, Fudan University, Shanghai, China,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yannan Zhao
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongjing Zhang
- Shanghai Medical College, Fudan University, Shanghai, China,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China,*Correspondence: Biyun Wang, ; Zhi Qian, ; Chongjing Zhang,
| | - Zhi Qian
- Institution of Orthopedic Diseases, Zhangye People’s Hospital Affiliated to Hexi University, Zhangye, China,*Correspondence: Biyun Wang, ; Zhi Qian, ; Chongjing Zhang,
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Biyun Wang, ; Zhi Qian, ; Chongjing Zhang,
| |
Collapse
|
13
|
Schirrmacher V, van Gool S, Stuecker W. Counteracting Immunosuppression in the Tumor Microenvironment by Oncolytic Newcastle Disease Virus and Cellular Immunotherapy. Int J Mol Sci 2022; 23:13050. [PMID: 36361831 PMCID: PMC9655431 DOI: 10.3390/ijms232113050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 10/24/2023] Open
Abstract
An apparent paradox exists between the evidence for spontaneous systemic T cell- mediated anti-tumor immune responses in cancer patients, observed particularly in their bone marrow, and local tumor growth in the periphery. This phenomenon, known as "concomitant immunity" suggests that the local tumor and its tumor microenvironment (TME) prevent systemic antitumor immunity to become effective. Oncolytic Newcastle disease virus (NDV), an agent with inherent anti-neoplastic and immune stimulatory properties, is capable of breaking therapy resistance and immunosuppression. This review updates latest information about immunosuppression by the TME and discusses mechanisms of how oncolytic viruses, in particular NDV, and cellular immunotherapy can counteract the immunosuppressive effect of the TME. With regard to cellular immunotherapy, the review presents pre-clinical studies of post-operative active-specific immunotherapy and of adoptive T cell-mediated therapy in immunocompetent mice. Memory T cell (MTC) transfer in tumor challenged T cell-deficient nu/nu mice demonstrates longevity and functionality of these cells. Graft-versus-leukemia (GvL) studies in mice demonstrate complete remission of late-stage disease including metastases and cachexia. T cell based immunotherapy studies with human cells in human tumor xenotransplanted NOD/SCID mice demonstrate superiority of bone marrow-derived as compared to blood-derived MTCs. Results from clinical studies presented include vaccination studies using two different types of NDV-modified cancer vaccine and a pilot adoptive T-cell mediated therapy study using re-activated bone marrow-derived cancer-reactive MTCs. As an example for what can be expected from clinical immunotherapy against tumors with an immunosuppressive TME, results from vaccination studies are presented from the aggressive brain tumor glioblastoma multiforme. The last decades of basic research in virology, oncology and immunology can be considered as a success story. Based on discoveries of these research areas, translational research and clinical studies have changed the way of treatment of cancer by introducing and including immunotherapy.
Collapse
|
14
|
Litak J, Czyżewski W, Szymoniuk M, Sakwa L, Pasierb B, Litak J, Hoffman Z, Kamieniak P, Roliński J. Biological and Clinical Aspects of Metastatic Spinal Tumors. Cancers (Basel) 2022; 14:cancers14194599. [PMID: 36230523 PMCID: PMC9559304 DOI: 10.3390/cancers14194599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Spine metastases are a common life-threatening complication of advanced-stage malignancies and often result in poor prognosis. Symptomatic spine metastases develop in the course of about 10% of malignant neoplasms. Therefore, it is essential for contemporary medicine to understand metastatic processes in order to find appropriate, targeted therapeutic options. Our literature review aimed to describe the up-to-date knowledge about the molecular pathways and biomarkers engaged in the spine’s metastatic processes. Moreover, we described current data regarding bone-targeted treatment, the emerging targeted therapies, radiotherapy, and immunotherapy used for the treatment of spine metastases. We hope that knowledge comprehensively presented in our review will contribute to the development of novel drugs targeting specific biomarkers and pathways. The more we learn about the molecular aspects of cancer metastasis, the easier it will be to look for treatment methods that will allow us to precisely kill tumor cells. Abstract Spine metastases are a common life-threatening complication of advanced-stage malignancies and often result in poor prognosis. Symptomatic spine metastases develop in the course of about 10% of malignant neoplasms. Therefore, it is essential for contemporary medicine to understand metastatic processes in order to find appropriate, targeted therapeutic options. Thanks to continuous research, there appears more and more detailed knowledge about cancer and metastasis, but these transformations are extremely complicated, e.g., due to the complexity of reactions, the variety of places where they occur, or the participation of both tumor cells and host cells in these transitions. The right target points in tumor metastasis mechanisms are still being researched; that will help us in the proper diagnosis as well as in finding the right treatment. In this literature review, we described the current knowledge about the molecular pathways and biomarkers engaged in metastatic processes involving the spine. We also presented a current bone-targeted treatment for spine metastases and the emerging therapies targeting the discussed molecular mechanisms.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Technologies and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, Lekarska 4, 26-600 Radom, Poland
- Correspondence:
| | - Joanna Litak
- St. John’s Cancer Center in Lublin, Jaczewskiego 7, 20-090 Lublin, Poland
| | - Zofia Hoffman
- Student Scientific Society, Medical University of Lublin, Al. Racławickie 1, 20-059 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| |
Collapse
|
15
|
Ma Y, Qiu S, Zhou R. Osteoporosis in Patients With Respiratory Diseases. Front Physiol 2022; 13:939253. [PMID: 35903070 PMCID: PMC9315364 DOI: 10.3389/fphys.2022.939253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change, environmental pollution, and virus epidemics have sharply increased the number of patients suffering from respiratory diseases in recent years. Prolonged periods of illness and drug use increase the occurrence of complications in these patients. Osteoporosis is the common bone metabolism disease with respiratory disturbance, which affects prognosis and increases mortality of patients. The problem of osteoporosis in patients with respiratory diseases needs more attention. In this review, we concluded the characteristics of osteoporosis in some respiratory diseases including COPD, asthma, COVID-19, tuberculosis, and lung cancer. We revealed that hypoxia was the common pathogenesis of osteoporosis secondary to respiratory diseases, with malnutrition and corticosteroid abuse driving the progression of osteoporosis. Hypoxia-induced ROS accumulation and activated HIF-1α lead to attenuated osteogenesis and enhanced osteoclastogenesis in patients with respiratory diseases. Tuberculosis and cancer also invaded bone tissue and reduced bone strength by direct infiltration. For the treatment of osteoporosis in respiratory patients, oral-optimized bisphosphonates were the best treatment modality. Vitamin D was a necessary supplement, both for calcium absorption in osteogenesis and for improvement of respiratory lesions. Reasonable adjustment of the dose and course of corticosteroids according to the etiology and condition of patients is beneficial to prevent the occurrence and development of osteoporosis. Additionally, HIF-1α was a potential target for the treatment of osteoporosis in respiratory patients, which could be activated under hypoxia condition and involved in the process of bone remodeling.
Collapse
Affiliation(s)
- Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Renyi Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Renyi Zhou,
| |
Collapse
|
16
|
Ayuso JM, Ochoa Garrido I. The Importance of the Tumor Microenvironment to Understand Tumor Origin, Evolution, and Treatment Response. Cancers (Basel) 2022; 14:cancers14081983. [PMID: 35454888 PMCID: PMC9030088 DOI: 10.3390/cancers14081983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jose M. Ayuso
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: (J.M.A.); (I.O.G.)
| | - Ignacio Ochoa Garrido
- Tissue Microenvironment (TME) Group, Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Institute for Health Research Aragón (IIS), 50018 Zaragoza, Spain
- Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
- Correspondence: (J.M.A.); (I.O.G.)
| |
Collapse
|