1
|
Smolarz B, Łukasiewicz H, Samulak D, Piekarska E, Kołaciński R, Romanowicz H. Lung Cancer-Epidemiology, Pathogenesis, Treatment and Molecular Aspect (Review of Literature). Int J Mol Sci 2025; 26:2049. [PMID: 40076671 PMCID: PMC11900952 DOI: 10.3390/ijms26052049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer is one of the most common malignant cancers in most countries and is the leading cause of death among cancer diseases worldwide. Despite constant progress in diagnosis and therapy, survival rates of patients diagnosed with lung cancer remain unsatisfactory. Numerous epidemiological and experimental studies conducted as early as the 1970s confirm that the most important risk factor for the development of lung cancer is long-term smoking, which remains valid to this day. In the paper, the authors present the latest data on the epidemiology, pathogenesis, treatment and molecular aspects of this cancer. In the last decade, many molecular alterations that are effective in the development of lung cancer have been discovered. In adenocarcinoma, tyrosine kinase inhibitors were developed for EGFR mutations and ALK and ROS1 translocations and were approved for use in the treatment of advanced stage adenocarcinomas. In the case of squamous cell carcinoma, the evaluation of these mutations is not yet being used in clinical practice. In addition, there are ongoing studies concerning many potential therapeutic molecular targets, such as ROS, MET, FGFR, DDR-2 and RET. Constant progress in diagnostic and therapeutic methods gives rise to hopes for an improved prognosis in patients with lung cancer.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Honorata Łukasiewicz
- Faculty of Medicine and Health Sciences, Department of Nursing, The President Stanisław Wojciechowski Calisia University, 62-800 Kalisz, Poland;
| | - Dariusz Samulak
- Department of Obstetrics and Gynecology and Gynecological Oncology, Regional Hospital in Kalisz, 62-800 Kalisz, Poland;
- Department of Obstetrics, The President Stanisław Wojciechowski Calisia University, 62-800 Kalisz, Poland
| | - Ewa Piekarska
- Regional Hospital in Kalisz, 62-800 Kalisz, Poland; (E.P.); (R.K.)
| | | | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| |
Collapse
|
2
|
Liu W, Du Q, Mei T, Wang J, Huang D, Qin T. Comprehensive analysis the prognostic and immune characteristics of mitochondrial transport-related gene SFXN1 in lung adenocarcinoma. BMC Cancer 2024; 24:94. [PMID: 38233752 PMCID: PMC10795352 DOI: 10.1186/s12885-023-11646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Mitochondria, which serve as the fundamental organelle for cellular energy and metabolism, are closely linked to the growth and survival of cancer cells. This study aims to identify and assess Sideroflexin1 (SFXN1), an unprecedented mitochondrial gene, as a potential prognostic biomarker for lung adenocarcinoma (LUAD). METHODS The mRNA and protein levels of SFXN1 were investigated based on the Cancer Genome Atlas (TCGA) LUAD dataset, and then validated by real-time quantitative PCR, Western Blotting and immunohistochemistry from our clinical samples. The clinical correlation and prognostic value were evaluated by the TCGA cohort and verified via our clinical dataset (n = 90). The somatic mutation, drug sensitivity data, immune cell infiltration and single-cell RNA sequencing data of SFXN1 were analyzed through public databases. RESULTS SFXN1 was markedly upregulated at both mRNA and protein levels in LUAD, and high expression of SFXN1 were correlated with larger tumor size, positive lymph node metastasis, and advanced clinical stage. Furthermore, SFXN1 upregulation was significantly associated with poor clinical prognosis. SFXN1 co-expressed genes were also analyzed, which were mainly involved in the cell cycle, central carbon metabolism, DNA repair, and the HIF-1α signaling pathway. Additionally, SFXN1 expression correlated with the expression of multiple immunomodulators, which act to regulate the tumor immune microenvironment. Results also demonstrated an association between SFXN1 expression and increased immune cell infiltration, such as activated CD8 + T cells, natural killer cells (NKs), activated dendritic cells (DCs), and macrophages. LUAD patients with high SFXN1 expression exhibited heightened sensitivity to multiple chemotherapies and targeted drugs and predicted a poor response to immunotherapy. SFXN1 represented an independent prognostic marker for LUAD patients with an improved prognostic value for overall survival when combined with clinical stage information. CONCLUSIONS SFXN1 is frequently upregulated in LUAD and has a significant impact on the tumor immune environment. Our study uncovers the potential of SFXN1 as a prognostic biomarker and as a novel target for intervention in LUAD.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingwu Du
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ting Mei
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingya Wang
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dingzhi Huang
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Tingting Qin
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
3
|
Fischer M, Luck M, Werle M, Vogel A, Bashawat M, Ludwig K, Scheidt HA, Müller P. The small-molecule kinase inhibitor ceritinib, unlike imatinib, causes a significant disturbance of lipid membrane integrity: A combined experimental and MD study. Chem Phys Lipids 2023; 257:105351. [PMID: 37863350 DOI: 10.1016/j.chemphyslip.2023.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Ceritinib and imatinib are small-molecule protein kinase inhibitors which are applied as therapeutic agents against various diseases. The fundamentals of their clinical use, i.e. their pharmacokinetics as well as the mechanisms of the inhibition of the respective kinases, are relatively well studied. However, the interaction of the drugs with membranes, which can be a possible cause of side effects, has hardly been investigated so far. Therefore, we have characterized the interaction of both drugs with lipid membranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the absence and in the presence of cholesterol. For determining the membrane impact of both drugs on a molecular level, different experimental (NMR, ESR, fluorescence) and theoretical (MD simulations) approaches were applied. The data show that ceritinib, in contrast to imatinib, interacts more effectively with membranes significantly affecting various physico-chemical membrane parameters like membrane order and transmembrane permeation of polar solutes. The pronounced membrane impact of ceritinib can be explained by a strong affinity of the drug towards POPC which competes with the POPC-cholesterol interaction by that attenuating the ordering effect of cholesterol. The data are relevant for understanding putative toxic and cytotoxic side effects of these drugs such as the triggering of cell lysis or apoptosis.
Collapse
Affiliation(s)
- Markus Fischer
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Meike Luck
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Max Werle
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Alexander Vogel
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Mohammad Bashawat
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Kai Ludwig
- Freie Universität Berlin, Research Center for Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Fabeckstr. 36a, D-14195 Berlin, Germany
| | - Holger A Scheidt
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Peter Müller
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany.
| |
Collapse
|
4
|
Li W, Li M, Huang Q, He X, Shen C, Hou X, Xue F, Deng Z, Luo Y. Advancement of regulating cellular signaling pathways in NSCLC target therapy via nanodrug. Front Chem 2023; 11:1251986. [PMID: 37744063 PMCID: PMC10512551 DOI: 10.3389/fchem.2023.1251986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of high cancer-associated mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common type of LC. The mechanisms of NSCLC evolution involve the alterations of multiple complex signaling pathways. Even with advances in biological understanding, early diagnosis, therapy, and mechanisms of drug resistance, many dilemmas still need to face in NSCLC treatments. However, many efforts have been made to explore the pathological changes of tumor cells based on specific molecular signals for drug therapy and targeted delivery. Nano-delivery has great potential in the diagnosis and treatment of tumors. In recent years, many studies have focused on different combinations of drugs and nanoparticles (NPs) to constitute nano-based drug delivery systems (NDDS), which deliver drugs regulating specific molecular signaling pathways in tumor cells, and most of them have positive implications. This review summarized the recent advances of therapeutic targets discovered in signaling pathways in NSCLC as well as the related NDDS, and presented the future prospects and challenges.
Collapse
Affiliation(s)
- Wenqiang Li
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Huang
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Xiaoyu He
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoming Hou
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fulai Xue
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
6
|
Azzoli C, Huynh L, Yi D, Duh MS, Cai B. Retrospective Study to Examine Prognostic Value of C-Reactive Protein in Patients With Surgically Resectable Non-Small-Cell Lung Cancer. Clin Lung Cancer 2023; 24:329-338. [PMID: 36842852 DOI: 10.1016/j.cllc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND This study evaluated the association between elevated C-reactive protein (CRP) and clinical outcomes among adults treated with surgery for non-small cell lung cancer (NSCLC) in the US. MATERIALS AND METHODS Adults with NSCLC who underwent lung cancer surgery and had ≥1 CRP measurement prior to, or >1 month following, index surgery were identified in the Optum Clinformatics claims database. The association between elevated CRP (>10 mg/L) and risk of NSCLC recurrence/death was assessed separately during the 6 months before surgery (pre surgery cohort) and 2 years following surgery (post-surgery cohort) using multivariate regressions and Kaplan-Meier analysis. RESULTS After adjusting for baseline demographic and clinical characteristics among patients in the pre surgery cohort with index surgery between 2016 to 2020 (n = 104), the incidence rate ratio (IRR) for NSCLC recurrence between elevated vs. non-elevated CRP was 2.17 (95% confidence interval [CI]=1.03-4.60; P = .04). In the post surgery cohort (n = 264), the adjusted IRR for disease recurrence (elevated vs. non-elevated CRP) was 2.22 (95% CI=1.05-4.70; P = .04). In the pre surgery cohort, the odds of death were nearly two-fold (odds ratio [OR]=1.91; 95% CI=1.06-3.42; P = .03) among patients with elevated CRP. In the post surgery cohort, the OR was 1.62 (95% CI=0.88-2.97; P = .12). Among those with persistently elevated CRP prior to surgery, there was a significant overall trend of increased CRP over the 5-year period. CONCLUSION These results support the association between elevated CRP and a higher risk of NSCLC recurrence/death in pre- and postsurgery cohorts. This study may shed lights on inflammation-suppressing treatments in patients with NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Beilei Cai
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| |
Collapse
|
7
|
Yu L, Liang X, Wang J, Ding G, Tang J, Xue J, He X, Ge J, Jin X, Yang Z, Li X, Yao H, Yin H, Liu W, Yin S, Sun B, Sheng J. Identification of Key Biomarkers and Candidate Molecules in Non-Small-Cell Lung Cancer by Integrated Bioinformatics Analysis. Genet Res (Camb) 2023; 2023:6782732. [PMID: 36688087 PMCID: PMC9831708 DOI: 10.1155/2023/6782732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most prevalent malignant tumor of the lung cancer, for which the molecular mechanisms remain unknown. In this study, we identified novel biomarkers associated with the pathogenesis of NSCLC aiming to provide new diagnostic and therapeutic approaches for NSCLC by bioinformatics analysis. Methods From the Gene Expression Omnibus database, GSE118370 and GSE10072 microarray datasets were obtained. Identifying the differentially expressed genes (DEGs) between lung adenocarcinoma and normal samples was done. By using bioinformatics tools, a protein-protein interaction (PPI) network was constructed, modules were analyzed, and enrichment analyses were performed. The expression and prognostic values of 14 hub genes were validated by the GEPIA database, and the correlation between hub genes and survival in lung adenocarcinoma was assessed by UALCAN, cBioPortal, String and Cytoscape, and Timer tools. Results We found three genes (PIK3R1, SPP1, and PECAM1) that have a clear correlation with OS in the lung adenocarcinoma patient. It has been found that lung adenocarcinoma exhibits high expression of SPP1 and that this has been associated with poor prognosis, while low expression of PECAM1 and PIK3R1 is associated with poor prognosis (P < 0.05). We also found that the expression of SPP1 was associated with miR-146a-5p, while the high expression of miR-146a-5p was related to good prognosis (P < 0.05). On the contrary, the lower miR-21-5p on upstream of PIK3R1 is associated with a higher surviving rate in cancer patients (P < 0.05). Finally, we found that the immune checkpoint genes CD274(PD-L1) and PDCD1LG2(PD-1) were also related to SPP1 in lung adenocarcinoma. Conclusions The results indicated that SPP1 is a cancer promoter (oncogene), while PECAM1 and PIK3R1 are cancer suppressor genes. These genes take part in the regulation of biological activities in lung adenocarcinoma, which provides a basis for improving detection and immunotherapeutic targets for lung adenocarcinoma.
Collapse
Affiliation(s)
- Liyan Yu
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xuemei Liang
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jianwei Wang
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Guangxiang Ding
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jinhai Tang
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Juan Xue
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xin He
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jingxuan Ge
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xianzhang Jin
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Zhiyi Yang
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xianwei Li
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Hehuan Yao
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Hongtao Yin
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Wu Liu
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Shengchen Yin
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Bing Sun
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Junxiu Sheng
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
8
|
Hatton N, Samuel R, Riaz M, Johnson C, Cheeseman SL, Snee M. A study of non small cell lung cancer (NSCLC) patients with brain metastasis: A single centre experience. Cancer Treat Res Commun 2023; 34:100673. [PMID: 36603538 DOI: 10.1016/j.ctarc.2022.100673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer death with the majority of cases being non-small cell lung cancer (NSCLC) [1]. A common complication of NSCLC is brain metastasis (BM) [2, 3], where the prognosis remains poor despite new treatments. Real world data complements data gained from clinical trials, providing information on patients excluded from prospective research [4]. However, information from patient notes may prove incomplete and difficult to extract. We developed an algorithm to identify patients in our clinical database with brain metastasis from the electronic health record (EHR). METHODS We retrospectively extracted data from the EHR of patients managed at a large teaching hospital between 2007 and 2018. Using the ICD-10 code C34, for lung cancer, our algorithm used phrases associated with BMs to search the unstructured text of radiology reports. Summary statistics and univariant analysis was performed for overall survival. RESULTS 818 patients were identified as potentially having BM and 453 patients were confirmed on clinical review of their records. The median age of patients was 69 years, 50% were female and 66% had a performance status of >2. 12.2% had an identifiable mutation and 11.5% were identified as PD-L1 positive. In the first line setting, 65% of patients received symptomatic treatment, 23% received systemic anticancer therapy (SACT), 6.1% surgery and 10% radiotherapy, of which 6.5% had external beam and 3.5% stereotactic radiosurgery. Regarding those treated with SACT, 35% had an intracranial response to treatment (3% had complete response, 32% had a partial response). Median survival was 2 months (1.9 - 2.4 months 95% CI). CONCLUSION The real-world prognosis for NSCLC patients with BMs is poor. By using an algorithm, we have reported outcomes on a comprehensive cohort of patients which helps identify those for whom an active treatment approach is appropriate.
Collapse
Affiliation(s)
- Nlf Hatton
- Leeds Cancer Centre, Leeds Teaching Hospital Trust (LTHT), Leeds, United Kingdom.
| | - R Samuel
- Leeds Cancer Centre, Leeds Teaching Hospital Trust (LTHT), Leeds, United Kingdom
| | - M Riaz
- Leeds Cancer Centre, Leeds Teaching Hospital Trust (LTHT), Leeds, United Kingdom
| | - C Johnson
- Leeds Cancer Centre, Leeds Teaching Hospital Trust (LTHT), Leeds, United Kingdom
| | - S L Cheeseman
- Leeds Cancer Centre, Leeds Teaching Hospital Trust (LTHT), Leeds, United Kingdom
| | - M Snee
- Leeds Cancer Centre, Leeds Teaching Hospital Trust (LTHT), Leeds, United Kingdom
| |
Collapse
|
9
|
Yang X, Zhou Y, Ge H, Tian Z, Li P, Zhao X. Identification of a transcription factor‑cyclin family genes network in lung adenocarcinoma through bioinformatics analysis and validation through RT‑qPCR. Exp Ther Med 2022; 25:63. [PMID: 36605530 PMCID: PMC9798156 DOI: 10.3892/etm.2022.11762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the predominant pathological subtype of lung cancer, which is the most prevalent and lethal malignancy worldwide. Cyclins have been reported to regulate the physiology of various types of tumors by controlling cell cycle progression. However, the key roles and regulatory networks associated with the majority of the cyclin family members in LUAD remain unclear. In total, 556 differentially expressed genes were screened from the GSE33532, GSE40791 and GSE19188 mRNA microarray datasets by R software. Subsequently, protein-protein interaction network containing 499 nodes and 4,311 edges, in addition to a significant module containing 76 nodes and 2,631 edges, were extracted through the MCODE plug-in of Cytoscape. A total of four cyclin family genes [cyclin (CCNA2, CCNB1, CCNB2 and CCNE2] were then found in this module. Further co-expression analysis and associated gene prediction revealed forkhead box M1 (FOXM1), the common transcription factor of CCNB2, CCNB1 and CCNA2. In addition, using GEPIA database, it was found that the high expression of these four genes were simultaneously associated with poorer prognosis in patients with LUAD. Experimentally, it was proved that these four hub genes were highly expressed in LUAD cell lines (Beas-2B and H1299) and LUAD tissues through qPCR, western blot analysis and immunohistochemical studies. The diagnostic value of these 4 hub genes in LUAD was analyzed by logistic regression, CCNA2 was deleted, following which a nomogram diagnostic model was constructed accordingly. The area under the curve values of CCNB1, CCNB2 and FOXM1 diagnostic models were calculated to be 0.92, 0.91 and 0.96 in the training set (Combined dataset of GSE33532, GSE40791 and GSE19188) and two validation sets (GSE10072 and GSE75037), respectively. To conclude, data from the present study suggested that the FOXM1/cyclin (CCNA2, CCNB1 and/or CCNB2) axis may serve a regulatory role in the development and prognosis of LUAD. Specifically, CCNB1, CCNB2 and FOXM1 have potential as diagnostic markers and/or therapeutic targets for LUAD treatment.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yongjia Zhou
- Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Haibo Ge
- Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Zhongxian Tian
- Key Laboratory of Chest Cancer, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Peiwei Li
- Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China,Correspondence to: Dr Peiwei Li, Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, P.R. China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China,Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China,Correspondence to: Dr Peiwei Li, Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, P.R. China
| |
Collapse
|
10
|
Guo Q, Liu L, Chen Z, Fan Y, Zhou Y, Yuan Z, Zhang W. Current treatments for non-small cell lung cancer. Front Oncol 2022; 12:945102. [PMID: 36033435 PMCID: PMC9403713 DOI: 10.3389/fonc.2022.945102] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite improved methods of diagnosis and the development of different treatments, mortality from lung cancer remains surprisingly high. Non-small cell lung cancer (NSCLC) accounts for the large majority of lung cancer cases. Therefore, it is important to review current methods of diagnosis and treatments of NSCLC in the clinic and preclinic. In this review, we describe, as a guide for clinicians, current diagnostic methods and therapies (such as chemotherapy, chemoradiotherapy, targeted therapy, antiangiogenic therapy, immunotherapy, and combination therapy) for NSCLC.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Liwei Liu
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zelong Chen
- Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, China
| | - Yannan Fan
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, ; Ziqiao Yuan,
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, ; Ziqiao Yuan,
| |
Collapse
|
11
|
Siswanto FM, Tamura A, Sakuma R, Imaoka S. Yeast β-glucan Increases Etoposide Sensitivity in Lung Cancer Cell Line A549 by Suppressing Nuclear Factor Erythroid 2-Related Factor 2 via the Noncanonical Nuclear Factor Kappa B Pathway. Mol Pharmacol 2022; 101:257-273. [PMID: 35193967 DOI: 10.1124/molpharm.121.000475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022] Open
Abstract
Etoposide is regarded as one of the main standard cytotoxic drugs for lung cancer. However, mutations in Kelch-like ECH-associated protein 1 (Keap1), the main regulator of nuclear factor erythroid 2-related factor 2 (Nrf2), are often detected in lung cancer and lead to chemoresistance. Since the aberrant activation of Nrf2 enhances drug resistance, the suppression of the Nrf2 pathway is a promising therapeutic strategy for lung cancer. We herein used the human lung adenocarcinoma cell line A549 because it harbors a Keap1 loss-of-function mutation. A treatment with β-glucan, a major component of the fungal cell wall, reduced Nrf2 protein levels; downregulated the expression of cytochrome P450 3A5, UDP glucuronosyltransferase 1A1, and multidrug resistance protein 1; and increased etoposide sensitivity in A549 cells. Furthermore, the ephrin type-A receptor 2 (EphA2) receptor was important for the recognition and biologic activity of β-glucan in A549 cells. EphA2 signaling includes nuclear factor kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and p38 mitogen-activated protein kinase (MAPK). However, treatment of cells with stattic (STAT3 inhibitor) or SB203580 (p38 MAPK inhibitor) did not diminish the effects of β-glucan. In contrast, knockdown of v-rel reticuloendotheliosis viral oncogene homolog B (RelB) abolished the effects of β-glucan, suggesting the involvement of the noncanonical NF-κB pathway. The β-glucan effects were also attenuated by the knockdown of WD40 Repeat protein 23 (WDR23). The β-glucan treatment and RelB overexpression induced the expression of Cullin-4A (CUL4A), which increased WDR23 ligase activity and promoted the subsequent depletion of Nrf2. These results revealed a novel property of β-glucan as a resistance-modifying agent in addition to its widely reported immunomodulatory effects for lung cancer therapy via the EphA2-RelB-CUL4A-Nrf2 axis. SIGNIFICANCE STATEMENT: Chemotherapeutic resistance remains a major obstacle in cancer therapy despite extensive efforts to elucidate the underlying molecular mechanisms and overcome multidrug resistance. The present study revealed a novel resistance-modifying property of β-glucan, thereby expanding our knowledge on the beneficial roles of β-glucan and providing an alternative strategy to prevent drug resistance by cancer. The present results provide evidence for the involvement of a novel mode of NF-κB and Nrf2 crosstalk in the drug resistance phenotype.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Akiyoshi Tamura
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Rika Sakuma
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
12
|
Choi HJ, Park SJ, Choi YN, Kim SD, Kwag EB, Song SY, Park JH, Kim JK, Seo C, Choi JJ, Yoo HS. Selective Immune Modulating Activities of Viscum album and Its Components; A Possibility of Therapeutics on Skin Rash Induced by EGFR Inhibitors. Integr Cancer Ther 2022; 21:15347354221118332. [PMID: 36154312 PMCID: PMC9513566 DOI: 10.1177/15347354221118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Viscum album var. coloratum (Kom.) Ohwi is a traditional herbal medicine used in East Asia to treat hypertension, skeletal muscle disorders, and cancer. The inhibitory effects of Viscum album (VA) extract on chemokines and its therapeutic potential in erlotinib-induced skin rash were investigated in this study. ELISA was used to measure the levels of chemokines, MCP-1 and RANTES, which are thought to be mediators of erlotinib-induced skin rash in RAW264.7 cells. Western blot analysis was used to look into the activation of signaling pathways like AKT, MAPK, and EGF. In order to investigate the active compounds in VA extract, solvent fractionation and preparative HPLC were performed sequentially. VA extract significantly reduced the production of TNF-α, MCP-1, and RANTES but not IL-1. Furthermore, macrophage transmigration was inhibited without causing cell toxicity. VA extract had no effect on the phosphorylation of EGF receptors stimulated by EGF or suppressed by erlotinib in both A549, a non-small cell lung cancer cells, and Hacat, a human skin keratinocyte. The isolated viscumneoside III and viscumneoside V from VA extract significantly suppressed the expression of MCP-1, according to activity guided fractionation with organic solvent fractionation and preparative HPLC. These findings suggest that VA extract and its active compounds, viscumneoside III and viscumneoside V, regulate MCP-1 production and may have the potential to suppress erlotinib-induced skin toxicity by modulating macrophage activity without neutralizing anti-cancer efficacy.
Collapse
Affiliation(s)
| | | | - You Na Choi
- Daejeon University, Daejeon, Republic of Korea
| | - Soo-Dam Kim
- Daejeon University, Daejeon, Republic of Korea
| | | | | | - Ji Hye Park
- Daejeon University, Seoul, Republic of Korea
| | - Jin Kyu Kim
- Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi-do, Republic of Korea
| | - Changon Seo
- Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi-do, Republic of Korea
| | | | | |
Collapse
|
13
|
Nargesi S, Dolatshahi Z, Rezapour A, Alipour V, Souresrafil A, Farabi H, Javadmoosavi SA, Safakhah M, Moradi N. Cost-effectiveness of osimertinib in the treatment of advanced EGFR-mutated non-small cell lung cancer: a systematic review. Expert Rev Pharmacoecon Outcomes Res 2021; 22:543-554. [PMID: 34846235 DOI: 10.1080/14737167.2022.2011721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The most common type of lung cancer is advanced and mutant non-small cell lung cancer (NSCLC). Although targeted tyrosine kinase inhibitors (TKIs) have reconstructed the care of these patients, the resistance of TKIs to the secondary EGFR-T790M mutation in advanced or metastatic NSCLC led to the introduction of the third generation of them, like osimertinib. Osimertinib has represented a remarkable increase in progression-free survival (PFS) and a decrease in death and hazard ratios in patients with required T790 mutation and sensitizing EGFR mutation without T790M. We aimed to evaluate the cost-effectiveness of osimertinib for the treatment of these patients compared to chemotherapy or immunotherapy with the last generations of EGFR-TKIs. AREAS COVERED Electronic searches were conducted on PubMed, Embase, Science Direct, Scopus, , Web of Knowledge, NHSEED, NHS Health Technology assessment (CRD), and Cost-Effectiveness Analysis Registry databases. Related articles were reviewed from January 2015 to the end of August 2020. Out of 2708 initial studies, 10 articles had the inclusion criteria. EXPERT OPINION Although osimertinib improves the quality of life and PFS for the mentioned patients based on its greater efficacy compared to standard EGFR-TKIs and chemotherapy, its high cost prevents considering it a cost-effective option. And, since most entered studies have been done in developed countries, it certainly does not true to extend these results to low-income and developing countries. Therefore, further studies in those countries are needed to evaluate the cost-effectiveness of osimertinib for sensitizing EGFR mutation without T790M and required T790M in advanced or metastatic NSCLC.
Collapse
Affiliation(s)
- Shahin Nargesi
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Science, Tehran, Iran
| | - Zeinab Dolatshahi
- Department of Health Economics, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Aziz Rezapour
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Science, Tehran, Iran
| | - Vahid Alipour
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Science, Tehran, Iran
| | - Aghdas Souresrafil
- Department of Health Economics, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hiro Farabi
- Department of Health Economics, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Arash Javadmoosavi
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Science, Tehran, Iran
| | - Mandana Safakhah
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Science, Tehran, Iran
| | - Najmeh Moradi
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
14
|
RODRIGUES I, NASCIMENTO L, PIMENTA AC, RAIMUNDO S, CONDE B, FERNANDES A. [Neutropenic Fever in Lung Cancer: Clinical Aspects Related to Mortality and Antibiotic Failure]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:764-769. [PMID: 34802207 PMCID: PMC8607283 DOI: 10.3779/j.issn.1009-3419.2021.102.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Lung cancer (LC) is the leading cause of cancer death. Patients treated with chemotherapy are at risk of developing chemotherapy-induced febrile neutropenia (FN), a potentially life-threatening complication. The aims of this study were (1) to characterize FN admissions of patients with LC in a pulmonology department, and (2) to determine associations between patient profiles, first-line antibiotic failure (FLAF) and mortality. METHODS Retrospective observational case-series, based on the analysis of medical records of LC patients that required hospitalization due to chemotherapy-induced FN. RESULTS A total of 42 cases of FN were revised, corresponding to 36 patients, of which 86.1% were male, with a mean age of 66.71±9.83 years. Most patients had a performance status (PS) equal or less than 1, and metastatic disease was present in 40.5% (n=17). Respiratory tract infections accounted for 42.9% (n=18) of FN cases, and multidrug-resistant Staphylococcus aureus was the most isolated agent. The mortality rate was 16.7% (n=7), and the FLAF was 26.2% (n=11). Mortality was associated with a PS≥2 (P=0.011), infection by a Gram-negative agent (P=0.001) and severe anemia (P=0.048). FLAF was associated with longer hospitalizations (P=0.020), PS≥2 (P=0.049), respiratory infections (P=0.024), and infection by a Gram-negative (P=0.003) or multidrug-resistant agent (P=0.014). CONCLUSIONS Lower PS, severe anemia, and infections by Gram-negative or multi-resistant agents seem to be associated with worse outcomes in FN patients.
Collapse
Affiliation(s)
- Inês RODRIGUES
- Pulmonology Department, Centro Hospitalar Trás-os-Montes e Alto Douro, Vila Real, Portugal,Inês RODRIGUES, E-mail:
| | - Luísa NASCIMENTO
- Pulmonology Department, Centro Hospitalar Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ana Cláudia PIMENTA
- Pulmonology Department, Centro Hospitalar Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Sara RAIMUNDO
- Pulmonology Department, Centro Hospitalar Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Bebiana CONDE
- Pulmonology Department, Centro Hospitalar Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ana FERNANDES
- Pulmonology Department, Centro Hospitalar Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
15
|
Liu Y, Yang Y, Zhang L, Lin J, Li B, Yang M, Li H, Chen K, Zhao W. LncRNA ASAP1-IT1 enhances cancer cell stemness via regulating miR-509-3p/YAP1 axis in NSCLC. Cancer Cell Int 2021; 21:572. [PMID: 34715859 PMCID: PMC8555224 DOI: 10.1186/s12935-021-02270-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/16/2021] [Indexed: 12/23/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a major cause of cancer-related death worldwide, and cancer stem cell is responsible for the poor clinical outcome of NSCLC. Previous reports indicated that long noncoding RNAs (lncRNAs) play important roles in maintaining cancer stemness, however, the underlying mechanisms remain unclear. This study investigates the role of ASAP1 Intronic Transcript 1 (ASAP1-IT1) in cancer cell stemness of NSCLC. Methods The expression of ASAP1-IT1, microRNA-509-3p (miR-509-3p) and apoptosis-/stemness-related genes was analyzed by qRT-PCR in NSCLC tissues, cancer cells and spheres of cancer stem cells. Knockdown of ASAP1-IT1 or overexpression of miR-509-3p in NSCLC cells by infection or transfection of respective plasmids. Sphere formation and colony formation were used to detect NSCLC stem cell-like properties and tumor growth in vitro. Luciferase reporter assays, RNA immunoprecitation (RIP) and qRT-PCR assays were used to analyze the interaction between lncRNA and miRNA. The expression of expression of regulated genes of ASAP1-IT1/miR-509-3p axis was evaluated by qRT-PCR and Western blot. The NSCLC xenograft mouse model was used to validate the role of ASAP1-IT1 in NSCLC stemness and tumor growth in vivo. Results ASAP1-IT1 was up-regulated in NSCLC tissues, cancer cells, and in spheres of A549-derived cancer stem cells. Downregulation of ASAP1-IT1 or overexpression of miR-509-3p significantly decreased cell colony formation and stem cell-like properties of A549-dereived stem cells with decreased expression of stem cell biomarkers SOX2, CD34, and CD133, and suppressing the expression of cell growth-related genes, Cyclin A1, Cyclin B1, and PCNA. Furthermore, knockdown of ASAP1-IT1 or overexpression of miR-509-3p repressed tumor growth in nude mice via reducing expression of tumorigenic genes. ASAP1-IT1 was found to interact with miR-509-3p. Moreover, overexpression of ASAP1-IT1 blocked the inhibition by miR-509-3p on stem cell-like properties and cell growth of A549-dereived stem cells both in vitro and in vivo. Finally, the level of YAP1 was regulated by ASAP1-IT1 and miR-509-3p. Conclusions YAP1-involved ASAP1-IT1/miR-509-3p axis promoted NSCLC progression by regulating cancer cell stemness, and targeting this signaling pathway could be is a promising therapeutic strategy to overcome NSCLC stemness. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02270-7.
Collapse
Affiliation(s)
- Yantao Liu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China.,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yuping Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China.,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jiaqiang Lin
- School of Laboratory Medicine Chengdu Medical College, Chengdu, China
| | - Bin Li
- School of Laboratory Medicine Chengdu Medical College, Chengdu, China
| | - Min Yang
- School of Laboratory Medicine Chengdu Medical College, Chengdu, China
| | - Honghui Li
- Department of Refractive Surgery, Chengdu Aier Eye Hospital, Chengdu, China
| | - Kangwu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Wei Zhao
- School of Laboratory Medicine Chengdu Medical College, Chengdu, China. .,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Ekman S, Horvat P, Rosenlund M, Kejs AM, Patel D, Juarez-Garcia A, Lacoin L, Daumont MJ, Penrod JR, Brustugun OT, Sørensen JB. Epidemiology and Survival Outcomes for Patients With NSCLC in Scandinavia in the Preimmunotherapy Era: A SCAN-LEAF Retrospective Analysis From the I-O Optimise Initiative. JTO Clin Res Rep 2021; 2:100165. [PMID: 34590017 PMCID: PMC8474201 DOI: 10.1016/j.jtocrr.2021.100165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction SCAN-LEAF, part of the I-O Optimise initiative, is a retrospective, longitudinal study investigating the epidemiology, clinical care, and outcomes for patients with NSCLC in Scandinavia. We report overall survival (OS) trends for patients diagnosed with NSCLC in Sweden and Denmark between 2005 and 2015. Methods Swedish and Danish cohorts were established by linking national registries. Data on all adults diagnosed with incident NSCLC from January 1, 2005, to December 31, 2015, were included. For temporal analyses of OS trends, patients were stratified by TNM stage and histology. Results Between 2005 and 2015, a total of 30,067 and 31,939 patients from Sweden and Denmark, respectively, were diagnosed with NSCLC; the most common histological subtype was nonsquamous cell carcinoma (56.9% and 53.0%) and 48.4% and 51.6% were diagnosed at stage IV. Over the study period, significant improvements in short-term survival (1 y) were observed for patients with nonsquamous cell carcinoma in both countries, regardless of disease stage at diagnosis; however, improvements in longer-term survival (5 y) were limited to patients with stage I and II disease only. Conversely, among patients with squamous cell histology, improvements in short-term survival were only observed for stage I disease in Sweden and stage IIIA disease in Denmark, while significant improvements in longer-term survival were seen only for stage IIIA NSCLC in both countries. Conclusions Despite some survival improvements between 2005 and 2015, an unmet need remains for patients with advanced NSCLC, particularly those with squamous cell histology. Future analyses will evaluate the impact of newer treatments on OS in NSCLC.
Collapse
Affiliation(s)
- Simon Ekman
- Thoracic Oncology Center, Department of Oncology-Pathology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Pia Horvat
- Real-World Evidence Solutions, IQVIA, London, United Kingdom
| | - Mats Rosenlund
- Real-World & Analytics Solutions, IQVIA, Solna, Sweden.,Department of Learning, Informatics, Management and Ethics (LIME), Karolinska Institutet, Stockholm, Sweden
| | - Anne Mette Kejs
- Real-World & Analytics Solutions, IQVIA, Copenhagen, Denmark
| | - Dony Patel
- Real-World Evidence Solutions, IQVIA, London, United Kingdom
| | - Ariadna Juarez-Garcia
- Worldwide Health Economics & Outcomes Research, Bristol Myers Squibb, Uxbridge, United Kingdom
| | | | - Melinda J Daumont
- Worldwide Health Economics & Outcomes Research, Bristol Myers Squibb, Braine-L'Alleud, Belgium
| | - John R Penrod
- Worldwide Health Economics & Outcomes Research, Bristol Myers Squibb, Princeton, New Jersey
| | - Odd Terje Brustugun
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | | |
Collapse
|
17
|
Snee M, Cheeseman S, Thompson M, Riaz M, Sopwith W, Lacoin L, Chaib C, Daumont MJ, Penrod JR, Hall G. Treatment patterns and survival outcomes for patients with non-small cell lung cancer in the UK in the preimmunology era: a REAL-Oncology database analysis from the I-O Optimise initiative. BMJ Open 2021; 11:e046396. [PMID: 34526333 PMCID: PMC8444261 DOI: 10.1136/bmjopen-2020-046396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To report characteristics, treatment and overall survival (OS) trends, by stage and pathology, of patients diagnosed with non-small cell lung cancer (NSCLC) at Leeds Teaching Hospital NHS Trust in 2007-2018. DESIGN Retrospective cohort study based on electronic medical records. SETTING Large NHS university hospital in Leeds. PARTICIPANTS 3739 adult patients diagnosed with incident NSCLC from January 2007 to August 2017, followed up until March 2018. MAIN OUTCOME MEASURES Patient characteristics at diagnosis, treatment patterns and OS. RESULTS 34.3% of patients with NSCLC were clinically diagnosed (without pathological confirmation). Among patients with known pathology, 45.2% had non-squamous cell carcinoma (NSQ) and 33.3% had squamous cell carcinoma (SQ). The proportion of patients diagnosed at stage I increased (16.4%-27.7% in 2010-2017); those diagnosed at stage IV decreased (57.0%-39.1%). Surgery was the most common initial treatment for patients with pathologically confirmed stage I NSCLC. Use of radiotherapy alone increased over time in patients with clinically diagnosed stage I NSCLC (39.1%-60.3%); chemoradiation increased in patients with stage IIIA NSQ (21.6%-33.3%) and SQ (24.2%-31.9%). Initial treatment with systemic anticancer therapy (SACT) increased in patients with stages IIIB-IV NSQ (49.0%-67.5%); the proportion of untreated patients decreased (30.6%-15.0%). Median OS improved for patients diagnosed with stage I NSQ and SQ and stage IIIA NSQ over time. Median OS for patients with stages IIIB-IV NSQ and SQ remained stable, <10% patients were alive 3 years after diagnosis. Median OS for clinically diagnosed stages IIIB-IV patients was 1.2 months in both periods. CONCLUSIONS OS for stage I and IIIA patients improved over time, likely due to increased use of stereotactic ablative radiation, surgery (stage I) and chemoradiation (stage IIIA). Conversely, OS outcomes remained poor for stage IIIB-IV patients despite increasing use of SACT for NSQ. Many patients with advanced-stage disease remained untreated.
Collapse
Affiliation(s)
- Michael Snee
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sue Cheeseman
- REAL Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Majid Riaz
- REAL Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Will Sopwith
- REAL Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Carlos Chaib
- Research & Development Medical Affairs, Bristol Myers Squibb, Madrid, Spain
| | - Melinda J Daumont
- Worldwide Health Economics & Outcomes Research, Bristol Myers Squibb, Braine-l'Alleud, Belgium
| | - John R Penrod
- Worldwide Health Economics & Outcomes Research, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Geoff Hall
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Liu X, Niu N, Li P, Zhai L, Xiao K, Chen W, Zhuang X. LncRNA OGFRP1 acts as an oncogene in NSCLC via miR-4640-5p/eIF5A axis. Cancer Cell Int 2021; 21:425. [PMID: 34389018 PMCID: PMC8361654 DOI: 10.1186/s12935-021-02115-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/25/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) OGFRP1 is up-regulated in endometrial cancer and cervical carcinoma, and OGFRP1 suppression inhibits the malignant behavior of cancer cells. Here, we evaluated the expression pattern, biological function and potential mechanism of OGFRP1 in non-small cell lung cancer (NSCLC). METHODS The expression of target genes in 25 pairs of clinically collected NSCLC and normal lung tissue samples was detected by qRT-PCR or western blot. We screened the siRNA (siOGFRP1) to down-regulate the expression of OGFRP1 in A549 and H1299 cells. The biological function of A549 and H1299 cells were examined by CCK8, wound healing and transwell assays. The molecular mechanism of OGFRP1 was further explored. RESULTS The expression of OGFRP1 in NSCLC tissues were higher than that in normal lung tissue. siOGFRP1 inhibited the proliferation, migration and invasion of A549 and H1299 cells. In addition, the expression of EMT-related and apoptosis-related proteins was changed by siOGFRP1 transfection. OGFRP1 can directly interact with miR-4640-5p, and siOGFRP1 increased the level of miR-4640-5p. Moreover, miR-4640-5p could directly bind to the 3' UTR region of eIF5A mRNA. eIF5A was highly expressed in NSCLC tissues, and predicted a poor prognosis. In addition, the expression of miR-4640-5p and eIF5A in NSCLC tissues were negatively correlated, while the expression of OGFRP1 and eIF5A were positively correlated. Knockdown of OGFRP1 inhibited the expression of eIF5A, while transfection of miR-4640-5p inhibitor up-regulated the expression of eIF5A. CONCLUSIONS Taken together, we demonstrated that down-regulation of OGFRP1 inhibited the progression of NSCLC through miR-4640-5p/eIF5A axis.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Clinical Laboratory Medicine, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Pibao Li
- Intensive Care Unit, The Third Hospital of Shandong Province Affiliated To Shandong University, Jinan, 250041, China
| | - Liping Zhai
- Shandong Province Endemic Disease Control Institute, Jinan, 250014, China
| | - Ke Xiao
- Department of Clinical Laboratory Medicine, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Wendan Chen
- Department of Clinical Laboratory Medicine, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Xuewei Zhuang
- Department of Clinical Laboratory Medicine, The Third Hospital of Shandong Province Affiliated To Shandong University, #12 Wuying Shan Zhong Road, Tianqiao District, Jinan, 250041, China.
| |
Collapse
|
19
|
Wang J, Tan L, Jia B, Yu X, Yao R, OUYang N, Yu X, Cao X, Tong J, Chen T, Chen R, Li J. Downregulation of m 6A Reader YTHDC2 Promotes the Proliferation and Migration of Malignant Lung Cells via CYLD/NF-κB Pathway. Int J Biol Sci 2021; 17:2633-2651. [PMID: 34326699 PMCID: PMC8315025 DOI: 10.7150/ijbs.58514] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is one of the most common types of carcinoma worldwide. Cigarette smoking is considered the leading cause of lung cancer. Aberrant expression of several YT521-B homology (YTH) family proteins has been reported to be closely associated with multiple cancer types. The present study aims to evaluate the function and regulatory mechanisms of the N6-methyladenosine (m6A) reader protein YTH domain containing 2 (YTHDC2) by in vitro, in vivo and bioinformatics analyses. The results revealed that YTHDC2 was reduced in lung cancer and cigarette smoke-exposed cells. Notably, bioinformatics and tissue arrays analysis demonstrated that decreased YTHDC2 was highly associated with smoking history, pathological stage, invasion depth, lymph node metastasis and poor outcomes. The in vivo and in vitro studies revealed that YTHDC2 overexpression inhibited the proliferation and migration of lung cancer cells as well as tumor growth in nude mice. Furthermore, YTHDC2 decreased expression was modulated by copy number deletion in lung cancer. Importantly, the cylindromatosis (CYLD)/NF-κB pathways were confirmed as the downstream signaling of YTHDC2, and this axis was mediated by m6A modification. The present results indicated that smoking-related downregulation of YTHDC2 was associated with enhanced proliferation and migration in lung cancer cells, and appeared to be regulated by DNA copy number variation. Importantly, YTHDC2 functions as a tumor suppressor through the CYLD/NF-κB signaling pathway, which is mediated by m6A modification.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lirong Tan
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Beibei Jia
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaofan Yu
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ruixin Yao
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Nan OUYang
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xueting Yu
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiyuan Cao
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Rui Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215004, China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medicine College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
20
|
Liu YR, Wang PY, Xie N, Xie SY. MicroRNAs as Therapeutic Targets for Anticancer Drugs in Lung Cancer Therapy. Anticancer Agents Med Chem 2021; 20:1883-1894. [PMID: 32538735 DOI: 10.2174/1871520620666200615133011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by translational repression or deregulation of messenger RNAs. Accumulating evidence suggests that miRNAs play various roles in the development and progression of lung cancers. Although their precise roles in targeted cancer therapy are currently unclear, miRNAs have been shown to affect the sensitivity of tumors to anticancer drugs. A large number of recent studies have demonstrated that some anticancer drugs exerted antitumor activities by affecting the expression of miRNAs and their targeted genes. These studies have elucidated the specific biological mechanism of drugs in tumor suppression, which provides a new idea or basis for their clinical application. In this review, we summarized the therapeutic mechanisms of drugs in lung cancer therapy through their effects on miRNAs and their targeted genes, which highlights the roles of miRNAs as targets in lung cancer therapy.
Collapse
Affiliation(s)
- Yuan-Rong Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, 264000, ShanDong, China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| |
Collapse
|
21
|
Ferreira D, Miranda J, Martins-Lopes P, Adega F, Chaves R. Future Perspectives in Detecting EGFR and ALK Gene Alterations in Liquid Biopsies of Patients with NSCLC. Int J Mol Sci 2021; 22:ijms22083815. [PMID: 33916986 PMCID: PMC8067613 DOI: 10.3390/ijms22083815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a major cause of death worldwide. Alterations in such genes as EGFR and ALK are considered important biomarkers in NSCLC due to the existence of targeted therapies with specific tyrosine kinase inhibitors (TKIs). However, specific resistance-related mutations can occur during TKI treatment, which often result in therapy inefficacy. Liquid biopsies arise as a reliable tool for the early detection of these types of alterations, allowing a non-invasive follow-up of the patients. Furthermore, they can be essential for cancer screening, initial diagnosis and to check surgery success. Despite the great advantages of liquid biopsies in NSCLC and the high input that next-generation sequencing (NGS) approaches can provide in this field, its use in oncology is still limited. With improvement of assay sensitivity and the establishment of clinical guidelines for liquid biopsy analysis, it is expected that they will be used in routine procedures. This review focuses on the usefulness of liquid biopsies of NSCLC patients as a means to detect alterations in EGFR and ALK genes and in disease management, highlighting the impact of NGS methods.
Collapse
Affiliation(s)
- Daniela Ferreira
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
| | - Juliana Miranda
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
| | - Paula Martins-Lopes
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filomena Adega
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
| | - Raquel Chaves
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
- Correspondence: ; Tel.: +351-259-350936
| |
Collapse
|
22
|
Pargol M, Zare Karizi S, Akbari M, Nourmohammadi B, Shadmehr MB, Karimipoor M, Zare Karizi S. Investigation the Role of Autophagy in Non-Small Cell Lung Cancer. Asian Pac J Cancer Prev 2021; 22:947-955. [PMID: 33773561 PMCID: PMC8286697 DOI: 10.31557/apjcp.2021.22.3.947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: Recent studies have shown the role of autophagy in different types of cancer including lung cancer. MicroRNAs are considered as key factors in regulation of autophagy related genes. miR-30d, miR-204-5p and miR-20a are regulatory markers which can suppress the expression of beclin1, LC3, bcl2 and ULK1 as their target genes and they lead to decrement of autophagy in human cancer cells. Moreover, epigenetic modifications DNA methylation has been indicated in regulation of autophagy in different stages of cancer. Methods: In this study, the expression levels of miR-30d, miR-204-5p and miR-20a as well as their target genes were analyzed in 30 non-small cell lung cancers (NSCLCs) patients sample and adjacent normal tissues by real-time qPCR. In addition, DNA methylation of beclin1, LC3, bcl2 and ULK1 genes were assessed by MS-HRM method. Results: MiR-30d (p value= 0.01) and miR-204-5p (P=0.048) significantly down-regulated in tumor samples compared to normal adjacent tissues, while there was no significant change in expression level of miR-20a. On the other hand, target genes expression level was significantly increased in NSCLC tissues, however methylation pattern of the target gene promoters, did not show any significant alteration. Conclusion: These results indicate roles for miR-30d, miR-204-5p as tumor suppressor genes as well as target genes as oncogenes in NSCLC patients. Although these factors may have a significant role in NSCLC progression, further studies are necessary to investigate the implications of these findings for treatment of lung cancer.
Collapse
Affiliation(s)
- Minoo Pargol
- Department of Genetics and Biotechnology, School of Biological Science, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran.,Molecular Medicine Department, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran
| | - Shima Zare Karizi
- Department of Genetics and Biotechnology, School of Biological Science, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran.,Molecular Medicine Department, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Akbari
- Department of Genetics and Biotechnology, School of Biological Science, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran.,Molecular Medicine Department, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran
| | - Bahareh Nourmohammadi
- Molecular Medicine Department, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Behgam Shadmehr
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Genetics and Biotechnology, School of Biological Science, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
23
|
Ma J, Chen X, Lin M, Wang Z, Wu Y, Li J. Bioinformatics analysis combined with experiments predicts CENPK as a potential prognostic factor for lung adenocarcinoma. Cancer Cell Int 2021; 21:65. [PMID: 33478508 PMCID: PMC7818917 DOI: 10.1186/s12935-021-01760-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer is the most common malignant tumor. Identification of novel diagnostic and prognostic biomarkers for lung cancer is a key research imperative. The role of centromere protein K (CENPK) in cancer is an emerging research hotspot. However, the role of CENPK in the progression of lung adenocarcinoma (LAC) is not well characterized. METHODS In this study, we identified CENPK as a potential new gene for lung cancer based on bioinformatics analysis. In addition, in vitro experiments were performed to verify the function of this gene. We investigated the expression of CENPK in LAC by analyses of datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression analyses, gene ontology (GO) enrichment, Kyoto encyclopedia of genes and genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) were conducted to evaluate the diagnostic and prognostic relevance of CENPK. Then, for evaluating the biological behavior and role of CENPK in lung cancer cells, we did a series of vitro experiments, such as immunohistochemistry analysis, Western blot analysis, CCK8 assay, transwell assay, flow cytometry, and wound healing assay. RESULTS We demonstrated overexpression of CENPK in LAC; in addition, increased expression of CENPK was associated with clinical progression. Moreover, CENPK was found to be an independent risk factor in patients with LAC. Furthermore, we observed activation of CENPK-related signaling pathways in patients with LAC. CONCLUSIONS Our findings indicate a potential role of CENPK in promoting tumor proliferation, invasion, and metastasis. It may serve as a novel diagnostic and prognostic biomarker in patients with LAC.
Collapse
Affiliation(s)
- Jiayu Ma
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China
- Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaochuan Chen
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China
- Fujian Medical University, Fuzhou, Fujian, China
| | - Mingqiang Lin
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China
- Fujian Medical University, Fuzhou, Fujian, China
| | - Zhiping Wang
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China
- Fujian Medical University, Fuzhou, Fujian, China
| | - Yahua Wu
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China
- Fujian Medical University, Fuzhou, Fujian, China
| | - Jiancheng Li
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No.420, Fuma Road, Fuzhou, 350014, China.
| |
Collapse
|
24
|
Yan F, Zhao W, Xu X, Li C, Li X, Liu S, Shi L, Wu Y. LncRNA DHRS4-AS1 Inhibits the Stemness of NSCLC Cells by Sponging miR-224-3p and Upregulating TP53 and TET1. Front Cell Dev Biol 2020; 8:585251. [PMID: 33425890 PMCID: PMC7786137 DOI: 10.3389/fcell.2020.585251] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death. This study aimed to examine the roles of DHRS4-AS1/miR-224-3p signaling in the cancer cell stemness of NSCLC. Real-time PCR showed that DHRS4-AS1 was downregulated in cancerous tissues, and bioinformatics analysis revealed that high DHRS4-AS1 expression indicated a good prognosis for NSCLC patients. Sphere and colony formation assays showed that DHRS4-AS1 overexpression significantly suppressed NSCLC cell colony formation and stem cell-like properties. DHRS4-AS1 also abrogated the expression of OCT4, SOX2, CD34, and CD133, markedly inhibited the expression of epithelial-mesenchymal transition (EMT)-related factors, N-cadherin, ZEB1, and Vimentin, and increased E-cadherin expression in spheres. Furthermore, luciferase reporter assays and real-time PCR analysis demonstrated that DHRS4-AS1 and miR-224-3p were antagonistically repressed in NSCLC cells. RNA immunoprecipitation (RIP) analysis revealed that DHRS4-AS1 interacted with miR-224-3p. DHRS4-AS1 partially reversed the miR-224-3p-decreased TP53 and TET1, resulting in the inhibition of tumor growth in vivo. Finally, TP53 and TET1 were antagonistically regulated by DHRS4-AS1 and miR-224-3p in NSCLC cells. In conclusion, TP53- and TET1-associated DHRS4-AS1/miR-224-3p axis is an essential mechanism by which NSCLC modulates cancer cell stemness.
Collapse
Affiliation(s)
- Fei Yan
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Xiaoyue Xu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chenchen Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyou Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Siwen Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Singh SS, Dahal A, Shrestha L, Jois SD. Genotype Driven Therapy for Non-Small Cell Lung Cancer: Resistance, Pan Inhibitors and Immunotherapy. Curr Med Chem 2020; 27:5274-5316. [PMID: 30854949 DOI: 10.2174/0929867326666190222183219] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Eighty-five percent of patients with lung cancer present with Non-small Cell Lung Cancer (NSCLC). Targeted therapy approaches are promising treatments for lung cancer. However, despite the development of targeted therapies using Tyrosine Kinase Inhibitors (TKI) as well as monoclonal antibodies, the five-year relative survival rate for lung cancer patients is still only 18%, and patients inevitably become resistant to therapy. Mutations in Kirsten Ras Sarcoma viral homolog (KRAS) and epidermal growth factor receptor (EGFR) are the two most common genetic events in lung adenocarcinoma; they account for 25% and 20% of cases, respectively. Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor tyrosine kinase, and ALK rearrangements are responsible for 3-7% of NSCLC, predominantly of the adenocarcinoma subtype, and occur in a mutually exclusive manner with KRAS and EGFR mutations. Among drug-resistant NSCLC patients, nearly half exhibit the T790M mutation in exon 20 of EGFR. This review focuses on some basic aspects of molecules involved in NSCLC, the development of resistance to treatments in NSCLC, and advances in lung cancer therapy in the past ten years. Some recent developments such as PD-1-PD-L1 checkpoint-based immunotherapy for NSCLC are also covered.
Collapse
Affiliation(s)
- Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| |
Collapse
|
26
|
Colombo M, Marabese M, Vargiu G, Broggini M, Caiola E. Activity of Birinapant, a SMAC Mimetic Compound, Alone or in Combination in NSCLCs With Different Mutations. Front Oncol 2020; 10:532292. [PMID: 33194590 PMCID: PMC7643013 DOI: 10.3389/fonc.2020.532292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/30/2020] [Indexed: 01/30/2023] Open
Abstract
Liver kinase B1 (LKB1/STK11) is the second tumor suppressor gene most frequently mutated in non-small-cell lung cancer (NSCLC) and its activity is impaired in about half KRAS-mutated NSCLCs. Nowadays, no effective therapies are available for patients having these mutations. To highlight new vulnerabilities of this subgroup of tumors exploitable to design specific therapies we screened an US FDA-approved drug library using an isogenic system of wild-type (WT) or deleted LKB1. Among eight hit compounds, Birinapant, an inhibitor of the Inhibitor of Apoptosis Proteins (IAPs), was the most active compound in LKB1-deleted clone only compared to its LKB1 WT counterpart. We validated the Birinapant cells response and its mechanism of action to be dependent on LKB1 deletion. Indeed, we demonstrated the ability of this compound to induce apoptosis, through activation of caspases in the LKB1-deleted clone only. Expanding our results, we found that the presence of KRAS mutations could mediate Birinapant resistance in a panel of NSCLC cell lines. The combination of Birinapant with Ralimetinib, inhibitor of p38α, restores the sensitivity of LKB1- and KRAS-mutated cell lines to the IAP inhibitor Birinapant. Our study shows how the use of Birinapant could be a viable therapeutic option for patients with LKB1-mutated NSCLCs. In addition, combination of Birinapant and a KRAS pathway inhibitor, as Ralimetinib, could be useful for patients with LKB1 and KRAS-mutated NSCLC.
Collapse
Affiliation(s)
- Marika Colombo
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Vargiu
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
27
|
Thangaraj K, Ponnusamy L, Natarajan SR, Manoharan R. MELK/MPK38 in cancer: from mechanistic aspects to therapeutic strategies. Drug Discov Today 2020; 25:2161-2173. [PMID: 33010478 DOI: 10.1016/j.drudis.2020.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
Maternal embryonic leucine zipper kinase (MELK)/Murine protein serine-threonine kinase 38 (MPK38) is a member of the AMP-related serine-threonine kinase family, which has been reported to be involved in the regulation of many cellular events, including cell proliferation, apoptosis, and metabolism, partly by phosphorylation and regulation of several signaling molecules. The abnormal expression of MELK has been associated with tumorigenesis and malignant progression in various types of cancer. Currently, several small-molecule inhibitors of MELK are under investigation although only OTS167 has entered clinical trials. In this review, we elaborate on the relative contributions of MELK pathways in the physiological process, their oncogenic role in carcinogenesis, and targeted agents under development for the treatment of cancer.
Collapse
Affiliation(s)
- Karthik Thangaraj
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Lavanya Ponnusamy
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Sathan Raj Natarajan
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Ravi Manoharan
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India.
| |
Collapse
|
28
|
Roy S, Mohammad T, Gupta P, Dahiya R, Parveen S, Luqman S, Hasan GM, Hassan MI. Discovery of Harmaline as a Potent Inhibitor of Sphingosine Kinase-1: A Chemopreventive Role in Lung Cancer. ACS OMEGA 2020; 5:21550-21560. [PMID: 32905276 PMCID: PMC7469376 DOI: 10.1021/acsomega.0c02165] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The sphingosine kinase-1/sphingosine-1-phosphate pathway is linked with the cancer progression and survival of the chemotherapy-challenged cells. Sphingosine kinase-1 (SphK1) has emerged as an attractive drug target, but their inhibitors from natural sources are limited. In this study, we have chosen harmaline, one of the β-carboline alkaloids, and report its mechanism of binding to SphK1 and subsequent inhibition. Molecular docking combined with fluorescence binding studies revealed that harmaline binds to the substrate-binding pocket of SphK1 with an appreciable binding affinity and significantly inhibits the kinase activity of SphK1 with an IC50 value in the micromolar range. The cytotoxic effect of harmaline on non-small-cell lung cancer cells by MTT assay was found to be higher for H1299 compared to A549. Harmaline induces apoptosis in non-small-cell lung carcinoma cells (H1299 and A549), possibly via the intrinsic pathway. Our findings suggest that harmaline could be implicated as a scaffold for designing potent anticancer molecules with SphK1 inhibitory potential.
Collapse
Affiliation(s)
- Sonam Roy
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Preeti Gupta
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashmi Dahiya
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shahnaz Parveen
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gulam Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
29
|
Li C, Zhao W, Pan X, Li X, Yan F, Liu S, Feng J, Lu J. LncRNA KTN1-AS1 promotes the progression of non-small cell lung cancer via sponging of miR-130a-5p and activation of PDPK1. Oncogene 2020; 39:6157-6171. [PMID: 32820252 DOI: 10.1038/s41388-020-01427-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the major cause of cancer-associated death worldwide, but its underlying mechanisms remain to be fully elucidated. Long noncoding RNAs (lncRNAs) are known to play an important role in the aberrant regulation of gene expression in many cancers, including NSCLC. Here, we investigated the involvement of the lncRNA KTN1-AS1 in NSCLC. We found that KTN1-AS1 expression was upregulated in NSCLC tissue and was positively associated with poor prognosis. KTN1-AS1 knockdown inhibited cell growth and proliferation, increased apoptosis, and modulated the expression of cell cycle- and apoptosis-related proteins (cyclin A1, cyclin-dependent kinase 2, Bcl2, and Bax) in NSCLC cell lines and tumour xenografts in nude mice. KTN1-AS1 bound to and directly regulated the expression of miR-130a-5p. Notably, miR-130a-5p overexpression suppressed NSCLC cell proliferation and increased apoptosis in vitro and in vivo, and this effect was reversed by KTN1-AS1 overexpression. Finally, we showed that KTN1-AS1 modulated the expression of 3-phosphoinositide-dependent protein kinase 1 (PDPK1), a miR-130a-5p target and key regulator of autophagy in NSCLC cells. Taken together, our results suggest that the KTN1-AS1/miR-130a-5p/PDPK1 pathway may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Chenchen Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Wei Zhao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xuan Pan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Xiaoyou Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Fei Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Siwen Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Jifeng Feng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China.
| | - Jianwei Lu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China.
| |
Collapse
|
30
|
Wang J, Chen T, Yu X, OUYang N, Tan L, Jia B, Tong J, Li J. Identification and validation of smoking-related genes in lung adenocarcinoma using an in vitro carcinogenesis model and bioinformatics analysis. J Transl Med 2020; 18:313. [PMID: 32795291 PMCID: PMC7427766 DOI: 10.1186/s12967-020-02474-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is one of the most common carcinomas in the world, and lung adenocarcinoma (LUAD) is the most lethal and most common subtype of lung cancer. Cigarette smoking is the most leading risk factor of lung cancer, but it is still unclear how normal lung cells become cancerous in cigarette smokers. This study aims to identify potential smoking-related biomarkers associated with the progression and prognosis of LUAD, as well as their regulation mechanism using an in vitro carcinogenesis model and bioinformatics analysis. Results Based on the integration analysis of four Gene Expression Omnibus (GEO) datasets and our mRNA sequencing analysis, 2 up-regulated and 11 down-regulated genes were identified in both S30 cells and LUAD. By analyzing the LUAD dataset in The Cancer Gene Analysis (TCGA) database, 3 of the 13 genes, viz., glycophorin C (GYPC), NME/NM23 nucleoside diphosphate kinase 1 (NME1) and slit guidance ligand 2 (SLIT2), were found to be significantly correlated with LUAD patients’ smoking history. The expression levels of GYPC, NME1 and SLIT2 in S30 cells and lung cancer cell lines were validated by quantitative PCR, immunofluorescence, and western blot assays. Besides, these three genes are associated with tumor invasion depth, and elevated expression of NME1 was correlated with lymph node metastasis. The enrichment analysis suggested that these genes were highly correlated to tumorigenesis and metastasis-related biological processes and pathways. Moreover, the increased expression levels of GYPC and SLIT2, as well as decreased expression of NME1 were associated with a favorable prognosis in LUAD patients. Furthermore, based on the multi-omics data in the TCGA database, these genes were found to be regulated by DNA methylation. Conclusion In conclusion, our observations indicated that the differential expression of GYPC, NME1 and SLIT2 may be regulated by DNA methylation, and they are associated with cigarette smoke-induced LUAD, as well as serve as prognostic factors in LUAD patients.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Renai Road, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Renai Road, Suzhou, 215123, China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Renai Road, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Renai Road, Suzhou, 215123, China
| | - Xiaofan Yu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Renai Road, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Renai Road, Suzhou, 215123, China
| | - Nan OUYang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Renai Road, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Renai Road, Suzhou, 215123, China
| | - Lirong Tan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Renai Road, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Renai Road, Suzhou, 215123, China
| | - Beibei Jia
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Renai Road, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Renai Road, Suzhou, 215123, China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Renai Road, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Renai Road, Suzhou, 215123, China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Renai Road, Suzhou, 215123, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Renai Road, Suzhou, 215123, China.
| |
Collapse
|
31
|
Mohammadi A, Mansoori B, Duijf PHG, Safarzadeh E, Tebbi L, Najafi S, Shokouhi B, Sorensen GL, Holmskov U, Baradaran B. Restoration of miR-330 expression suppresses lung cancer cell viability, proliferation, and migration. J Cell Physiol 2020; 236:273-283. [PMID: 32583462 DOI: 10.1002/jcp.29840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/29/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Lung cancer is one of the most common cancers and its incidence is rising around the world. Various studies suggest that miR-330 acts as a tumor-suppressor microRNA (miRNA) in different types of cancers, but precisely how has remained unclear. In this study, we investigate miR-330 expression in lung cancer patient samples, as well as in vitro, by studying how normalization of miR-330 expression affects lung cancer cellular phenotypes such as viability, apoptosis, proliferation, and migration. We establish that low miR-330 expression predicts poor lung cancer prognosis. Stable restoration of reduced miR-330 expression in lung cancer cells reduces cell viability, increases the fraction of apoptotic cells, causes G2/M cell cycle arrest, and inhibits cell migration. These findings are substantiated by increased mRNA and protein expression of markers for apoptosis via the intrinsic pathway, such as caspase 9, and decreased mRNA and protein expression of markers for cell migration, such as vimentin, C-X-C chemokine receptor type 4, and matrix metalloproteinase 9. We showed that reduced miR-330 expression predicts poor lung cancer survival and that stable restoration of miR-330 expression in lung cancer cells has a broad range of tumor-suppressive effects. This indicates that miR-330 is a promising candidate for miRNA replacement therapy for lung cancer patients.
Collapse
Affiliation(s)
- Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Elham Safarzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leila Tebbi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Shokouhi
- Departmentof Infectious Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Grith L Sorensen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Uffe Holmskov
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Al Matari N, Deeb G, Mshiek H, Sinjab A, Kadara H, Abou-Kheir W, Mhanna R. Anti-Tumor Effects of Biomimetic Sulfated Glycosaminoglycans on Lung Adenocarcinoma Cells in 2D and 3D In Vitro Models. Molecules 2020; 25:2595. [PMID: 32503108 PMCID: PMC7321182 DOI: 10.3390/molecules25112595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
Lung cancer development relies on cell proliferation and migration, which in turn requires interaction with extracellular matrix (ECM) components such as glycosaminoglycans (GAGs). The mechanisms through which GAGs regulate cancer cell functions are not fully understood but they are, in part, mediated by controlled interactions with cytokines and growth factors (GFs). In order to mechanistically understand the effect of the degree of sulfation (DS) of GAGs on lung adenocarcinoma (LUAD) cells, we synthesized sulfated alginate (AlgSulf) as sulfated GAG mimics with DS = 0.0, 0.8, 2.0, and 2.7. Human (H1792) and mouse (MDA-F471) LUAD cell lines were treated with AlgSulf of various DSs at two concentrations 10 and 100 µg/mL and their anti-tumor properties were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), trypan blue exclusion, and wound healing assays for 2D models and sphere formation assay for the 3D model. The proliferation and number of live MDA-F471 cells at the concentration of 100 µg/mL decreased significantly with the increase in the DS of biomimetic GAGs. In addition, the increase in the DS of biomimetic GAGs decreased cell migration (p < 0.001 for DS = 2.0 and 2.7 compared to control) and decreased the diameter and number of spheres formed (p < 0.001). The increased DS of biomimetic GAGs attenuated the expression of cancer stem cell (CSC)/progenitor markers in the 3D cultures. In conclusion, GAG-mimetic AlgSulf with increased DS exhibit enhanced anti-proliferative and migratory properties while also reducing growth of KRAS-mutant LUAD spheres in vitro. We suggest that these anti-tumor effects by GAG-mimetic AlgSulf are possibly due to differential binding to GFs and consequential decreased cell stemness. AlgSulf may be suitable for applications in cancer therapy after further in vivo validation.
Collapse
Affiliation(s)
- Nada Al Matari
- Department of Biomedical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (N.A.M.); (G.D.)
| | - George Deeb
- Department of Biomedical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (N.A.M.); (G.D.)
| | - Hiba Mshiek
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (H.K.)
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (H.K.)
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Rami Mhanna
- Department of Biomedical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (N.A.M.); (G.D.)
| |
Collapse
|
33
|
The Story of Angiogenesis Inhibitors in Non-small-cell Lung Cancer: The Past, Present, and Future. Clin Lung Cancer 2020; 21:308-313. [PMID: 32291211 DOI: 10.1016/j.cllc.2020.02.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/11/2020] [Accepted: 02/29/2020] [Indexed: 12/21/2022]
Abstract
The treatment of advanced non-small-lung cancer (NSCLC) has steadily evolved over the past 2 decades, and current therapy includes chemoimmunotherapy or targeted therapy with tyrosine kinase inhibitors (TKIs). Angiogenesis inhibitors were first approved in the mid-2000s in combination with chemotherapy for the treatment of NSCLC. The addition of anti-angiogenics to chemotherapy resulted in modest increases in survival when median overall survival was less than 1 year. More recently, the use of anti-angiogenics has fallen out of favor with the advent of checkpoint inhibitors and never-before-seen durable long-term responses. However, we postulate that there is still an important role for anti-angiogenics in this era of targeted therapy and checkpoint inhibitors in the treatment of NSCLC. Preclinical studies have shown that combination blockade of the epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) pathways leads to synergistic antitumor effects. These results have been replicated in the clinical setting in patients who harbor EGFR mutations, with VEGF inhibitor-TKI dual therapy leading to impressive survival outcomes. Similarly, combination treatment with checkpoint inhibitors and VEGF inhibitors have led to unprecedented survival outcomes in both advanced renal cell cancer as well as NSCLC. In this review, we explore the evolution of anti-angiogenic therapy in advanced NSCLC and discuss the clinical efficacy of angiogenesis inhibitors in combination with chemotherapy, TKI therapy, and checkpoint inhibitors.
Collapse
|
34
|
Zhang L, Peng R, Sun Y, Wang J, Chong X, Zhang Z. Identification of key genes in non-small cell lung cancer by bioinformatics analysis. PeerJ 2019; 7:e8215. [PMID: 31844590 PMCID: PMC6911687 DOI: 10.7717/peerj.8215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors in the world, and it has become the leading cause of death of malignant tumors. However, its mechanisms are not fully clear. The aim of this study is to investigate the key genes and explore their potential mechanisms involving in NSCLC. Methods We downloaded gene expression profiles GSE33532, GSE30219 and GSE19804 from the Gene Expression Omnibus (GEO) database and analyzed them by using GEO2R. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used for the functional and pathway enrichment analysis. We constructed the protein-protein interaction (PPI) network by STRING and visualized it by Cytoscape. Further, we performed module analysis and centrality analysis to find the potential key genes. Finally, we carried on survival analysis of key genes by GEPIA. Results In total, we obtained 685 DEGs. Moreover, GO analysis showed that they were mainly enriched in cell adhesion, proteinaceous extracellular region, heparin binding. KEGG pathway analysis revealed that transcriptional misregulation in cancer, ECM-receptor interaction, cell cycle and p53 signaling pathway were involved in. Furthermore, PPI network was constructed including 249 nodes and 1,027 edges. Additionally, a significant module was found, which included eight candidate genes with high centrality features. Further, among the eight candidate genes, the survival of NSCLC patients with the seven high expression genes were significantly worse, including CDK1, CCNB1, CCNA2, BIRC5, CCNB2, KIAA0101 and MELK. In summary, these identified genes should play an important role in NSCLC, which can provide new insight for NSCLC research.
Collapse
Affiliation(s)
- Li Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jia Wang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xinyu Chong
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Kang HJ, Kim J, Cho SH, Park SJ, Yoo HS, Kang IC. Inhibitory Effects of HangAmDan-B1 (HAD-B1) Combined With Afatinib on H1975 Lung Cancer Cell-Bearing Mice. Integr Cancer Ther 2019; 18:1534735419830765. [PMID: 30866688 PMCID: PMC6419252 DOI: 10.1177/1534735419830765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epidermal growth factor receptor mutation-positive non–small cell lung cancer is cared for mainly by target therapeutics in the clinical treatment at present. We investigated the antitumor effect of HangAmDan-B1 (HAD-B1) combined with afatinib on H1975 (L858R/T790M double mutation) lung cancer cells. The combined treatment of HAD-B1 with afatinib inhibited the proliferation of H1975 cells in a dose-dependent manner compared with the treatment of afatinib or HAD-B1 alone. The combined treatment group significantly induced early apoptosis and cell cycle arrest of the cells compared with afatinib- or HAD-B1-treated control group. Profile analysis of cell cycle proteins in H1975 cells treated with the combination of HAD-B1 and afatinib using InnoPharmaScreen antibody microarray showed downregulation of pERK1/2 and upregulation of p16 in the cells. In vivo tumor growth assay in xenograft animal model of human H1975 lung cancer cells revealed that the mean tumor volume in the group treated with the combination of HAD-B1 and afatinib showed a significant reduction compared with the control groups.
Collapse
Affiliation(s)
- Hwa Jeong Kang
- 1 Hoseo University, Asan, Chungcheongnam-do, Republic of Korea
| | - Jeehye Kim
- 2 Dunsan Oriental Medical Hospital of Daejeon University, Daejeon, Chungcheongnam-do, Republic of Korea
| | - Seong Hyeok Cho
- 1 Hoseo University, Asan, Chungcheongnam-do, Republic of Korea
| | - So-Jung Park
- 2 Dunsan Oriental Medical Hospital of Daejeon University, Daejeon, Chungcheongnam-do, Republic of Korea
| | - Hwa-Seung Yoo
- 2 Dunsan Oriental Medical Hospital of Daejeon University, Daejeon, Chungcheongnam-do, Republic of Korea
| | - In-Cheol Kang
- 1 Hoseo University, Asan, Chungcheongnam-do, Republic of Korea.,3 InnoPharmaScreen Inc, Asan, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
36
|
Distinct co-acquired alterations and genomic evolution during TKI treatment in non-small-cell lung cancer patients with or without acquired T790M mutation. Oncogene 2019; 39:1846-1859. [DOI: 10.1038/s41388-019-1104-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
|
37
|
Huang N, Guo W, Ren K, Li W, Jiang Y, Sun J, Dai W, Zhao W. LncRNA AFAP1-AS1 Supresses miR-139-5p and Promotes Cell Proliferation and Chemotherapy Resistance of Non-small Cell Lung Cancer by Competitively Upregulating RRM2. Front Oncol 2019; 9:1103. [PMID: 31696057 PMCID: PMC6817562 DOI: 10.3389/fonc.2019.01103] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. This study aims to understand the underlying mechanism of lncRNA, actin filament-associated protein 1 antisense RNA 1(AFAP1-AS1) in mediating chemotherapeutic resistance in NSCLC. The levels of AFAP1-AS1 in NSCLC tissues and cells were determined using RT-PCR. The protein levels of RRM2, EGFR, and p-AKT were analyzed using Western blotting. Binding between AFAP1-AS1 and miR-139-5p was confirmed using dual luciferase reporter and RNA immunoprecipitation (RIP) assays, and binding between miR-139-5p and RRM2 was confirmed by a dual luciferase reporter assay. NSCLC cell proliferation, apoptosis, and colony formation were examined using MTT, flow cytometry, and colony formation assays, respectively. It was found that AFAP1-AS1 expression was upregulated in NSCLC tissues and cells. In addition, AFAP1-AS1 bound to and downregulated the expression of miR-139-5p, which was reduced in NSCLC tissues. Knockdown of AFAP1-AS1 and overexpression of miR-139-5p inhibited NSCLC cell proliferation, colony formation and chemotherapy resistance and increased cell apoptosis. Additionally, AFAP1-AS1 upregulates RRM2 expression via sponging miR-139-5p. Furthermore, AFAP1-AS1 enhanced NSCLC cell proliferation and chemotherapy resistance through upregulation of RRM2 by inhibiting miR-139-5p expression. Moreover, RRM2 promoted cellular chemotherapy resistance by activating EGFR/AKT. Finally, knockdown of AFAP1-AS1 significantly suppressed tumor growth and chemoresistance in nude mice. In conclusion, AFAP1-AS1 promoted chemotherapy resistance by supressing miR-139-5p expression and promoting RRM2/EGFR/AKT signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Na Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Guo
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Wancheng Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jian Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjing Dai
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| |
Collapse
|
38
|
Somatic Mutations in miRNA Genes in Lung Cancer-Potential Functional Consequences of Non-Coding Sequence Variants. Cancers (Basel) 2019; 11:cancers11060793. [PMID: 31181801 PMCID: PMC6627760 DOI: 10.3390/cancers11060793] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence indicates that miRNAs may either drive or suppress oncogenesis. However, little is known about somatic mutations in miRNA genes. To determine the frequency and potential consequences of miRNA gene mutations, we analyzed whole exome sequencing datasets of 569 lung adenocarcinoma (LUAD) and 597 lung squamous cell carcinoma (LUSC) samples generated in The Cancer Genome Atlas (TCGA) project. Altogether, we identified 1091 somatic sequence variants affecting 522 different miRNA genes and showed that half of all cancers had at least one such somatic variant/mutation. These sequence variants occurred in most crucial parts of miRNA precursors, including mature miRNA and seed sequences. Due to our findings, we hypothesize that seed mutations may affect miRNA:target interactions, drastically changing the pool of predicted targets. Mutations may also affect miRNA biogenesis by changing the structure of miRNA precursors, DROSHA and DICER cleavage sites, and regulatory sequence/structure motifs. We identified 10 significantly overmutated hotspot miRNA genes, including the miR-379 gene in LUAD enriched in mutations in the mature miRNA and regulatory sequences. The occurrence of mutations in the hotspot miRNA genes was also shown experimentally. We present a comprehensive analysis of somatic variants in miRNA genes and show that some of these genes are mutational hotspots, suggesting their potential role in cancer.
Collapse
|
39
|
Wu Q, Zhang B, Sun Y, Xu R, Hu X, Ren S, Ma Q, Chen C, Shu J, Qi F, He T, Wang W, Wang Z. Identification of novel biomarkers and candidate small molecule drugs in non-small-cell lung cancer by integrated microarray analysis. Onco Targets Ther 2019; 12:3545-3563. [PMID: 31190860 PMCID: PMC6526173 DOI: 10.2147/ott.s198621] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer morbidity and mortality worldwide. In the present study, we identified novel biomarkers associated with the pathogenesis of NSCLC aiming to provide new diagnostic and therapeutic approaches for NSCLC. Methods: The microarray datasets of GSE18842, GSE30219, GSE31210, GSE32863 and GSE40791 from Gene Expression Omnibus database were downloaded. The differential expressed genes (DEGs) between NSCLC and normal samples were identified by limma package. The construction of protein–protein interaction (PPI) network, module analysis and enrichment analysis were performed using bioinformatics tools. The expression and prognostic values of hub genes were validated by GEPIA database and real-time quantitative PCR. Based on these DEGs, the candidate small molecules for NSCLC were identified by the CMap database. Results: A total of 408 overlapping DEGs including 109 up-regulated and 296 down-regulated genes were identified; 300 nodes and 1283 interactions were obtained from the PPI network. The most significant biological process and pathway enrichment of DEGs were response to wounding and cell adhesion molecules, respectively. Six DEGs (PTTG1, TYMS, ECT2, COL1A1, SPP1 and CDCA5) which significantly up-regulated in NSCLC tissues, were selected as hub genes according to the results of module analysis. The GEPIA database further confirmed that patients with higher expression levels of these hub genes experienced a shorter overall survival. Additionally, CMap predicted the 20 most significant small molecules as potential therapeutic drugs for NSCLC. DL-thiorphan was the most promising small molecule to reverse the NSCLC gene expression. Conclusions: Based on the gene expression profiles of 696 NSCLC samples and 237 normal samples, we first revealed that PTTG1, TYMS, ECT2, COL1A1, SPP1 and CDCA5 could act as the promising novel diagnostic and therapeutic targets for NSCLC. Our work will contribute to clarifying the molecular mechanisms of NSCLC initiation and progression.
Collapse
Affiliation(s)
- Qiong Wu
- Medical School of Nantong University, Nantong 226001, People's Republic of China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Bo Zhang
- Medical School of Nantong University, Nantong 226001, People's Republic of China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Yidan Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - Ran Xu
- Medical School of Nantong University, Nantong 226001, People's Republic of China
| | - Xinyi Hu
- Department of Biochemistry & Molecular Biology, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shiqi Ren
- Department of Biochemistry & Molecular Biology, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Qianqian Ma
- Emergency Office, Wuxi Center for Disease Control and Prevention, Wuxi 214023, People's Republic of China
| | - Chen Chen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian Shu
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou 215400, People's Republic of China
| | - Fuwei Qi
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou 215400, People's Republic of China
| | - Ting He
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou 215400, People's Republic of China
| | - Wei Wang
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Ziheng Wang
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| |
Collapse
|
40
|
Ekman S, Griesinger F, Baas P, Chao D, Chouaid C, O'Donnell JC, Penrod JR, Daumont M, Lacoin L, McKenney A, Khovratovich M, Munro REJ, Durand-Zaleski I, Johnsen SP. I-O Optimise: a novel multinational real-world research platform in thoracic malignancies. Future Oncol 2019; 15:1551-1563. [DOI: 10.2217/fon-2019-0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: To describe I-O Optimise, a multinational program providing real-world insights into lung cancer management. Materials & methods: Real-world data source selection for I-O Optimise followed a structured approach focused on population coverage, key variable capture, continuous/consistent data availability, record duration and data latency, and database expertise. Results: As of 31 October 2018, seven real-world data sources were included in I-O Optimise, providing data on characteristics, treatment patterns and clinical outcomes from more than 45,000 patients/year with non-small-cell lung cancer, small-cell lung cancer and mesothelioma across Denmark, Norway, Portugal, Spain, Sweden and the UK. Conclusion: The ongoing I-O Optimise initiative has the potential to provide a broad, robust and dynamic research platform to continually address numerous research objectives in the lung cancer arena.
Collapse
Affiliation(s)
- Simon Ekman
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Griesinger
- Department of Haematology & Oncology, University Department Internal Medicine-Oncology, Pius-Hospital, Medical Campus University of Oldenburg, Oldenburg, Germany
| | - Paul Baas
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Chao
- Department of Oncology, Royal Free Hospital, London, UK
| | - Christos Chouaid
- Pneumology Unit, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - John C O'Donnell
- Worldwide Health Economics & Outcomes Research, Bristol-Myers Squibb, Princeton, NJ, USA
| | - John R Penrod
- Worldwide Health Economics & Outcomes Research, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Melinda Daumont
- Worldwide Health Economics & Outcomes Research, Bristol-Myers Squibb, Braine-l'Alleud, Belgium
| | - Laure Lacoin
- Worldwide Health Economics & Outcomes Research, Bristol-Myers Squibb, Braine-l'Alleud, Belgium
| | | | | | | | - Isabelle Durand-Zaleski
- URC Eco IdF, Unité de Recherche Clinique en Économie de la Santé d'Ile de France, AP-HP Paris, Paris, France
| | - Søren Paaske Johnsen
- Danish Center for Clinical Health Services Research, Aalborg University, Aalborg, Denmark
| |
Collapse
|
41
|
Histopathological Imaging⁻Environment Interactions in Cancer Modeling. Cancers (Basel) 2019; 11:cancers11040579. [PMID: 31022926 PMCID: PMC6520737 DOI: 10.3390/cancers11040579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022] Open
Abstract
Histopathological imaging has been routinely conducted in cancer diagnosis and recently used for modeling other cancer outcomes/phenotypes such as prognosis. Clinical/environmental factors have long been extensively used in cancer modeling. However, there is still a lack of study exploring possible interactions of histopathological imaging features and clinical/environmental risk factors in cancer modeling. In this article, we explore such a possibility and conduct both marginal and joint interaction analysis. Novel statistical methods, which are “borrowed” from gene–environment interaction analysis, are employed. Analysis of The Cancer Genome Atlas (TCGA) lung adenocarcinoma (LUAD) data is conducted. More specifically, we examine a biomarker of lung function as well as overall survival. Possible interaction effects are identified. Overall, this study can suggest an alternative way of cancer modeling that innovatively combines histopathological imaging and clinical/environmental data.
Collapse
|
42
|
Jiang W, Chen Y, Song X, Shao Y, Ning Z, Gu W. Pim-1 inhibitor SMI-4a suppresses tumor growth in non-small cell lung cancer via PI3K/AKT/mTOR pathway. Onco Targets Ther 2019; 12:3043-3050. [PMID: 31114247 PMCID: PMC6497832 DOI: 10.2147/ott.s203142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023] Open
Abstract
Background: In the present study, we aimed to investigate the effect of proviral integration site for moloney murine leukemia virus-1 (Pim-1) inhibitor (SMI-4a) on the progression of non-small cell lung cancer (NSCLC). Materials and methods: The effects of SMI-4a on proliferation, apoptosis, and cell cycle of NSCLC cells were examined by in vitro experiments using human NSCLC cell lines (A549 and Ltep-a-2). The pathway regulated by SMI-4a was detected using Western blot. Furthermore, we performed in vivo experiments to assess the effects of SMI-4a on tumor growth using mouse models with NSCLC. Results: Our data demonstrated that SMI-4a could inhibit the proliferation of A549 and Ltep-a-2 cells markedly in a dose-dependent manner (P<0.05). Treatment with 80 μmol/L of SMI-4a for 48 h significantly induced the apoptosis rate of NSCLC cells (P<0.05), and blocked the cell cycle of NSCLC cells in G2/M phase (P<0.05). The phosphorylation levels of PI3K, AKT, and mTOR in NSCLC cells were significantly downregulated by SMI-4a (P<0.05). Result from in vivo experiments demonstrated that SMI-4a could suppress the tumor growth in mouse models with NSCLC (P<0.05). Conclusions: SMI-4a suppresses the progression of NSCLC by blocking the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Wenjie Jiang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| | - Yuan Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| | - Xing Song
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| | - Zhonghua Ning
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou 213003, People's Republic of China
| |
Collapse
|
43
|
Yu Q, Xu L, Chen L, Sun B, Yang Z, Lu K, Yang Z. Vinculin expression in non-small cell lung cancer. J Int Med Res 2019; 48:300060519839523. [PMID: 30947597 PMCID: PMC7140223 DOI: 10.1177/0300060519839523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Qiuli Yu
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China.,Qiuli Yu and Liqin Xu contributed equally to this work
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Qiuli Yu and Liqin Xu contributed equally to this work
| | - Long Chen
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Baier Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiyun Yang
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Kunqin Lu
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Zhiyong Yang
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| |
Collapse
|
44
|
|
45
|
Alidousty C, Baar T, Heydt C, Wagener-Ryczek S, Kron A, Wolf J, Buettner R, Schultheis AM. Advance of theragnosis biomarkers in lung cancer: from clinical to molecular pathology and biology. J Thorac Dis 2019; 11:S3-S8. [PMID: 30775023 DOI: 10.21037/jtd.2018.12.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
One distinct molecular subtype of non-small cell lung cancer (NSCLC) is defined by rearrangement of the anaplastic lymphoma kinase (ALK). The increasing knowledge over the last years has enabled the continuous improvement of ALK inhibitors; however, resistance in these patients remains a major concern. In this review, we summarize recent findings in ALK+-adenocarcinoma of the lung, highlighting the role of TP53 mutations in this specific cancer type and suggest new diagnostic strategies for the future, in order to improve patient's outcome.
Collapse
Affiliation(s)
| | - Till Baar
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Carina Heydt
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | | - Anna Kron
- Network Genomic Medicine, Cologne, Germany.,Lung Cancer Group Cologne, Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Center for Integrated Oncology Cologne Bonn, Cologne, Germany
| | - Juergen Wolf
- Network Genomic Medicine, Cologne, Germany.,Lung Cancer Group Cologne, Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Center for Integrated Oncology Cologne Bonn, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany.,Network Genomic Medicine, Cologne, Germany.,Lung Cancer Group Cologne, Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
46
|
Li M, Li C, Ke L, Zhan M, Cheng M. Significance of the epidermal growth factor receptor mutation status and differences among molecular subgroups in surgically resected lung microinvasive adenocarcinoma. Oncol Lett 2018; 16:7057-7067. [PMID: 30546439 DOI: 10.3892/ol.2018.9539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/24/2018] [Indexed: 11/05/2022] Open
Abstract
Lung microinvasive adenocarcinoma (MIA) is a newly-defined subtype of early stage non-small cell lung cancer (NSCLC). However, its epidermal growth factor receptor (EGFR) mutation status and clinical significance remain unclear. The present study aimed to determine EGFR mutation characteristics and identify their significance in patients with resected lung MIA. The present study also analyzed clinicopathological differences between EGFR molecular subgroups defined as 19Del and L858R. The present study examined EGFR mutations in 79 consecutive lung MIA resection specimens and compared the differences in clinicopathological features between the EGFR wild-type and mutation groups, as well as between the 19Del and L858R subgroups. EGFR mutations were detected in 60 (75.95%) tumors. The most common mutations were 19Del (28 cases; 35.44%) and L858R (30 cases; 37.97%). Two patients harbored rare mutations and one of them had a concomitant double mutation. EGFR mutations were significantly associated with microinvasion component, thyroid transcription factor 1 (TTF-1) expression, intratumoral fibrosis and inflammatory cell infiltration. Subgroup evaluation indicated that there was a significant association between 19Del and tumor size, maximum diameter of microinvasion, presence of intratumoral fibrosis and inflammatory cell infiltration. Similar associations were observed for the L858R subgroup, and L858R was associated with TTF-1 expression. In particular, 19Del occurred more frequently in MIA with a smaller size, with a smaller microinvasive area, without TTF-1 expression, and lacking intratumoral fibrosis and inflammatory cell infiltration. By contrast, L858R was detected more frequently in MIA with entirely different tumor features. In conclusion, the results of the present study indicated that surgically resected MIA cases harboring different EGFR gene statuses exhibit distinct clinicopathological features. Significant differences in pathological features associated with the tumor microenvironment were identified in MIA with 19Del or L858R mutations. Therefore, the present study proposed that MIA should be classified into molecular subgroups based on EGFR mutation subtypes. The molecular sub-classification should be taken into account for prognostic evaluation and clinical management of MIA.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Chuanying Li
- Department of Pathology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Li Ke
- Department of Thoracic Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Mali Zhan
- Department of Pathology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Min Cheng
- The Gerontology Institute of Anhui Province, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
47
|
Naghizadeh S, Mansoori B, Mohammadi A, Kafil HS, Mousavi Z, Sakhinia E, Baradaran B. Effects of HMGA2 gene downregulation by siRNA on lung carcinoma cell migration in A549 cell lines. J Cell Biochem 2018; 120:5024-5032. [PMID: 30317663 DOI: 10.1002/jcb.27778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although there are multiple treatments for lung cancer, the death rate of this cancer remains high because of metastasis in earlier stages. So a novel treatment for overcoming metastasis is urgently needed. Overexpression of high-mobility group AT-hook 2 (HMGA2), a nonhistone chromosomal protein has been observed in metastatic cancers. So, we suggested that HMGA2 upregulation may play a critical role in treating lung cancer. METHODS The A549 cells were transfected with specific HMGA2 small interfering RNA (siRNA) using transfection reagent. Relative HMGA2 and matrix metallopeptidase 1 (MMP1), C-X-C chemokine receptor type 4 (CXCR4), vimentin, and E-cadherin messenger RNA expression levels were measured by quantitative real-time polymerase chain reaction. To diagnose cytotoxic effect of HMGA2 siRNA and other components of transfection process, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was applied. The migration capacity after transfection with HMGA2 siRNA was detected by wound-healing assay. RESULTS HMGA2 siRNA significantly reduced HMGA2 expression in a dose-dependent manner 48 hours after transfection. Expression levels of MMP1, vimentin, and CXCR4 were reduced, but E-cadherin level was not changed meaningfully. HMGA2 knockdown significantly reduced cell survival rate and also led to the inhibition of cell migration. CONCLUSIONS Our results indicated that RNA interference by downregulation of HMGA2 gene expression and affecting downstream genes led to the inhibition of cell migration and proliferation. Therefore, HMGA2 siRNA might be an alternative treatment option for metastatic lung cancer.
Collapse
Affiliation(s)
- Sanaz Naghizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mousavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Ni M, Liu X, Wu J, Zhang D, Tian J, Wang T, Liu S, Meng Z, Wang K, Duan X, Zhou W, Zhang X. Identification of Candidate Biomarkers Correlated With the Pathogenesis and Prognosis of Non-small Cell Lung Cancer via Integrated Bioinformatics Analysis. Front Genet 2018; 9:469. [PMID: 30369945 PMCID: PMC6194157 DOI: 10.3389/fgene.2018.00469] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023] Open
Abstract
Background and Objective: Non-small cell lung cancer (NSCLC) accounts for 80-85% of all patients with lung cancer and 5-year relative overall survival (OS) rate is less than 20%, so that identifying novel diagnostic and prognostic biomarkers is urgently demanded. The present study attempted to identify potential key genes associated with the pathogenesis and prognosis of NSCLC. Methods: Four GEO datasets (GSE18842, GSE19804, GSE43458, and GSE62113) were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between NSCLC samples and normal ones were analyzed using limma package, and RobustRankAggreg (RRA) package was used to conduct gene integration. Moreover, Search Tool for the Retrieval of Interacting Genes database (STRING), Cytoscape, and Molecular Complex Detection (MCODE) were utilized to establish protein-protein interaction (PPI) network of these DEGs. Furthermore, functional enrichment and pathway enrichment analyses for DEGs were performed by Funrich and OmicShare. While the expressions and prognostic values of top genes were carried out through Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan Meier-plotter (KM) online dataset. Results: A total of 249 DEGs (113 upregulated and 136 downregulated) were identified after gene integration. Moreover, the PPI network was established with 166 nodes and 1784 protein pairs. Topoisomerase II alpha (TOP2A), a top gene and hub node with higher node degrees in module 1, was significantly enriched in mitotic cell cycle pathway. In addition, Interleukin-6 (IL-6) was enriched in amb2 integrin signaling pathway. The mitotic cell cycle was the most significant pathway in module 1 with the highest P-value. Besides, five hub genes with high degree of connectivity were selected, including TOP2A, CCNB1, CCNA2, UBE2C, and KIF20A, and they were all correlated with worse OS in NSCLC. Conclusion: The results showed that TOP2A, CCNB1, CCNA2, UBE2C, KIF20A, and IL-6 may be potential key genes, while the mitotic cell cycle pathway may be a potential pathway contribute to progression in NSCLC. Further, it could be used as a new biomarker for diagnosis and to direct the synthesis medicine of NSCLC.
Collapse
Affiliation(s)
- Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Ting Wang
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kaihuan Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiao Duan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
49
|
Jin Y, Shi X, Zhao J, He Q, Chen M, Yan J, Ou Q, Wu X, Shao YW, Yu X. Mechanisms of primary resistance to EGFR targeted therapy in advanced lung adenocarcinomas. Lung Cancer 2018; 124:110-116. [DOI: 10.1016/j.lungcan.2018.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 12/13/2022]
|
50
|
Alidousty C, Baar T, Martelotto LG, Heydt C, Wagener S, Fassunke J, Duerbaum N, Scheel AH, Frank S, Holz B, Binot E, Kron A, Merkelbach‐Bruse S, Ihle MA, Wolf J, Buettner R, Schultheis AM. Genetic instability and recurrent MYC amplification in ALK-translocated NSCLC: a central role of TP53 mutations. J Pathol 2018; 246:67-76. [PMID: 29885057 PMCID: PMC6120547 DOI: 10.1002/path.5110] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/30/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
The anaplastic lymphoma kinase (ALK) rearrangement defines a distinct molecular subtype of non-small cell lung cancer (NSCLC). Despite the excellent initial efficacy of ALK inhibitors in patients with ALK+ lung cancer, resistance occurs almost inevitably. To date, there is no reliable biomarker allowing the identification of patients at higher risk of relapse. Here, we analysed a subset of 53 ALK+ tumours with and without TP53 mutation and ALK+ NSCLC cell lines by NanoString nCounter technology. We found that the co-occurrence of early TP53 mutations in ALK+ NSCLC can lead to chromosomal instability: 24% of TP53-mutated patients showed amplifications of known cancer genes such as MYC (14%), CCND1 (10%), TERT (5%), BIRC2 (5%), ORAOV1 (5%), and YAP1 (5%). MYC-overexpressing ALK+ TP53-mutated cells had a proliferative advantage compared to wild-type cells. ChIP-Seq data revealed MYC-binding sites within the promoter region of EML4, and MYC overexpression in ALK+ TP53-mutated cells resulted in an upregulation of EML4-ALK, indicating a potential MYC-dependent resistance mechanism in patients with increased MYC copy number. Our study reveals that ALK+ NSCLC represents a more heterogeneous subgroup of tumours than initially thought, and that TP53 mutations in that particular cancer type define a subset of tumours that harbour chromosomal instability, leading to the co-occurrence of pathogenic aberrations. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Till Baar
- University of Cologne, Faculty of Medicine, Institute of Medical Statistics and Computational BiologyCologneGermany
| | | | - Carina Heydt
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Svenja Wagener
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Jana Fassunke
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Nicolai Duerbaum
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Andreas H Scheel
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Sandra Frank
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Barbara Holz
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Elke Binot
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Anna Kron
- Network Genomic MedicineCologneGermany
| | | | - Michaela A Ihle
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Jürgen Wolf
- Network Genomic MedicineCologneGermany
- Lung Cancer Group Cologne, Department I for Internal MedicineUniversity Hospital of CologneCologneGermany
- Center for Integrated Oncology Cologne BonnGermany
| | - Reinhard Buettner
- University Hospital Cologne, Institute of PathologyCologneGermany
- Network Genomic MedicineCologneGermany
- Lung Cancer Group Cologne, Department I for Internal MedicineUniversity Hospital of CologneCologneGermany
| | | |
Collapse
|