1
|
Choe S, Jeon M, Yoon H. Advanced Therapeutic Approaches for Metastatic Ovarian Cancer. Cancers (Basel) 2025; 17:788. [PMID: 40075635 PMCID: PMC11898553 DOI: 10.3390/cancers17050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer-related death among women, which is one of the most common gynecological cancers worldwide. Although several cytoreductive surgeries and chemotherapies have been attempted to address ovarian cancer, the disease still shows poor prognosis and survival rates due to prevalent metastasis. Peritoneal metastasis is recognized as the primary route of metastatic progression in ovarian cancer. It causes severe symptoms in patients, but it is generally difficult to detect at an early stage. Current anti-cancer therapy is insufficient to completely treat metastatic ovarian cancer due to its high rates of recurrence and resistance. Therefore, developing strategies for treating metastatic ovarian cancer requires a deeper understanding of the tumor microenvironment (TME) and the identification of effective therapeutic targets through precision oncology. Given that various signaling pathways, including TGF-β, NF-κB, and PI3K/AKT/mTOR pathways, influence cancer progression, their activity and significance can vary depending on the cancer type. In ovarian cancer, these pathways are particularly important, as they not only drive tumor progression but also impact the TME, which contributes to the metastatic potential. The TME plays a critical role in driving metastatic features in ovarian cancer through altered immunologic interactions. Recent therapeutic advances have focused on targeting these distinct features to improve treatment outcomes. Deciphering the complex interaction between signaling pathways and immune populations contributing to metastatic ovarian cancer provides an opportunity to enhance anti-cancer efficacy. Hereby, this review highlights the mechanisms of signaling pathways in metastatic ovarian cancer and immunological interactions to understand improved immunotherapy against ovarian cancer.
Collapse
Affiliation(s)
- Soohyun Choe
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (S.C.); (M.J.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Minyeong Jeon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (S.C.); (M.J.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyunho Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (S.C.); (M.J.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
2
|
Portella L, Bertolini G, Guardascione G, Di Febbraro DG, Ieranò C, D'Alterio C, Rea G, Napolitano M, Santagata S, Trotta AM, Camerlingo R, Scarpa E, Cecere SC, Ottaiano A, Palumbo G, Morabito A, Somma T, De Rosa G, Mayol L, Pacelli R, Pignata S, Scala S. CXCL12-loaded-hydrogel (CLG): A new device for metastatic circulating tumor cells (CTCs) capturing and characterization. Heliyon 2024; 10:e35524. [PMID: 39170328 PMCID: PMC11336720 DOI: 10.1016/j.heliyon.2024.e35524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Background Circulating Tumor Cells (CTCs) represent a small, heterogeneous population that comprise the minority of cells able to develop metastasis. To trap and characterize CTCs with metastatic attitude, a CXCL12-loaded hyaluronic-gel (CLG) was developed. CXCR4+cells with invasive capability would infiltrate CLG. Methods Human colon, renal, lung and ovarian cancer cells (HT29, A498, H460 and OVCAR8 respectively) were seeded on 150 μl Empty Gels (EG) or 300 ng/ml CXCL12 loaded gel (CLG) and allowed to infiltrate for 16 h. Gels were then digested and fixed with 2 % FA-HAse for human cancer cell enumeration or digested with HAse and cancer cells recovered. CLG-recovered cells migrated toward CXCL12 and were tested for colonies/spheres formation. Moreover, CXCR4, E-Cadherin and Vimentin expression was assessed through flow cytometry and RT-PCR. The clinical trial "TRAP4MET" recruited 48 metastatic/advanced cancer patients (8 OC, 8 LC, 8 GBM, 8 EC, 8 RCC and 8 EC). 10 cc whole blood were devoted to PBMCs extraction (7 cc) and ScreenCell™ filters (3 cc) CTCs evaluation. Ficoll-isolated patient's PBMCs were seeded over CLG and allowed to infiltrate for 16 h; gels were digested and fixed with 2 % FA-HAse, cells stained and DAPI+/CD45-/pan-CK + cells enumerated as CTCs. Results Human cancer cells infiltrate CLG more efficiently than EG (CLG/EG ratio 1.25 for HT29/1.58 for A498/1.71 for H460 and 2.83 for OVCAR8). CLG-recovered HT29 cells display hybrid-mesenchymal features [low E-cadherin (40 %) and high vimentin (235 %) as compared to HT29], CXCR4 two-fold higher than HT29, efficiently migrate toward CXCL12 (two-fold higher than HT29) and developed higher number of colonies (171 ± 21 for HT29-CLG vs 131 ± 8 colonies for HT29)/larger spheres (spheroid area: 26561 ± 6142 μm2 for HT29-CLG vs 20297 ± 7238 for HT29). In TRAP4MET clinical trial, CLG-CTCs were isolated in 8/8 patients with OC, 6/8 with LC, 6/8 with CRC, 8/8 with EC, 8/8 with RCC cancer and 5/8 with GBM. Interestingly, in OC, LC and GBM, CLG isolated higher number of CTCs as compared to the conventional ScreenCell™ (CLG/SC ratio = 1.88 for OC, 2.47 for LC and 11.89 for GBM). Bland and Altman blot analysis and Passing and Bablok regression analysis showed concordance between the methodological approaches but indicate that SC and CLG are not superimposable suggesting that the two systems select cells with different features. Conclusion CLG might represent a new and easy tool to isolate invasive CTCs in multiple cancers such as OC, LC and GBM at today orphan of reliable methods to consistently detect CTCs.
Collapse
Affiliation(s)
- Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Giulia Bertolini
- Tumor Genomic Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giuseppe Guardascione
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Dario Guido Di Febbraro
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Caterina Ieranò
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Maria Napolitano
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Sara Santagata
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Rosa Camerlingo
- Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Emilia Scarpa
- Gynecology Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Sabrina Chiara Cecere
- Gynecology Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Alessandro Ottaiano
- Abdominal Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Giuliano Palumbo
- Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Teresa Somma
- Department of Neurosciences, University of Naples Federico II, Italy
| | | | - Laura Mayol
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy
| | - Sandro Pignata
- Gynecology Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| |
Collapse
|
3
|
Kim NK, Suh DH, Kim K, No JH, Kim YB, Kim M, Cho YH. High-throughput viable circulating tumor cell isolation using tapered-slit membrane filter-based chipsets in the differential diagnosis of ovarian tumors. PLoS One 2024; 19:e0304704. [PMID: 38833451 PMCID: PMC11149860 DOI: 10.1371/journal.pone.0304704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVE To evaluate the diagnostic performance of circulating tumor cells (CTCs) using tapered-slit membrane filter (TSF)-based chipsets for the differential diagnosis of adnexal tumors. METHODS A total of 230 women with indeterminate adnexal tumors were prospectively enrolled. The sensitivity, specificity, and accuracy of the CTC-detecting chipsets were analyzed according to postoperative pathological results and compared with those of cancer antigen (CA)-125 and imaging tests. RESULTS Eighty-one (40.3%) benign tumors, 31 (15.4%) borderline tumors, and 89 (44.3%) ovarian cancers were pathologically confirmed. The sensitivity, specificity, and accuracy of CTC-detecting chipsets (75.3%, 58.0%, and 67.1%) for differentiating ovarian cancer from benign tumors were similar to CA-125 (78.7%, 53.1%, and 66.5%), but lower than CT/MRI (94.2%, 77.9%, and 86.5%). "CTC or CA125" showed increased sensitivity (91.0%) and "CTC and CA-125" revealed increased specificity (77.8%), comparable to CT/MRI. CTC detection rates in stage I/II and stage III/IV ovarian cancers were 69.6% and 81.4%, respectively. The sensitivity to detect high-grade serous (HGS) cancer from benign tumors (84.6%) was higher than that to detect non-HGS cancers (68.0%). CONCLUSION Although the diagnostic performance of the TSF platform to differentiate between ovarian cancer and benign tumors did not yield significant results, the combination of CTC and CA-125 showed promising potential in the diagnostic accuracy of ovarian cancer.
Collapse
Affiliation(s)
- Nam Kyeong Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Minki Kim
- Cell Bench Research Center, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Young-Ho Cho
- Cell Bench Research Center, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
4
|
Pei F, Tao Z, Lu Q, Fang T, Peng S. Octamer-binding transcription factor 4-positive circulating tumor cell predicts worse treatment response and survival in advanced cholangiocarcinoma patients who receive immune checkpoint inhibitors treatment. World J Surg Oncol 2024; 22:110. [PMID: 38664770 PMCID: PMC11044354 DOI: 10.1186/s12957-024-03369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Octamer-binding transcription factor 4-positive circulating tumor cell (OCT4+CTC) exhibits high stemness and invasive potential, which may influence the efficacy of immune checkpoint inhibitors (ICI). This study aimed to assess the prognostic role of OCT4+CTC in advanced cholangiocarcinoma (CCA) patients who received ICI treatment. METHODS In total, 40 advanced CCA patients who received ICI treatment were included, and CTC and OCT4 counts were detected via a Canpatrol system and an RNA in situ hybridization method before ICI treatment. Patients were subsequently divided into none CTC, OCT4-CTC, and OCT4+CTC groups. Patients were followed up for a median of 10.4 months. RESULTS The percentages of patients in none CTC, OCT4-CTC, and OCT4+CTC groups were 25.0%, 30.0%, and 45.0%, respectively. The proportion of patients with lymph node metastasis was highest in OCT4+CTC group, followed by none CTC group, and lowest in OCT4-CTC group (P = 0.025). The objective response rate (ORR) was lowest in OCT4+CTC group, moderate in OCT4-CTC group, and highest in none CTC group (P = 0.009), while disease control rate was not different among three groups (P = 0.293). In addition, progression-free survival (PFS) (P < 0.001) and overall survival (OS) (P = 0.001) were shorter in the OCT4+CTC group than in none CTC & OCT4-CTC group. Moreover, OCT4+CTC (versus none CTC) was independently linked with poorer PFS [hazard ratio (HR) = 6.752, P = 0.001] and OS (HR = 6.674, P = 0.003) in advanced CCA patients. CONCLUSION OCT4+CTC relates to lymph node metastasis and shows a good predictive value for poor treatment response and survival in advanced CCA patients who receive ICI treatment.
Collapse
Affiliation(s)
- Fei Pei
- Department of Hepatobiliary Pancreatic Surgery, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435200, Hubei, China
| | - Zhen Tao
- Department of Hepatobiliary Pancreatic Surgery, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435200, Hubei, China.
| | - Qi Lu
- Department of Hepatobiliary Pancreatic Surgery, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435200, Hubei, China
| | - Tao Fang
- Department of Hepatobiliary Pancreatic Surgery, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435200, Hubei, China
| | - Shasha Peng
- Department of Hepatobiliary Pancreatic Surgery, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435200, Hubei, China
| |
Collapse
|
5
|
Śliwa A, Szczerba A, Pięta PP, Białas P, Lorek J, Nowak-Markwitz E, Jankowska A. A Recipe for Successful Metastasis: Transition and Migratory Modes of Ovarian Cancer Cells. Cancers (Basel) 2024; 16:783. [PMID: 38398174 PMCID: PMC10886816 DOI: 10.3390/cancers16040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
One of the characteristic features of ovarian cancer is its early dissemination. Metastasis and the invasiveness of ovarian cancer are strongly dependent on the phenotypical and molecular determinants of cancer cells. Invasive cancer cells, circulating tumor cells, and cancer stem cells, which are responsible for the metastatic process, may all undergo different modes of transition, giving rise to mesenchymal, amoeboid, and redifferentiated epithelial cells. Such variability is the result of the changing needs of cancer cells, which strive to survive and colonize new organs. This would not be possible if not for the variety of migration modes adopted by the transformed cells. The most common type of metastasis in ovarian cancer is dissemination through the transcoelomic route, but transitions in ovarian cancer cells contribute greatly to hematogenous and lymphatic dissemination. This review aims to outline the transition modes of ovarian cancer cells and discuss the migratory capabilities of those cells in light of the known ovarian cancer metastasis routes.
Collapse
Affiliation(s)
- Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Paweł Piotr Pięta
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Białas
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Jakub Lorek
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| |
Collapse
|
6
|
Gostomczyk K, Łukaszewska E, Borowczak J, Bator A, Zdrenka M, Bodnar M, Szylberg Ł. Flow cytometry in the detection of circulating tumor cells in neoplastic effusions. Clin Chim Acta 2024; 552:117651. [PMID: 37980974 DOI: 10.1016/j.cca.2023.117651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE Despite its limitations, the cytology of body fluids is widely used in diagnosing neoplastic cells. Flow cytometry detects and identifies individual cells, enabling the detection of circulating tumor cells and facilitating diagnosis. This study compared the diagnostic utility of flow cytometry and cytology for detecting cancer cells in peritoneal and pleural fluids. METHODOLOGY We used flow cytometry and cytology to examine 119 pleural and peritoneal effusions received for routine screening. Antibodies against clusters of differentiation 45 (CD45), 14 (CD14), and Epithelial cell adhesion molecule (EpCAM) were used to detect malignant cells. Based on combined clinical and diagnostic information, 37 fluid specimens were malignant, and 77 were benign. RESULTS Flow cytometry correctly identified 34 cancers, while cytology identified 26 cancers (sensitivity 91.89 % vs. 70.27, respectively). Both methods had equal specificity (98.7 %). At a cut-off of > 0.29 % EpCAM(+) cells to all cells in the samples, flow cytometry accurately detected cancer cells, achieving 89.2 % sensitivity, 90.9 % specificity, and an AUC of 0.959 (p < 0.001). CONCLUSION Flow cytometry improves the detection of epithelial cancer cells in peritoneal and pleural fluids compared to conventional cytology. Due to similar specificity and higher sensitivity, flow cytometry offers a promising alternative to cytology for patient screening.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland.
| | - Ewelina Łukaszewska
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland
| | - Anita Bator
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland
| | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland; Chair of Pathology, Dr. Jan Biziel Memorial University Hospital No. 2 in Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland; Chair of Pathology, Dr. Jan Biziel Memorial University Hospital No. 2 in Bydgoszcz, Poland
| |
Collapse
|
7
|
Ma J, Chen Y, Ren J, Zhou T, Wang Z, Li C, Qiu L, Gao T, Ding P, Ding Z, Ou L, Wang J, Xu J, Zhou Z, Jia C, Sun N, Pei R, Zhu W. Purification of Circulating Tumor Cells Based on Multiantibody-Modified Magnetic Nanoparticles and Molecular Analysis toward Epithelial Ovarian Cancer Detection. ACS Sens 2023; 8:3744-3753. [PMID: 37773014 DOI: 10.1021/acssensors.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Circulating tumor cells (CTCs) are valuable circulating biomarkers of cancer, which carry primary tumor information and may provide real-time assessment of tumor status as well as treatment response in cancer patients. Herein, we developed a novel assay for accurate diagnosis and dynamic monitoring of epithelial ovarian cancer (EOC) using CTC RNA analysis. Multiantibody-modified magnetic nanoparticles were prepared for purification of EOC CTCs from whole blood samples of clinical patients. Subsequently, nine EOC-specific mRNAs of purified CTCs were quantified using droplet digital PCR. The EOC CTC Score was generated using a multivariate logistic regression model for each sample based on the transcripts of the nine genes. This assay exhibited a distinguishing diagnostic performance for the detection of EOC (n = 17) from benign ovarian tumors (n = 30), with an area under the receiver operating characteristic curve (AUC) of 0.96 (95% CI = 0.91-1.00). Moreover, dynamic changes of the EOC CTC Score were observed in patients undergoing treatment, demonstrating the potential of the assay for monitoring EOC. In conclusion, we present an accurate assay for the diagnosis and monitoring of EOC via CTC RNA analysis, and the results suggest that it may provide a promising solution for the detection and treatment response assessment of EOC.
Collapse
Affiliation(s)
- Jialing Ma
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ying Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jing Ren
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tongping Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhili Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Cheng Li
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Qiu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Pi Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zixin Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Li Ou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jun Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jinni Xu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhirun Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chenxin Jia
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Na Sun
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
8
|
Fasoulakis Z, Psarommati MZ, Papapanagiotou A, Pergialiotis V, Koutras A, Douligeris A, Mortaki A, Mihail A, Theodora M, Stavros S, Karakalpakis D, Papamihail M, Kontomanolis EN, Daskalakis G, Antsaklis P. MicroRNAs Can Influence Ovarian Cancer Progression by Dysregulating Integrin Activity. Cancers (Basel) 2023; 15:4449. [PMID: 37760437 PMCID: PMC10526761 DOI: 10.3390/cancers15184449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Ovarian cancer is a deadly disease that affects thousands of women worldwide. Integrins, transmembrane receptors that mediate cell adhesion and signaling, play important roles in ovarian cancer progression, metastasis, and drug resistance. Dysregulated expression of integrins is implicated in various cellular processes, such as cell migration, invasion, and proliferation. Emerging evidence suggests that microRNAs (miRNAs) can regulate integrin expression and function, thus affecting various physiological and pathological processes, including ovarian cancer. In this article, we review the current understanding of integrin-mediated cellular processes in ovarian cancer and the roles of miRNAs in regulating integrins. We also discuss the therapeutic potential of targeting miRNAs that regulate integrins for the treatment of ovarian cancer. Targeting miRNAs that regulate integrins or downstream signaling pathways of integrins may provide novel therapeutic strategies for inhibiting integrin-mediated ovarian cancer progression.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Michaela-Zoi Psarommati
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (M.-Z.P.); (E.N.K.)
| | - Angeliki Papapanagiotou
- Laboratory of Chemistry Biology, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Vasilios Pergialiotis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Athanasios Douligeris
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Anastasia Mortaki
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Antonios Mihail
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Sofoklis Stavros
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, 124 62 Athens, Greece;
| | - Defkalion Karakalpakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Maria Papamihail
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (V.P.); (A.K.); (A.D.); (A.M.); (A.M.); (M.T.); (D.K.); (M.P.)
| | - Emmanuel N. Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (M.-Z.P.); (E.N.K.)
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (G.D.); (P.A.)
| | - Panos Antsaklis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (G.D.); (P.A.)
| |
Collapse
|
9
|
Karimi F, Azadbakht O, Veisi A, Sabaghan M, Owjfard M, Kharazinejad E, Dinarvand N. Liquid biopsy in ovarian cancer: advantages and limitations for prognosis and diagnosis. Med Oncol 2023; 40:265. [PMID: 37561363 DOI: 10.1007/s12032-023-02128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Ovarian cancer (OC) is a highly fatal gynecologic malignancy, often diagnosed at an advanced stage which presents significant challenges for disease management. The clinical application of conventional tissue biopsy methods and serological biomarkers has limitations for the diagnosis and prognosis of OC patients. Liquid biopsy is a novel sampling method that involves analyzing distinctive tumor elements secreted into the peripheral blood. Growing evidence suggests that liquid biopsy methods such as circulating tumor cells, cell-free RNA, circulating tumor DNA, exosomes, and tumor-educated platelets may improve early prognosis and diagnosis of OC, leading to enhanced therapeutic management of the disease. This study reviewed the evidence demonstrating the utility of liquid biopsy components in OC prognosis and diagnosis, and evaluated the current advantages and limitations of these methods. Additionally, the existing obstacles and crucial topics for future studies utilizing liquid biopsy in OC patients were discussed.
Collapse
Affiliation(s)
- Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| | - Omid Azadbakht
- Department of Radiology Technology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Ali Veisi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mohammad Sabaghan
- Department of Parasitology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | | | - Negar Dinarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|