1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Mistretta KS, Coburn JM. Three-dimensional silk fibroin scaffolded co-culture of human neuroblastoma and innate immune cells. Exp Cell Res 2024; 443:114289. [PMID: 39433171 DOI: 10.1016/j.yexcr.2024.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. It accounts for 50 % of cancers diagnosed in infants less than 1 year old, and 10 % of all pediatric cancer deaths in the United States. High-risk patients have a less than 50 % 5-year survival rate with current treatment strategies. The complex tumor microenvironment of NB makes the development of treatment strategies for high-risk patients challenging. There is increasing evidence that intratumoral immune suppression plays an important role in the progression and invasion of NB tumors. Few three-dimensional (3D) cancer models include components of the innate immune system. This work develops a preclinical 3D NB-immune co-culture model using SK-N-AS NB cells, NK-92 natural killer cells, and THP-1 derived macrophages, co-cultured on porous 3D silk scaffolds to provide tumor architecture. Conditioned media and indirect co-culturing showed changes in SK-N-AS gene expression associated with immunoregulatory signaling, and changes in NK-92 gene expression that are associated with reduced cytotoxicity. This motivated the development of a 3D direct co-culture system in which NB cells were seeded prior to immune cells to allow incorporation and deposition of extracellular matrix within the construct. Immune cells were then incorporated into the model to achieve direct co-culture with SK-N-AS cells. Changes in THP-1 macrophage polarization toward a more M2-like phenotype were observed in 3D direct co-culture, as well as altered NK-92 cell protein secretion and cytotoxic activity. Preliminary testing of immunotherapeutics within the model was conducted on both NB-macrophage and NB-NK co-cultures, but the model demonstrated limited response to immunotherapeutics. This work lays the foundation for building high-throughput therapeutic screening models for the improved treatment NB and other solid tumors.
Collapse
Affiliation(s)
- Katelyn S Mistretta
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
3
|
Belgiovine C, Mebelli K, Raffaele A, De Cicco M, Rotella J, Pedrazzoli P, Zecca M, Riccipetitoni G, Comoli P. Pediatric Solid Cancers: Dissecting the Tumor Microenvironment to Improve the Results of Clinical Immunotherapy. Int J Mol Sci 2024; 25:3225. [PMID: 38542199 PMCID: PMC10970338 DOI: 10.3390/ijms25063225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 01/03/2025] Open
Abstract
Despite advances in their diagnosis and treatment, pediatric cancers remain among the leading causes of death in childhood. The development of immunotherapies and other forms of targeted therapies has significantly changed the prognosis of some previously incurable cancers in the adult population. However, so far, the results in pediatric cohorts are disappointing, which is mainly due to differences in tumor biology, including extreme heterogeneity and a generally low tumor mutational burden. A central role in the limited efficacy of immunotherapeutic approaches is played by the peculiar characteristics of the tumor microenvironment (TME) in pediatric cancer, with the scarcity of tumor infiltration by T cells and the abundance of stromal cells endowed with lymphocyte suppressor and tumor-growth-promoting activity. Thus, progress in the treatment of pediatric solid tumors will likely be influenced by the ability to modify the TME while delivering novel, more effective therapeutic agents. In this review, we will describe the TME composition in pediatric solid tumors and illustrate recent advances in treatment for the modulation of immune cells belonging to the TME.
Collapse
Affiliation(s)
- Cristina Belgiovine
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia, 27100 Pavia, Italy
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Kristiana Mebelli
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessandro Raffaele
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marica De Cicco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Jessica Rotella
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marco Zecca
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanna Riccipetitoni
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia, 27100 Pavia, Italy
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Patrizia Comoli
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
4
|
Zafari R, Razi S, Rezaei N. The role of dendritic cells in neuroblastoma: Implications for immunotherapy. Immunobiology 2022; 227:152293. [DOI: 10.1016/j.imbio.2022.152293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022]
|
5
|
Gomez RL, Ibragimova S, Ramachandran R, Philpott A, Ali FR. Tumoral heterogeneity in neuroblastoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188805. [PMID: 36162542 DOI: 10.1016/j.bbcan.2022.188805] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022]
Abstract
Neuroblastoma is a solid, neuroendocrine tumor with divergent clinical behavior ranging from asymptomatic to fatal. The diverse clinical presentations of neuroblastoma are directly linked to the high intra- and inter-tumoral heterogeneity it presents. This heterogeneity is strongly associated with therapeutic resistance and continuous relapses, often leading to fatal outcomes. The development of successful risk assessment and tailored treatment strategies lies in evaluating the extent of heterogeneity via the accurate genetic and epigenetic profiling of distinct cell subpopulations present in the tumor. Recent studies have focused on understanding the molecular mechanisms that drive tumoral heterogeneity in pursuing better therapeutic and diagnostic approaches. This review describes the cellular, genetic, and epigenetic aspects of neuroblastoma heterogeneity. In addition, we summarize the recent findings on three crucial factors that can lead to heterogeneity in solid tumors: the inherent diversity of the progenitor cells, the presence of cancer stem cells, and the influence of the tumor microenvironment.
Collapse
Affiliation(s)
- Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Shakhzada Ibragimova
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates.
| |
Collapse
|
6
|
Truong DQ, Ho BT, Chau GC, Truong DK, Pham TTT, Nakagawara A, Bui CB. Collagen XI Alpha 1 (COL11A1) Expression in the Tumor Microenvironment Drives Neuroblastoma Dissemination. Pediatr Dev Pathol 2022; 25:91-98. [PMID: 34460335 DOI: 10.1177/10935266211039200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Neuroblastoma (NB) is among the most common cancers in children. A highly aggressive form of cancer, NB relies on cells in the microenvironment for dissemination particularly cancer associated fibroblast (CAFs). CAFs synthesise the extracellular matrix to create a scaffold for tumor growth thus enabling the carcinogenesis of NB, Collagen, an abundant scaffold protein produced by CAFs, has been implicated in the creation of an optimal tumor microenvironment, however, the expression profile of collagen within NB is not yet known. METHODS We characterised collagen expression within the tumor-stroma boundary by microarray and confirmed by qRT-PCR and immunohistochemistry. RESULTS The collagen marker, COL11A1, was also upregulated in NB CD45+ cells and SMA+ CAFs. Furthermore, SMA+ CAFs led to neuroblastoma cell invasion in an in vitro co-culture system which was subsequently attenuated by gene silencing COL11A1. Immunohistochemical staining of clinical tumor samples revealed that high COL11A1 expression in the stroma adjacent to tumour site, significantly associated with advanced cancer stages, age ≥18 months, undifferentiated tumor status, relapse and poor overall survival. CONCLUSION Collectively, these results suggest that a COL11A1 signature in the NB microenvironment could represent a novel target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Ban Tran Ho
- Department of Paediatric Surgery, Faculty of Medicine, University of medicine and pharmacy at Hochiminh city, Vietnam.,Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Gia-Cac Chau
- School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Dinh Khai Truong
- Department of Paediatric Surgery, Faculty of Medicine, University of medicine and pharmacy at Hochiminh city, Vietnam.,Children Hospital 2, Ho Chi Minh City, Vietnam
| | | | - Akira Nakagawara
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Chi-Bao Bui
- City Children's Hospital, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh city, Ho Chi Minh, Vietnam.,School of Medicine, Ho Chi Minh city, Vietnam
| |
Collapse
|
7
|
Wu AT, Yeh YC, Huang YJ, Mokgautsi N, Lawal B, Huang TH. Gamma-mangostin isolated from garcinia mangostana suppresses colon carcinogenesis and stemness by downregulating the GSK3β/β-catenin/CDK6 cancer stem pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153797. [PMID: 34802869 DOI: 10.1016/j.phymed.2021.153797] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite advances in chemotherapies and targeted drugs, colorectal cancer (CRC) remains challenging to treat due to drug resistance. Emerging evidence indicates that cancer-associated fibroblasts (CAFs) facilitate the generation of cancer stem-like cells (CSCs) and drug resistance. Glycogen synthase kinase-3 (GSK) associated signaling pathways have been implicated in the generation of CSCs and represent a target for therapeutics development. HYPOTHESIS Gamma-mangostin (gMG) isolated from Garcinia mangostana was evaluated for its ability to downregulate GSK3β-associated signaling in CRC cells and overcome CAF-induced 5-fluorouracil resistance and CSC generation. METHODS Bioinformatics analysis, in silico molecular docking, in vitro assays, including cell viability tests, colony- and tumor sphere-formation assays, transwell migration assays, ELISA, SDS-PAGE, Western blotting, miR expression, qPCR, and flow cytometry, as well as in vivo mouse xenograft models were used to evaluate the antitumor effects of gMG. RESULTS Bioinformatics analyses indicated that GSK3β/CDK6/β-catenin mRNA signature was significantly higher in colon cancer patients. Additional algorithms predicted a higher miR-26b level was associated with significantly higher survival in CRC patients and GSK3β and CDK6 as targets of miR-26b-5p. To validate these findings in vitro, we showed that CAF-cocultured CRC cells expressed an increased expression of GSK3β, β-catenin, CDK6, and NF-κB. Therapeutically, we demonstrated that gMG treatment suppressed GSK3β-associated signaling pathways while concomitantly increased the miR-26b-5p level. Using a xenograft mouse model of CAFs cocultured HCT116 tumorspheres, we showed that gMG treatment reduced tumor growth and overcame CAF-induced 5-fluorouracil resistance. CONCLUSIONS Pharmacological intervention with gMG suppressed CRC carcinogenesis and stemness via downregulating GSK3/β-catenin/CDK6 and upregulating the miR-26b-5p tumor suppressor. Thus, gMG represents a potential new CRC therapeutic agent and warrants further investigation.
Collapse
Affiliation(s)
- Alexander Th Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; International PhD Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; College of Medical Science and Technology, Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 11031, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan; Program in Molecular Medicine, School of Life Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Yan-Jiun Huang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; College of Medical Science and Technology, Graduate Institute for Cancer Biology & Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; College of Medical Science and Technology, Graduate Institute for Cancer Biology & Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan; School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Department & Graduate Institute of Chemical Engineering & Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.
| |
Collapse
|
8
|
Evaluation of breast cancer stem cells in human primary breast carcinoma and their role in aggressive behavior of the disease. J Clin Transl Res 2021; 7:687-700. [PMID: 34778599 PMCID: PMC8580523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND AIM To delineate the underlying molecular mechanisms responsible for the intratumoral enrichment of breast cancer stem cells (BCSCs) in aggressive breast tumors, we evaluated the frequency and characteristics of BCSCs within the tumor tissue in primary human breast carcinomas. We assessed the expression profiles of various genes in cancer cells (CC) and stromal cells (SC) from these tumors to delineate the role played by the cellular niche in de novo origin or expansion of intra-tumoral cancer stem cells (CSC). METHOD The study included primary tumor and adjacent normal breast tissue specimens from chemotherapy-naïve breast carcinoma patients. The BCSCs, identified as Lin-CD44+CD24- and aldehyde dehydrogenase 1 A1 positive, were enumerated. The flow-cytometrically sorted stromal, and CC were processed for gene expression profiling using a custom-designed polymerase chain reaction array of genes known to facilitate disease progression. RESULTS The frequency of BCSCs within the tumor mass correlated significantly with histopathological and molecular grades of tumors, indicating a direct relationship of BCSC with the aggressive behavior of breast cancer. Further, a significantly increased expression of the genes associated with growth factors, cytokines and matricellular proteins in tumors were found in high BCSCs compared to Lo-BCSC tumors, suggesting the possible contribution of stromal and CC in an intratumoral expansion of CSCs. Similarly, a significant upregulation of genes associated with hypoxia and angiogenesis in Hi-BCSCs tumors further supported the role of a hypoxic environment. CONCLUSION Overall, the findings suggest the molecular crosstalk between SC and CC potentially (directly or indirectly) contributes to the expansion of CSC. RELEVANCE FOR PATIENTS The current study highlights the importance of CSC as a potential future predictive/prognostic marker for aggressive breast cancer. The present study predicts the potential risk stratification based on the frequency of BCSCs in primary breast tumors and existing prognostic factors.
Collapse
|
9
|
Quinn CH, Beierle AM, Beierle EA. Artificial Tumor Microenvironments in Neuroblastoma. Cancers (Basel) 2021; 13:cancers13071629. [PMID: 33915765 PMCID: PMC8037559 DOI: 10.3390/cancers13071629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Children with high-risk neuroblastoma have limited therapeutic options poor survival rates. The neuroblastoma tumor microenvironment contributes the lack of response to many interventions so innovative methods are needed to study the effects of the tumor microenvironment on new therapies. In this manuscript, we review the current literature related to the components of the tumor microenvironment and to the use of three-dimensional printing as modality to study cancer. This review highlights the potential for using three-dimensional printing to create an artificial tumor microenvironment in the presence of neuroblastoma to provide improved preclinical testing of novel therapies. Abstract In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.
Collapse
Affiliation(s)
- Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Andee M. Beierle
- Division of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
- Correspondence:
| |
Collapse
|
10
|
Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions. J Pers Med 2021; 11:jpm11030211. [PMID: 33809565 PMCID: PMC7999600 DOI: 10.3390/jpm11030211] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
A neuroblastoma (NB) is a solid paediatric tumour arising from undifferentiated neuronal cells. Despite the recent advances in disease management and treatment, it remains one of the leading causes of childhood cancer deaths, thereby necessitating the development of new therapeutic agents and regimens. Retinoic acid (RA), a vitamin A derivative, is a promising agent that can induce differentiation in NB cells. Its isoform, 13-cis RA or isotretinoin, is used in NB therapy; however, its effectiveness is limited to treating a minimal residual disease as maintenance therapy. As such, research focuses on RA derivatives that might increase the anti-NB action or explores the potential synergy between RA and other classes of drugs, such as cellular processes mediators, epigenetic modifiers, and immune modulators. This review summarises the in vitro, in vivo, and clinical data of RA, its derivatives, and synergising compounds, thereby establishing the most promising RA derivatives and combinations of RA for further investigation.
Collapse
|
11
|
Marayati R, Bownes LV, Stafman LL, Williams AP, Quinn CH, Atigadda V, Aye JM, Stewart JE, Yoon KJ, Beierle EA. 9-cis-UAB30, a novel rexinoid agonist, decreases tumorigenicity and cancer cell stemness of human neuroblastoma patient-derived xenografts. Transl Oncol 2020; 14:100893. [PMID: 33010553 PMCID: PMC7530346 DOI: 10.1016/j.tranon.2020.100893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022] Open
Abstract
Retinoic acid (RA) therapy has been utilized as maintenance therapy for high-risk neuroblastoma, but over half of patients treated with RA relapse. Neuroblastoma stem cell-like cancer cells (SCLCCs) are a subpopulation of cells characterized by the expression of the cell surface marker CD133 and are hypothesized to contribute to drug resistance and disease relapse. A novel rexinoid compound, 9-cis-UAB30 (UAB30), was developed having the same anti-tumor effects as RA but a more favorable toxicity profile. In the current study, we investigated the efficacy of UAB30 in neuroblastoma patient-derived xenografts (PDX). Two PDXs, COA3 and COA6, were utilized and alterations in the malignant phenotype were assessed following treatment with RA or UAB30. UAB30 significantly decreased proliferation, viability, and motility of both PDXs. UAB30 induced cell-cycle arrest as demonstrated by the significant increase in percentage of cells in G1 (COA6: 33.7 ± 0.7 vs. 43.3 ± 0.7%, control vs. UAB30) and decrease in percentage of cells in S phase (COA6: 44.7 ± 1.2 vs. 38.6 ± 1%, control vs. UAB30). UAB30 led to differentiation of PDX cells, as evidenced by the increase in neurite outgrowth and mRNA abundance of differentiation markers. CD133 expression was decreased by 40% in COA6 cells after UAB30. The ability to form tumorspheres and mRNA abundance of known stemness markers were also significantly decreased following treatment with UAB30, further indicating decreased cancer cell stemness. These results provide evidence that UAB30 decreased tumorigenicity and cancer cell stemness in neuroblastoma PDXs, warranting further exploration as therapy for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
12
|
Utama RH, Atapattu L, O'Mahony AP, Fife CM, Baek J, Allard T, O'Mahony KJ, Ribeiro JCC, Gaus K, Kavallaris M, Gooding JJ. A 3D Bioprinter Specifically Designed for the High-Throughput Production of Matrix-Embedded Multicellular Spheroids. iScience 2020; 23:101621. [PMID: 33089109 DOI: 10.1016/j.isci.2020.101621] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
3D in vitro cancer models are important therapeutic and biological discovery tools, yet formation of matrix-embedded multicellular spheroids prepared in high-throughput (HTP), and in a highly controlled manner, remains challenging. This is important to achieve robust and statistically relevant data. Here, we developed an enabling technology consisting of a bespoke drop-on-demand 3D bioprinter capable of HTP printing of 96-well plates of spheroids. 3D multicellular spheroids are embedded inside a hydrogel matrix with precise control over size and cell number, with the intra-experiment variability of embedded spheroid diameter coefficient of variation being between 4.2% and 8.7%. Application of 3D bioprinting HTP drug screening was demonstrated with doxorubicin. Measurements of IC50 values showed sensitivity to spheroid size, embedding, and how spheroids conform to the embedding, revealing parameters shaping biological responses in these models. Our study demonstrates the potential of 3D bioprinting as a robust HTP platform to screen biological and therapeutic parameters.
Collapse
Affiliation(s)
- Robert H Utama
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia.,School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Lakmali Atapattu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Christopher M Fife
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jongho Baek
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria Kavallaris
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia.,School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Bedoui Y, Lebeau G, Guillot X, Dargai F, Guiraud P, Neal JW, Ralandison S, Gasque P. Emerging Roles of Perivascular Mesenchymal Stem Cells in Synovial Joint Inflammation. J Neuroimmune Pharmacol 2020; 15:838-851. [PMID: 32964324 DOI: 10.1007/s11481-020-09958-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
In contrast to the significant advances in our understanding of the mesenchymal stem cell (MSC) populations in bone marrow (BM), little is known about the MSCs that are resident in the synovial joint and their possible roles in the tissue homeostasis, chronic inflammation as well as in repair. Neural crest is a transient embryonic structure, generating multipotential MSC capable of migrating along peripheral nerves and blood vessels to colonize most tissue types. In adult, these MSC can provide functional stromal support as a stem cell niche for lymphocyte progenitors for instance in the BM and the thymus. Critically, MSC have major immunoregulatory activities to control adverse inflammation and infection. These MSC will remain associated to vessels (perivascular (p) MSC) and their unique expression of markers such as myelin P0 and transcription factors (e.g. Gli1 and FoxD1) has been instrumental to develop transgenic mice to trace the fate of these cells in health and disease conditions. Intriguingly, recent investigations of chronic inflammatory diseases argue for an emerging role of pMSC in several pathological processes. In response to tissue injuries and with the release of host cell debris (e.g. alarmins), pMSC can detach from vessels and proliferate to give rise to either lipofibroblasts, osteoblasts involved in the ossification of arteries and myofibroblasts contributing to fibrosis. This review will discuss currently available data that suggest a role of pMSC in tissue homeostasis and pathogenesis of the synovial tissue and joints. Graphical abstract.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France
| | - Grégorie Lebeau
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France
| | - Xavier Guillot
- Service de Rhumatologie, CHU Bellepierre, Felix Guyon et Unité de recherche EPI, 97400, St Denis, La Réunion, France
| | - Farouk Dargai
- Chirurgie orthopédique et traumatologie, CHU Bellepierre, Felix Guyon, St Denis, La Réunion, France
| | - Pascale Guiraud
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France
| | - Jim W Neal
- Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XN, UK
| | - Stéphane Ralandison
- Service de Rhumatologie- Médecine Interne, CHU Morafeno, Toamasina, Madagascar
| | - Philippe Gasque
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France. .,Pôle de Biologie, Laboratoire d'Immunologique Clinique et expérimentale ZOI, LICE-OI, CHU Bellepierre, Felix Guyon, St Denis, La Réunion, France.
| |
Collapse
|
14
|
Marayati R, Williams AP, Bownes LV, Quinn CH, Stewart JE, Mroczek-Musulman E, Atigadda VR, Beierle EA. Novel retinoic acid derivative induces differentiation and growth arrest in neuroblastoma. J Pediatr Surg 2020; 55:1072-1080. [PMID: 32164984 PMCID: PMC7299742 DOI: 10.1016/j.jpedsurg.2020.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Retinoic acid (RA) is a differentiating agent utilized as maintenance therapy for high-risk neuroblastoma (NB), but associated toxicities limit its use. We have previously shown that a non-toxic, novel rexinoid, 9-cis-UAB30 (UAB30), decreased NB cell proliferation and in vivo tumor growth. A second generation, mono-methylated compound, 6-Methyl-UAB30 (6-Me), has been recently designed having greater potency compared with UAB30. In the current study, we hypothesized that 6-Me would inhibit NB cell proliferation and survival and induce differentiation and cell-cycle arrest. METHODS Proliferation and viability were measured in four human NB cell lines following treatment with UAB30 or 6-Me. Cell-cycle was analyzed and tumor cell stemness was evaluated with extreme limiting dilution assays and immunoblotting for expression of stem cell markers. A xenograft murine model was utilized to study the effects of 6-Me in vivo. RESULTS Treatment with 6-Me led to decreased proliferation and viability, induced cell cycle arrest, and increased neurite outgrowth, indicating differentiation of surviving cells. Furthermore, treatment with 6-Me decreased tumorsphere formation and expression of stem cell markers. Finally, inhibition of tumor growth and increased animal survival was observed in vivo following treatment with 6-Me. CONCLUSION These results indicate a potential therapeutic role for this novel rexinoid in neuroblastoma treatment.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Venkatram R. Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Hypoxia in the Initiation and Progression of Neuroblastoma Tumours. Int J Mol Sci 2019; 21:ijms21010039. [PMID: 31861671 PMCID: PMC6982287 DOI: 10.3390/ijms21010039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma is the most frequent extracranial solid tumour in children, causing 10% of all paediatric oncology deaths. It arises in the embryonic neural crest due to an uncontrolled behaviour of sympathetic nervous system progenitors, giving rise to heterogeneous tumours. Low local or systemic tissue oxygen concentration has emerged as a cellular stimulus with important consequences for tumour initiation, evolution and progression. In neuroblastoma, several evidences point towards a role of hypoxia in tumour initiation during development, tumour cell differentiation, survival and metastatic spreading. However, the heterogeneous nature of the disease, its developmental origin and the lack of suitable experimental models have complicated a clear understanding of the effect of hypoxia in neuroblastoma tumour progression and the molecular mechanisms implicated. In this review, we have compiled available evidences to try to shed light onto this important field. In particular, we explore the effect of hypoxia in neuroblastoma cell transformation and differentiation. We also discuss the experimental models available and the emerging alternatives to study this problem, and we present hypoxia-related therapeutic avenues being explored in the field.
Collapse
|
16
|
Cappabianca L, Farina AR, Di Marcotullio L, Infante P, De Simone D, Sebastiano M, Mackay AR. Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma. J Exp Clin Cancer Res 2019; 38:482. [PMID: 31805994 PMCID: PMC6896337 DOI: 10.1186/s13046-019-1481-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Identification of novel cancer-associated splice variants is of potential diagnostic, prognostic and therapeutic importance. NF-Y transcription factor is comprised of NF-YA, NF-YB and NF-YC subunits, binds inverted CCAAT-boxes in ≈70% of gene promoters, regulates > 1000 cancer-associated genes and proteins involved in proliferation, staminality, differentiation, apoptosis, metabolism and is subject to component alternative splicing. RT-PCR evaluation of alternative NF-YA splicing in primary human neuroblastomas (NBs), led to discovery of a novel NF-YAx splice variant, also expressed during mouse embryo development and induced by doxorubicin in NB cells. Here, we report the discovery and characterisation of NF-YAx and discus its potential roles in NB. METHODS NF-YAx cDNA was RT-PCR-cloned from a stage 3 NB (provided by the Italian Association of Haematology and Paediatric Oncology, Genova, IT), sequenced and expressed as a protein using standard methods and compared to known fully-spliced NF-YAl and exon B-skipped NF-YAs isoforms in: EMSAs for capacity to form NF-Y complexes; by co-transfection, co-immunoprecipitation and Western blotting for capacity to bind Sp1; by IF for localisation; in AO/EtBr cell-death and colony formation assays for relative cytotoxicity, and by siRNA knockdown, use of inhibitors and Western blotting for potential mechanisms of action. Stable SH-SY5Y transfectants of all three NF-YA isoforms were also propagated and compared by RT-PCR and Western blotting for differences in cell-death and stem cell (SC)-associated gene expression, in cell-death assays for sensitivity to doxorubicin and in in vitro proliferation, substrate-independent growth and in vivo tumour xenograft assays for differences in growth and tumourigenic capacity. RESULTS NF-YAx was characterized as a novel variant with NF-YA exons B, D and partial F skipping, detected in 20% of NF-YA positive NBs, was the exclusive isoform in a stage 3 NB, expressed in mouse stage E11.5-14 embryos and induced by doxorubicin in SH-SY5Y NB cells. The NF-YAx protein exhibited nuclear localisation, competed with other isoforms in CCAAT box-binding NF-Y complexes but, in contrast to other isoforms, did not bind Sp1. NF-YAx expression in neural-related progenitor and NB cells repressed Bmi1 expression, induced KIF1Bβ expression and promoted KIF1Bβ-dependent necroptosis but in NB cells also selected tumourigenic, doxorubicin-resistant, CSC-like sub-populations, resistant to NF-YAx cytotoxicity. CONCLUSIONS The discovery of NF-YAx in NBs, its expression in mouse embryos and induction by doxorubicin in NB cells, unveils a novel NF-YA splice mechanism and variant, regulated by and involved in development, genotoxic-stress and NB. NF-YAx substitution of other isoforms in NF-Y complexes and loss of capacity to bind Sp1, characterises this novel isoform as a functional modifier of NF-Y and its promotion of KIF1Bβ-dependent neural-lineage progenitor and NB cell necroptosis, association with doxorubicin-induced necroptosis and expression in mouse embryos coinciding with KIF1Bβ-dependent sympathetic neuroblast-culling, confirm a cytotoxic function and potential role in suppressing NB initiation. On the other hand, the in vitro selection of CSC-like NB subpopulations resistant to NF-YAx cytotoxicity not only helps to explain high-level exclusive NF-YAx expression in a stage 3 NB but also supports a role for NF-YAx in disease progression and identifies a potential doxorubicin-inducible mechanism for post-therapeutic relapse.
Collapse
Affiliation(s)
- Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, La Sapienza University of Rome, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, La Sapienza University of Rome, 00161 Rome, Italy
| | - Paola Infante
- Center for Life Nanoscience @ Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Daniele De Simone
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| |
Collapse
|
17
|
Li NN, Guo Y, Jiang CJ, Zhou YY, Li CH, Li ZG, Wang DL. Allyl isothiocyanate upregulates MRP1 expression through Notch1 signaling in human bronchial epithelial cells. Can J Physiol Pharmacol 2019; 98:324-331. [PMID: 31747319 DOI: 10.1139/cjpp-2019-0448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multidrug resistance associated protein-1 (MRP1) and Notch signaling are closely related and both play a critical role in chronic obstructive pulmonary disease (COPD) establishment and progression. The aim of our work was to test whether Notch1 is involved in allyl isothiocyanate (AITC) induced MRP1 expression. We used cigarette smoke extract (CSE) to simulate the smoking microenvironment in vitro. The results demonstrated that CSE led to apoptosis as well as reduced the expression of Notch1, Hes1, and MRP1, while AITC significantly reversed this downregulation. Transfected with Notch1 siRNA downregulated MRP1 expression and activity, aggravated the suppression effect by CSE, and abolished the AITC-induced Notch1, Hes1, and MRP1 expression. Validation of the correlation between Notch1 and MRP1 was implemented by gel-shift assays (electrophoretic mobility shift assay). The result revealed an interaction between a specific promoter region of MRP1 and the intracellular domain of Notch1. In conclusion, Notch1 signaling positively regulated MRP1 in 16HBE cells and AITC induced MRP1 expression and function may be attributed to Notch1 signaling. These findings show that Notch1 and MRP1 might have a potential protective effect in the COPD process and become a new therapeutic target for COPD or other lung diseases. It also provides a theoretical basis for the therapeutic effects of AITC.
Collapse
Affiliation(s)
- Ni-Ni Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Cheng-Jun Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuan-Yuan Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chen-Hui Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ze-Geng Li
- The First Affiliated Hospital to Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Dian-Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| |
Collapse
|
18
|
Aravindan N, Jain D, Somasundaram DB, Herman TS, Aravindan S. Cancer stem cells in neuroblastoma therapy resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:948-967. [PMID: 31867574 PMCID: PMC6924637 DOI: 10.20517/cdr.2019.72] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common cancer of infancy and accounts for nearly one tenth of pediatric cancer deaths. This mortality rate has been attributed to the > 50% frequency of relapse despite intensive, multimodal clinical therapy in patients with progressive NB. Given the disease’s heterogeneity and developed resistance, attaining a cure after relapse of progressive NB is highly challenging. A rapid decrease in the timeline between successive recurrences is likely due to the ongoing acquisition of genetic rearrangements in undifferentiated NB-cancer stem cells (CSCs). In this review, we present the current understanding of NB-CSCs, their intrinsic role in tumorigenesis, their function in disease progression, and their influence on acquired therapy resistance and tumor evolution. In particular, this review focus on the intrinsic involvement of stem cells and signaling in the genesis of NB, the function of pre-existing CSCs in NB progression and therapy response, the formation and influence of induced CSCs (iCSCs) in drug resistance and tumor evolution, and the development of a CSC-targeted therapeutic approach.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Anesthesiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Drishti Jain
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
19
|
Vega FM, Colmenero-Repiso A, Gómez-Muñoz MA, Rodríguez-Prieto I, Aguilar-Morante D, Ramírez G, Márquez C, Cabello R, Pardal R. CD44-high neural crest stem-like cells are associated with tumour aggressiveness and poor survival in neuroblastoma tumours. EBioMedicine 2019; 49:82-95. [PMID: 31685444 PMCID: PMC6945283 DOI: 10.1016/j.ebiom.2019.10.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background Neuroblastoma is a paediatric tumour originated from sympathoadrenal precursors and characterized by its heterogeneity and poor outcome in advanced stages. Intra-tumoral cellular heterogeneity has emerged as an important feature in neuroblastoma, with a potential major impact on tumour aggressiveness and response to therapy. CD44 is an adhesion protein involved in tumour progression, metastasis and stemness in different cancers; however, there has been controversies about the significance of CD44 expression in neuroblastoma and its relationship with tumour progression. Methods We have performed transcriptomic analysis on patient tumour samples studying the outcome of patients with high CD44 expression. Adhesion, invasion and proliferation assays were performed in sorted CD44high neuroblastoma cells. Tumoursphere cultures have been used to enrich in undifferentiated stem-like cells and to asses self-renewal and differentiation potential. We have finally performed in vivo tumorigenic assays on cell line-derived or Patient-derived xenografts. Findings We show that high CD44 expression is associated with low survival in high-grade human neuroblastoma, independently of MYCN amplification. CD44 is expressed in a cell population with neural crest stem-like features, and with the capacity to generate multipotent, undifferentiated tumourspheres in culture. These cells are more invasive and proliferative in vitro. CD44 positive cells obtained from tumours are more tumorigenic and metastatic, giving rise to aggressive neuroblastic tumours at high frequency upon transplantation. Interpretation We describe an unexpected intra-tumoural heterogeneity within cellular entities expressing CD44 in neuroblastoma, and propose that CD44 has a role in neural crest stem-like undifferentiated cells, which can contribute to tumorigenesis and malignancy in this type of cancer. Funding Research supported by grants from the “Asociación Española contra el Cáncer” (AECC), the Spanish Ministry of Science and Innovation SAF program (SAF2016-80412-P), and the European Research Council (ERC Starting Grant to RP).
Collapse
Affiliation(s)
- Francisco M Vega
- Dpto. de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain.
| | - Ana Colmenero-Repiso
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Dpto. de Fisiología Médica y Biofísica, Universidad de Sevilla 41013 Seville, Spain
| | - María A Gómez-Muñoz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Dpto. de Fisiología Médica y Biofísica, Universidad de Sevilla 41013 Seville, Spain
| | - Ismael Rodríguez-Prieto
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Dpto. de Fisiología Médica y Biofísica, Universidad de Sevilla 41013 Seville, Spain
| | - Diana Aguilar-Morante
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Dpto. de Fisiología Médica y Biofísica, Universidad de Sevilla 41013 Seville, Spain
| | - Gema Ramírez
- Unidad de Oncología Pediátrica, Hospital Universitario Virgen del Rocío, Spain
| | - Catalina Márquez
- Unidad de Oncología Pediátrica, Hospital Universitario Virgen del Rocío, Spain
| | - Rosa Cabello
- Unidad de Cirugía Pediátrica, Hospital Universitario Virgen del Rocío, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Dpto. de Fisiología Médica y Biofísica, Universidad de Sevilla 41013 Seville, Spain.
| |
Collapse
|
20
|
Stafman LL, Williams AP, Marayati R, Aye JM, Markert HR, Garner EF, Quinn CH, Lallani SB, Stewart JE, Yoon KJ, Whelan K, Beierle EA. Focal Adhesion Kinase Inhibition Contributes to Tumor Cell Survival and Motility in Neuroblastoma Patient-Derived Xenografts. Sci Rep 2019; 9:13259. [PMID: 31519958 PMCID: PMC6744403 DOI: 10.1038/s41598-019-49853-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/24/2019] [Indexed: 12/29/2022] Open
Abstract
Patient-derived xenografts (PDXs) provide an opportunity to evaluate the effects of therapies in an environment that more closely resembles the human condition than that seen with long-term passage cell lines. In the current studies, we investigated the effects of FAK inhibition on two neuroblastoma PDXs in vitro. Cells were treated with two small molecule inhibitors of FAK, PF-573,228 (PF) and 1,2,4,5-benzentetraamine tetrahydrochloride (Y15). Following FAK inhibition, cell survival and proliferation decreased significantly and cell cycle arrest was seen in both cell lines. Migration and invasion assays were used to determine the effect of FAK inhibition on cell motility, which decreased significantly in both cell lines in the presence of either inhibitor. Finally, tumor cell stemness following FAK inhibition was evaluated with extreme limiting dilution assays as well as with immunoblotting and quantitative real-time PCR for the expression of stem cell markers. FAK inhibition decreased formation of tumorspheres and resulted in a corresponding decrease in established stem cell markers. FAK inhibition decreased many characteristics of the malignant phenotype, including cancer stem cell like features in neuroblastoma PDXs, making FAK a candidate for further investigation as a potential target for neuroblastoma therapy.
Collapse
Affiliation(s)
- Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, AL, 35233, USA
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Evan F Garner
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Shoeb B Lallani
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL, 35233, USA
| | - Kimberly Whelan
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, AL, 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA.
| |
Collapse
|
21
|
Wang XH, Wu HY, Gao J, Wang XH, Gao TH, Zhang SF. IGF1R facilitates epithelial-mesenchymal transition and cancer stem cell properties in neuroblastoma via the STAT3/AKT axis. Cancer Manag Res 2019; 11:5459-5472. [PMID: 31354352 PMCID: PMC6580139 DOI: 10.2147/cmar.s196862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Neuroblastoma (NB) displays the most heterogeneity in clinical manifestation. The insulin-like growth factor 1 receptor (IGF1R) has long been recognized for its role in tumourigenesis and growth. The IGF/IGF1R pathway is important in maintaining cell survival. It is reported that IGF1R participates in the occurrence of NB, but the mechanism is still unclear. Methods Human NB cell lines IMR-32 and SH-SY5Y were recruited in this study. IGF1R was knocked down by transfection with short hairpin RNA. Signal transducer and activator of transcription 3 (STAT3) expression was inhibited by Cryptotanshinone treatment. Cell proliferation, migration, and invasion were determined by MTT assay, wound healing assay, and cell invasion assay, respectively. The cancer stem cell properties were characterized by tumour sphere formation assay and colony formation assay. The mRNA and protein expression levels of related proteins were detected by RT-PCR and Western blot, respectively. Results The knockdown of IGF1R inhibits NB cell tumourigenesis and the epithelial-mesenchymal transition (EMT) of NB cells. Additionally, IGF1R was found to stimulate cancer stem cell-like properties in NPC cells. The knockdown of IGF1R significantly reduced the phosphorylation of AKT, and STAT3, indicating that the activation of the AKT and STAT3 pathways was inhibited by IGF1R knockdown. Furthermore, IGF1R was demonstrated to stimulate cancer stem cell-like properties in NB cells via the regulation of the STAT3/AKT axis. Conclusion IGF1R promotes cancer stem cell properties to facilitate EMT in neuroblastoma via the STAT3/AKT axis.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Hai-Ying Wu
- Department of Obstetrics, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Jian Gao
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Xu-Hui Wang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Tian-Hui Gao
- Department of Medical Oncology, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Shu-Feng Zhang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| |
Collapse
|
22
|
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Front Mol Neurosci 2019; 12:131. [PMID: 31191243 PMCID: PMC6546065 DOI: 10.3389/fnmol.2019.00131] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
23
|
Veschi V, Verona F, Thiele CJ. Cancer Stem Cells and Neuroblastoma: Characteristics and Therapeutic Targeting Options. Front Endocrinol (Lausanne) 2019; 10:782. [PMID: 31803140 PMCID: PMC6877479 DOI: 10.3389/fendo.2019.00782] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
The majority of embryonal tumors or childhood blastomas derive from pluripotent progenitors or fetal stem cells that acquire cancer stem cell (CSC) properties: multipotency, self-renewal ability, metastatic potential, chemoresistance, more pronounced levels of drug transporters, enhanced DNA-damage repair mechanisms, and a quiescent state. Neuroblastoma (NB) is considered a neuroendocrine tumor and is the most common extracranial neoplasm in children. NB pathogenesis has frequently been associated with epigenetic dysregulation and a failure to implement a differentiation program. The origin, characteristics, and isolation of the CSC subpopulation in NB are still incompletely understood, despite the evidence that this cell subset contributes to disease recurrence and acquired resistance to standard therapies. Here, we summarize the literature regarding the isolation and characterization of CSCs in NB over the past decades, from the early recognition of the expression of stem cell factor (SCF) or its receptor c-KIT to more recent studies identifying the ability of G-CSF and STAT3 to support stem cell-like properties in NB cells. Additionally, we review the morphological variants of NB tumors whose recent epigenetic analyses have shed light on the tumor heterogeneity so common in NB. NB-derived mesenchymal stem cells have recently been isolated from primary tumors of NB patients and associated with a pro-tumorigenic role in the tumor microenvironment, enabling immune escape by tumors, and contributing to their invasive and metastatic capabilities. In particular, we will focus on epigenetic reprogramming in the CSC subpopulation in NB and strategies to target CSCs in NB.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Carol J. Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- *Correspondence: Carol J. Thiele
| |
Collapse
|
24
|
Pelizzo G, Veschi V, Mantelli M, Croce S, Di Benedetto V, D'Angelo P, Maltese A, Catenacci L, Apuzzo T, Scavo E, Moretta A, Todaro M, Stassi G, Avanzini MA, Calcaterra V. Microenvironment in neuroblastoma: isolation and characterization of tumor-derived mesenchymal stromal cells. BMC Cancer 2018; 18:1176. [PMID: 30482160 PMCID: PMC6260687 DOI: 10.1186/s12885-018-5082-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/12/2018] [Indexed: 01/28/2023] Open
Abstract
Background It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches. Electronic supplementary material The online version of this article (10.1186/s12885-018-5082-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Via dei Benedettini n.1, 90134, Palermo, Italy.
| | - Veronica Veschi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Vincenzo Di Benedetto
- Pediatric Surgery Unit and NICU Policlinico-Vittorio Emanuele Hospital, Catania, Italy
| | - Paolo D'Angelo
- Pediatric Hematology Oncology Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Alice Maltese
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Laura Catenacci
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Tiziana Apuzzo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Scavo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Antonia Moretta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Matilde Todaro
- Department of DIBIMIS, University of Palermo, 90127, Palermo, Italy
| | - Giorgio Stassi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
25
|
Epigallocatechin-3-gallate and 6-OH-11-O-Hydroxyphenanthrene Limit BE(2)-C Neuroblastoma Cell Growth and Neurosphere Formation In Vitro. Nutrients 2018; 10:nu10091141. [PMID: 30135355 PMCID: PMC6164794 DOI: 10.3390/nu10091141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022] Open
Abstract
We conducted an in vitro study combining a rexinoid, 6-OH-11-O-hydroxyphenanthrene (IIF), and epigallocatechin-3-gallate (EGCG), which is the main catechin of green tea, on BE(2)-C, a neuroblastoma cell line representative of the high-risk group of patients. Neuroblastoma is the most common malignancy of childhood: high-risk patients, having N-MYC over-expression, undergo aggressive therapy and show high mortality or an increased risk of secondary malignancies. Retinoids are used in neuroblastoma therapy with incomplete success: the association of a second molecule might improve the efficacy. BE(2)-C cells were treated by EGCG and IIF, individually or in combination: cell viability, as evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, was reduced, EGCG+IIF being the most effective treatment. Apoptosis occurred and the EGCG+IIF treatment decreased N-MYC protein expression and molecular markers of invasion (MMP-2, MMP-9 and COX-2). Zymography demonstrated nearly 50% inhibition of MMP activity. When BE(2)-C cells were grown in non-adherent conditions to enrich the tumor-initiating cell population, BE(2)-C-spheres were obtained. After 48 h and 72 h treatment, EGCG+IIF limited BE(2)-C-sphere formation and elicited cell death with a reduction of N-MYC expression. We concluded that the association of EGCG to IIF might be applied without toxic effects to overcome the incomplete success of retinoid treatments in neuroblastoma patients.
Collapse
|
26
|
Alshareef A, Gupta N, Zhang HF, Wu C, Haque M, Lai R. High expression of β-catenin contributes to the crizotinib resistant phenotype in the stem-like cell population in neuroblastoma. Sci Rep 2017; 7:16863. [PMID: 29203817 PMCID: PMC5715105 DOI: 10.1038/s41598-017-17319-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023] Open
Abstract
ALK has been identified as a novel therapeutic target in neuroblastoma (NB), but resistance to ALK inhibitors (such as crizotinib) is well recognized. We recently published that the crizotinib sensitivity in NB cells strongly correlates with the crizotinib—ALK binding, and β-catenin effectively hinders this interaction and confers crizotinib resistance. Here, we asked if these observations hold true for the stem-like cells in NB cells, which were purified based on their responsiveness to a Sox2 reporter. Compared to bulk, reporter unresponsive (RU) cells, reporter responsive (RR) cells had significantly higher neurosphere formation ability, expression of CD133/nestin and chemo-resistance. Using the cellular thermal shift assay, we found that RR cells exhibited significantly weaker crizotinib—ALK binding and higher crizotinib resistance than RU cells. The suboptimal crizotinib—ALK binding in RR cells can be attributed to their high β-catenin expression, since siRNA knockdown of β-catenin restored the crizotinib—ALK binding and lowered the crizotinib resistance to the level of RU cells. Enforced expression of β-catenin in RU cells resulted in the opposite effects. To conclude, high expression of β-catenin in the stem-like NB cells contributes to their crizotinib resistance. Combining β-catenin inhibitors and ALK inhibitors may be useful in treating NB patients.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Applied Medical Sciences, Taibah University, Almedinah, P.O. Box 41477, Saudi Arabia
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Hai-Feng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada. .,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada. .,DynaLIFE Medical Laboratories, Edmonton, Alberta, Canada.
| |
Collapse
|
27
|
Gallik KL, Treffy RW, Nacke LM, Ahsan K, Rocha M, Green-Saxena A, Saxena A. Neural crest and cancer: Divergent travelers on similar paths. Mech Dev 2017; 148:89-99. [PMID: 28888421 PMCID: PMC5811199 DOI: 10.1016/j.mod.2017.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
Neural crest cells are multipotent progenitors that dynamically interpret diverse microenvironments to migrate significant distances as a loosely associated collective and contribute to many tissues in the developing vertebrate embryo. Uncovering details of neural crest migration has helped to inform a general understanding of collective cell migration, including that which occurs during cancer metastasis. Here, we discuss several commonalities and differences of neural crest and cancer cell migration and behavior. First, we focus on some of the molecular pathways required for the initial specification and potency of neural crest cells and the roles of many of these pathways in cancer progression. We also describe epithelial-to-mesenchymal transition, which plays a critical role in initiating both neural crest migration and cancer metastasis. Finally, we evaluate studies that demonstrate myriad forms of cell-cell and cell-environment communication during neural crest and cancer collective migration to highlight the remarkable similarities in their molecular and cell biological regulation.
Collapse
Affiliation(s)
- Kristin L Gallik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Randall W Treffy
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Lynne M Nacke
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kamil Ahsan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Manuel Rocha
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Abigail Green-Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
28
|
Norton KA, Wallace T, Pandey NB, Popel AS. An agent-based model of triple-negative breast cancer: the interplay between chemokine receptor CCR5 expression, cancer stem cells, and hypoxia. BMC SYSTEMS BIOLOGY 2017; 11:68. [PMID: 28693495 PMCID: PMC5504656 DOI: 10.1186/s12918-017-0445-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/30/2017] [Indexed: 12/19/2022]
Abstract
Background Triple-negative breast cancer lacks estrogen, progesterone, and HER2 receptors and is thus not possible to treat with targeted therapies for these receptors. Therefore, a greater understanding of triple-negative breast cancer is necessary for the treatment of this cancer type. In previous work from our laboratory, we found that chemokine ligand-receptor CCL5-CCR5 axis is important for the metastasis of human triple-negative breast cancer cell MDA-MB-231 to the lymph nodes and lungs, in a mouse xenograft model. We collected relevant experimental data from our and other laboratories for numbers of cancer stem cells, numbers of CCR5+ cells, and cell migration rates for different breast cancer cell lines and different experimental conditions. Results Using these experimental data we developed an in silico agent-based model of triple-negative breast cancer that considers surface receptor CCR5-high and CCR5-low cells and breast cancer stem cells, to predict the tumor growth rate and spatio-temporal distribution of cells in primary tumors. We find that high cancer stem cell percentages greatly increase tumor growth. We find that anti-stem cell treatment decreases tumor growth but may not lead to dormancy unless all stem cells get eliminated. We further find that hypoxia increases overall tumor growth and treatment with a CCR5 inhibitor maraviroc slightly decreases overall tumor growth. We also characterize 3D shapes of solid and invasive tumors using several shape metrics. Conclusions Breast cancer stem cells and CCR5+ cells affect the overall growth and morphology of breast tumors. In silico drug treatments demonstrate limited efficacy of incomplete inhibition of cancer stem cells after which tumor growth recurs, and CCR5 inhibition causes only a slight reduction in tumor growth. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0445-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerri-Ann Norton
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Travis Wallace
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Niranjan B Pandey
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
29
|
Affiliation(s)
- Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
30
|
Zhen Z, Yang K, Ye L, You Z, Chen R, Liu Y, He Y. HLA-E inhibitor enhances the killing of neuroblastoma stem cells by co-cultured dendritic cells and cytokine-induced killer cells loaded with membrane-based microparticles. Am J Cancer Res 2017; 7:334-345. [PMID: 28337381 PMCID: PMC5336506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023] Open
Abstract
Neuroblastoma stem cells (NSCs) can cause drug resistance and tumor recurrence. This study aimed to enhance the lytic effect of dendritic cells (DCs) co-cultured with cytokine-induced killer (CIK) cells. NSCs were obtained by suspension culture, and DC-CIK cells were loaded with extracted NSC membrane-based microparticles (MMPs) before evaluating the lytic effect of DC-CIK cells on NSCs. After inhibiting the function or expression of human leukocyte antigen-E (HLA-E) in NSCs by anti-HLA-E monoclonal antibody or siRNA, the DC-CIK cell lytic effect on NSCs was re-assessed. NSC nestin expression was high, but glial fibrillary acid protein expression and class IIIβ-tubulin-1 expression were low. Moreover, NSCs exhibited strong tumorigenic ability in nude mice. Loading DCs with NSC-derived MMPs induced the differentiation of DCs and CIK cells and enhanced the killing of NSCs by DC-CIK cells. Inhibiting the function or expression of HLA-E in NSCs further enhanced the cytolytic capability of DC-CIK cells loaded with NSC-derived MMPs. HLA-E inhibitor can enhance the killing of NSC by DC-CIK cells loaded with NSC-derived MMPs.
Collapse
Affiliation(s)
- Zijun Zhen
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer CenterGuangzhou, China
- Collaborative Innovation Center of Cancer MedicineGuangzhou, China
| | - Kaibin Yang
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Sun Yat-sen University Zhongshan School of MedicineGuangzhou, China
| | - Litong Ye
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Sun Yat-sen University Zhongshan School of MedicineGuangzhou, China
| | - Zhiyao You
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Sun Yat-sen University Zhongshan School of MedicineGuangzhou, China
| | - Rirong Chen
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Sun Yat-sen University Zhongshan School of MedicineGuangzhou, China
| | - Ying Liu
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Sun Yat-sen University Zhongshan School of MedicineGuangzhou, China
| | - Youjian He
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Collaborative Innovation Center of Cancer MedicineGuangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer CenterGuangzhou, China
| |
Collapse
|
31
|
Garikapati KR, Patel N, Makani VKK, Cilamkoti P, Bhadra U, Bhadra MP. Down-regulation of BORIS/CTCFL efficiently regulates cancer stemness and metastasis in MYCN amplified neuroblastoma cell line by modulating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2017; 484:93-99. [PMID: 28104398 DOI: 10.1016/j.bbrc.2017.01.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/14/2017] [Indexed: 11/15/2022]
Abstract
BORIS/CTCFL is a vital nucleotide binding protein expressed during embryogenesis and gametogenesis. BORIS/CTCFL is the paralogue of transcriptional repressor protein CTCF, which is aberrantly expressed in various malignancies and primarily re-expressed in cancer stem cells (CSCs). The mechanism behind regulation of BORIS in various cancer conditions and tumor metastases is so far not explored in detail. The aim of the study was to understand the influence of BORIS/CTCFL on stemness and metastasis by regulating well-known oncogenes and related signaling pathways. In our study, we have identified a cross-talk between expression of BORIS/CTCFL and Wnt/β-catenin signaling pathway, which plays a crucial role in various processes including ontogenesis, embryogenesis and maintenance of stem cell properties. Upon knockdown of BORIS/CTCFL, we observed an upregulation of Mesenchymal to Epithelial transition markers such as E-cad and downregulation of Epithelial to Mesenchymal transition markers such as N-CAD, Vimentin, SNAIL, etc. This transition was accomplished by activation of Wnt/β-catenin signaling pathway by regulating upstream and downstream Wnt associated proteins including β-catenin, Wnt3a/5a, CD44, MYC etc. We also identified that BMI1, an oncogene belonging to polycomb group expressed positively with levels of BORIS/CTCFL. Our study implicates the role of BORIS/CTCFL in maintenance of stemness and in transition from mesenchymal to epithelial state in MYC amplified neuroblastoma IMR-32 cells. Effectively controlling BORIS/CTCFL levels can inhibit disease establishment and hence can be considered as a potent target for cancer therapy.
Collapse
Affiliation(s)
- Koteswara Rao Garikapati
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Nibedita Patel
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - Priyanka Cilamkoti
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Manika Pal Bhadra
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| |
Collapse
|
32
|
Abstract
Neuroblastoma is the most common extracranial solid tumour occurring in childhood and has a diverse clinical presentation and course depending on the tumour biology. Unique features of these neuroendocrine tumours are the early age of onset, the high frequency of metastatic disease at diagnosis and the tendency for spontaneous regression of tumours in infancy. The most malignant tumours have amplification of the MYCN oncogene (encoding a transcription factor), which is usually associated with poor survival, even in localized disease. Although transgenic mouse models have shown that MYCN overexpression can be a tumour-initiating factor, many other cooperating genes and tumour suppressor genes are still under investigation and might also have a role in tumour development. Segmental chromosome alterations are frequent in neuroblastoma and are associated with worse outcome. The rare familial neuroblastomas are usually associated with germline mutations in ALK, which is mutated in 10-15% of primary tumours, and provides a potential therapeutic target. Risk-stratified therapy has facilitated the reduction of therapy for children with low-risk and intermediate-risk disease. Advances in therapy for patients with high-risk disease include intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy; these have improved 5-year overall survival to 50%. Currently, new approaches targeting the noradrenaline transporter, genetic pathways and the tumour microenvironment hold promise for further improvements in survival and long-term quality of life.
Collapse
|
33
|
Efficient Killing of High Risk Neuroblastoma Using Natural Killer Cells Activated by Plasmacytoid Dendritic Cells. PLoS One 2016; 11:e0164401. [PMID: 27716850 PMCID: PMC5055353 DOI: 10.1371/journal.pone.0164401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/23/2016] [Indexed: 12/24/2022] Open
Abstract
High-risk neuroblastoma (NB) remains a major therapeutic challenge despite the recent advent of disialoganglioside (GD2)-antibody treatment combined with interleukin (IL)-2 and granulocyte monocyte-colony stimulating factor (GM-CSF). Indeed, more than one third of the patients still die from this disease. Here, we developed a novel approach to improve the current anti-GD2 immunotherapy based on NK cell stimulation using toll-like receptor (TLR)-activated plasmacytoid dendritic cells (pDCs). We demonstrated that this strategy led to the efficient killing of NB cells. When the expression of GD2 was heterogeneous on NB cells, the combination of pDC-mediated NK-cell activation and anti-GD2 treatment significantly increased the cytotoxicity of NK cells against NB cells. Activation by pDCs led to a unique NK-cell phenotype characterized by increased surface expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with increased expression of CD69 on CD56dim cytotoxic cells, and strong interferon-γ production. Additionally, NB-cell killing was mediated by the TRAIL death-receptor pathway, as well as by the release of cytolytic granules via the DNAX accessory molecule 1 pathway. NK-cell activation and lytic activity against NB was independent of cell contact, depended upon type I IFN produced by TLR-9-activated pDCs, but was not reproduced by IFN-α stimulation alone. Collectively, these results highlighted the therapeutic potential of activated pDCs for patients with high-risk NB.
Collapse
|
34
|
Naveen CR, Gaikwad S, Agrawal-Rajput R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:736-744. [PMID: 27235712 DOI: 10.1016/j.phymed.2016.03.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/12/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Berberine, a plant alkaloid, has been used since many years for treatment of gastrointestinal disorders. It also shows promising medicinal use against metabolic disorders, neurodegenerative disorders and cancer; however its efficacy in neuroblastoma (NB) is poorly explored. HYPOTHESIS EMT is important in cancer stemness and metastasis resulting in failure to differentiate; thus targeting EMT and related pathways can have clinical benefits. STUDY DESIGN Potential of berberine was investigated for (i) neuronal differentiation and cancer stemness inhibition, (ii) underlying molecular mechanisms regulating cancer-stemness and (iii) EMT reversal. METHODS Using neuro2a (N2a) neuroblastoma cells (NB); we investigated effect of berberine on neuronal differentiation, cancer-stemness, EMT and underlying signalling by immunofluorescence, RT-PCR, Western blot. High glucose-induced TGF-β mediated EMT model was used to test EMT reversal potential by Western blot and RT-PCR. STRING analysis was done to determine and validate functional protein-interaction networks. RESULTS We demonstrate berberine induces neuronal differentiation accompanying increased neuronal differentiation markers like MAP2, β-III tubulin and NCAM; generated neurons were viable. Berberine attenuated cancer stemness markers CD133, β-catenin, n-myc, sox2, notch2 and nestin. Berberine potentiated G0/G1 cell cycle arrest by inhibiting proliferation, cyclin dependent kinases and cyclins resulting in apoptosis through increased bax/bcl-2 ratio. Restoration of tumor suppressor proteins, p27 and p53, indicate promising anti-cancer property. The induction of NCAM and reduction in its polysialylation indicates anti-migratory potential which is supported by down regulation of MMP-2/9. It increased epithelial marker laminin and smad and increased Hsp70 levels also suggest its protective role. Molecular insights revealed that berberine regulates EMT via downregulation of PI3/Akt and Ras-Raf-ERK signalling and subsequent upregulation of p38-MAPK. TGF-β secretion from N2a cells was potentiated by high glucose and negatively regulated by berberine through modulation of TGF-β receptors II and III. Berberine reverted mesenchymal markers, vimentin and fibronectin, with restoration of epithelial marker E-cadherin, highlighting the role of berberine in reversal of EMT. CONCLUSION Collectively, the study demonstrates prospective use of berberine against neuroblastoma as elucidated through inhibition of fundamental characteristics of cancer stem cells: tumorigenicity and failure to differentiation and instigates reversal in the EMT.
Collapse
Affiliation(s)
- C R Naveen
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India
| | - Sagar Gaikwad
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India
| | - Reena Agrawal-Rajput
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India..
| |
Collapse
|