1
|
Jeena TM, Rakshitha C, Muneesa FM, Varughese A, Akarsha, Raju R, Krishnan D, Mugaranja K, Bhandary YP. miR-200 family: Gatekeepers of fibrinolytic regulation in lung pathologies during acute lung injury. Arch Biochem Biophys 2025; 768:110398. [PMID: 40127710 DOI: 10.1016/j.abb.2025.110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
Acute lung injury (ALI) is a severe condition characterized by acute inflammation and respiratory distress, often leading to significant morbidity and mortality. The complex pathophysiology of ALI involves alterations in various molecular and cellular processes, including those regulated by the miR-200 family. This study aims to investigate the regulatory function of miR-200 family members on the fibrinolytic system using three different agents: Bleomycin, IL-17A, and TGF-β, in both in vitro (A549 cells) and in vivo (C57BL/6 mice) models. The role of miR-200a and miR-200b in modulating the fibrinolytic system was assessed through mRNA and protein expression analyses. The results show that in both in vitro and in vivo models, treatment with miR-200a and miR-200b mimics greatly reduced the abnormalities caused by the three drugs. Treatments were given during the inflammatory phase of ALI at two different time points for the in vivo studies: 3 and 7 days. This was evidenced by increased uPA and uPAR mRNA levels and decreased PAI-1 mRNA and protein expression. The inverse regulatory roles of miR-200 family members, particularly miR-200a and miR-200b, suggest potential therapeutic targets in ALI. Furthermore, our study highlights how IL-17A and TGF-β modulate the fibrinolytic system and EMT pathway by influencing the expression of the miR-200 family in ALI. It elucidates the regulatory function of the miR-200 family in restoring the fibrinolytic system and the EMT pathway during lung injury, underscoring the significant therapeutic potential of miR-200 in treating ALI.
Collapse
Affiliation(s)
- T M Jeena
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - C Rakshitha
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Fathimath M Muneesa
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India; IQRAA Centre for Research and Development (ICRD), IQRAA International Hospital & Research Centre, Calicut, Kerala, India
| | - Aleena Varughese
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Akarsha
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India; The University of Texas Health Science Centre, USA
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Deepak Krishnan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya Deemed to be University, Mangalore, Karnataka, India; Centre for Systems Biology and Molecular Medicine, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Kirana Mugaranja
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Yashodhar P Bhandary
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India; Specialized Research Unit, Yenepoya Medical College & Hospital, Yenepoya Deemed to be University, Mangalore, Karnataka, India.
| |
Collapse
|
2
|
Jiang W, Wang Y, Zou J, Li L, Xu C. UBE2Q1 as a novel cancer biomarker for lung adenocarcinoma. Am J Med Sci 2025; 369:359-365. [PMID: 39389359 DOI: 10.1016/j.amjms.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE Ubiquitin-conjugating enzymes (E2s) participate in various tumor-promoting processes. UBE2Q1 is a member of the E2 family. This research aimed to detect the expression level of UBE2Q1 in human lung adenocarcinoma and to study its malignant biological function. METHODS Western blot, qRT-PCR and immunohistochemistry was used to measure the expression of UBE2Q1 in human lung adenocarcinoma tissues. The association between UBE2Q1 expression and clinic-pathological variables in 99 lung adenocarcinoma samples was analyzed by immunohistochemistry. In vitro experiment, establishing UBE2Q1 knockdown pattern, the markers of apoptosis, cell cycle and epithelial-mesenchymal transition (EMT) were analyzed by Western blot. CCK8, colony formation, Transwell and invasion assay analyzed the effect of UBE2Q1 knockdown on the proliferation, metastasis and invasion of lung cancer cells. RESULTS UBE2Q1 was overexpressed in lung adenocarcinoma, and the expression level of UBE2Q1 was related with TNM stage, tumor size, and lymph node metastasis. The high level of UBE2Q1 expression was also associated with poor survival and was an independent risk factor. In vitro, It was also confirmed that steady downregulation of UBE2Q1 could promote apoptosis, induce G2/M cell cycle arrest and regulate EMT. UBE2Q1 silencing dramatically reduce lung tumor cells proliferation, migration and invasion capacities. CONCLUSIONS UBE2Q1 may serve as a prognostic biomarker and a new therapeutic target of lung adenocarcinoma.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu, China; Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuchao Wang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu, China; Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jue Zou
- Department of Pathology, Nanjing Chest Hospital, Nanjing, Jiangsu, China; Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Li
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu, China; Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunhua Xu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu, China; Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Xu J, Jia Y. miR-361-5p regulates SLC25A24 to maintain mitochondrial function and alleviate granulosa cell dysfunction in diminished ovarian reserve. J Assist Reprod Genet 2025; 42:923-936. [PMID: 39810070 PMCID: PMC11950524 DOI: 10.1007/s10815-024-03349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of miR-361-5p (a tumor suppressor) in regulating granulosa cell function by targeting SLC25A24, a key mitochondrial protein, to uncover potential therapeutic targets for diminished ovarian reserve (DOR). METHODS This study included patients undergoing assisted reproductive technology treatment at our hospital. Granulosa cells were isolated from follicular fluid, and KGN cells were used for in vitro experiments. miR-361-5p and SLC25A24 expression levels were manipulated using miRNA mimics and inhibitors, and their effects on cell viability, apoptosis, and mitochondrial function were assessed. Techniques employed included qRT-PCR, Western blot analysis, ELISA, JC-1 staining, and dual-luciferase reporter assays. Key quantitative metrics included changes in mitochondrial DNA (mtDNA), ATP production, and reactive oxygen species (ROS) levels. RESULTS miR-361-5p expression was significantly lower in DOR patients' granulosa cells compared to controls (P < 0.01). miR-361-5p inhibition markedly decreased KGN cells viability and increased apoptosis (P < 0.01), while miR-361-5p overexpression had the opposite effects (P < 0.01). SLC25A24 expression was inversely correlated with miR-361-5p levels, and its knockdown reversed the effects of miR-361-5p inhibition. Additionally, miR-361-5p modulation significantly affected mitochondrial function, with its overexpression reducing ROS levels and increasing ATP production (P < 0.01). CONCLUSION miR-361-5p plays a pivotal role in maintaining mitochondrial function and reducing KGN cells dysfunction by targeting SLC25A24. These findings offer new insights into the molecular mechanisms of DOR and highlight miR-361-5p as a potential therapeutic target to enhance ovarian reserve and improve fertility outcomes.
Collapse
Affiliation(s)
- Jinyuan Xu
- Departemnt of Gynaecology and Obstetrics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yan Jia
- Departemnt of Gynaecology and Obstetrics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130041, Jilin, China.
| |
Collapse
|
4
|
Beigi A, Naghib SM, Matini A, Tajabadi M, Mozafari MR. Lipid-Based Nanocarriers for Targeted Gene Delivery in Lung Cancer Therapy: Exploring a Novel Therapeutic Paradigm. Curr Gene Ther 2025; 25:92-112. [PMID: 38778601 DOI: 10.2174/0115665232292768240503050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Lung cancer is a significant cause of cancer-related death worldwide. It can be broadly categorised into small-cell lung cancer (SCLC) and Non-small cell lung cancer (NSCLC). Surgical intervention, radiation therapy, and the administration of chemotherapeutic medications are among the current treatment modalities. However, the application of chemotherapy may be limited in more advanced stages of metastasis due to the potential for adverse effects and a lack of cell selectivity. Although small-molecule anticancer treatments have demonstrated effectiveness, they still face several challenges. The challenges at hand in this context comprise insufficient solubility in water, limited bioavailability at specific sites, adverse effects, and the requirement for epidermal growth factor receptor inhibitors that are genetically tailored. Bio-macromolecular drugs, including small interfering RNA (siRNA) and messenger RNA (mRNA), are susceptible to degradation when exposed to the bodily fluids of humans, which can reduce stability and concentration. In this context, nanoscale delivery technologies are utilised. These agents offer encouraging prospects for the preservation and regulation of pharmaceutical substances, in addition to improving the solubility and stability of medications. Nanocarrier-based systems possess the notable advantage of facilitating accurate and sustained drug release, as opposed to traditional systemic methodologies. The primary focus of scientific investigation has been to augment the therapeutic efficacy of nanoparticles composed of lipids. Numerous nanoscale drug delivery techniques have been implemented to treat various respiratory ailments, such as lung cancer. These technologies have exhibited the potential to mitigate the limitations associated with conventional therapy. As an illustration, applying nanocarriers may enhance the solubility of small-molecule anticancer drugs and prevent the degradation of bio-macromolecular drugs. Furthermore, these devices can administer medications in a controlled and extended fashion, thereby augmenting the therapeutic intervention's effectiveness and reducing adverse reactions. However, despite these promising results, challenges remain that must be addressed. Multiple factors necessitate consideration when contemplating the application of nanoparticles in medical interventions. To begin with, the advancement of more efficient delivery methods is imperative. In addition, a comprehensive investigation into the potential toxicity of nanoparticles is required. Finally, additional research is needed to comprehend these treatments' enduring ramifications. Despite these challenges, the field of nanomedicine demonstrates considerable promise in enhancing the therapy of lung cancer and other respiratory diseases.
Collapse
Affiliation(s)
- Anahita Beigi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Amir Matini
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Maryam Tajabadi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16844, Iran
| | - Mohammad Reza Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
5
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
6
|
Koyama N, Ishikawa Y, Ohta H, Aoki T, Kyoyama H, Aoshiba K, Uematsu K. miR-4448/Girdin/Akt/AMPK axis inhibits EZH2-mediated EMT and tumorigenesis in small-cell lung cancer. Cancer Med 2024; 13:e70093. [PMID: 39400978 PMCID: PMC11476246 DOI: 10.1002/cam4.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Small-cell lung cancer (SCLC) shows high enhancer of zeste homolog 2 (EZH2) expressions. EZH2-mediated epigenetics promote epithelial-mesenchymal transition (EMT), enhancing invasive and metastatic potential in malignancies. MicroRNAs (miRNAs), small noncoding RNAs, modulate EMT, determining tumor phenotypes. However, the association between miRNAs and EZH2 in SCLC remains to be clarified-we aimed to identify a novel tumorigenic mechanism through miRNAs, EZH2, and EMT in SCLC, leading to future therapeutic applications. METHODS We analyzed EZH2 and E-cadherin expressions in lung cancer cell lines and tumor tissues from 34 SCLC patients and confirmed EZH2 siRNA-mediated EMT inhibition. miRNA expression profiles were compared between EZH2 knockdown SCLC cells and negative control SCLC cells using miRNA array. We identified a target miRNA of EZH2 showing expressional differences in EZH2-knockdown cells and analyzed the impact of the miRNA on EZH2-mediated EMT and tumorigenesis. RESULTS All SCLC cells showed increased EZH2 and decreased E-cadherin expressions. SCLC tissues had higher EZH2 and lower E-cadherin expressions than other lung cancer tissues. miRNA array revealed that miR-4448 expression increased in EZH2-knockdown SCLC cells. miR-4448 overexpression reduced tumor cell growth and prevented EMT. miR-4448 bound to the 3'UTR of the girdin gene and suppressed its expression, thereby decreasing Akt phosphorylation at Ser473. Attenuated Akt phosphorylation resulted in AMP-activated protein kinase (AMPK) phosphorylation at Thr172 and 183, enhancing EZH2 phosphorylation at Thr311. CONCLUSION SCLC characterized high EZH2 expression and promoted EMT, compared with non-small cell lung cancer. miR-4448 inhibited Girdin expression, reducing Akt phosphorylation, and enhancing AMPK and EZH2 phosphorylation. Eventually, miR-4448 prevented EZH2-mediated EMT and tumorigenesis by modulating the Girdin/Akt/AMPK axis in SCLC. miR-4448 might be a potential SCLC inhibitor.
Collapse
Affiliation(s)
- Nobuyuki Koyama
- Department of Respiratory Medicine, Saitama Medical CenterSaitama Medical UniversityKawagoe‐shiSaitamaJapan
| | - Yuichi Ishikawa
- Department of Pathology, School of MedicineInternational University of Health and WelfareMinato‐kuTokyoJapan
| | - Hiromitsu Ohta
- Clinical Department of Internal MedicineSaitama Medical Center, Jichi Medical UniversitySaitama‐shiSaitamaJapan
| | - Takuya Aoki
- Department of Clinical Oncology, Hachioji Medical CenterTokyo Medical UniversityHachioji‐shiTokyoJapan
| | - Hiroyuki Kyoyama
- Department of Respiratory Medicine, Saitama Medical CenterSaitama Medical UniversityKawagoe‐shiSaitamaJapan
| | - Kazutetsu Aoshiba
- Department of Pulmonary Medicine, Ibaraki Medical CenterTokyo Medical UniversityInashiki‐gunIbarakiJapan
| | - Kazutsugu Uematsu
- Department of Respiratory Medicine, Saitama Medical CenterSaitama Medical UniversityKawagoe‐shiSaitamaJapan
| |
Collapse
|
7
|
László L, Kurilla A, Tilajka Á, Pancsa R, Takács T, Novák J, Buday L, Vas V. Unveiling epithelial plasticity regulation in lung cancer: Exploring the cross-talk among Tks4 scaffold protein partners. Mol Biol Cell 2024; 35:ar111. [PMID: 38985526 PMCID: PMC11321040 DOI: 10.1091/mbc.e24-03-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) represents a hallmark event in the evolution of lung cancer. This work aims to study a recently described EMT-regulating protein, Tks4, and to explore its potential as a prognostic biomarker in non-small cell lung cancer. In this study, we used CRISPR/Cas9 method to knockout (KO) Tks4 to study its functional roles in invadopodia formation, migration, and regulation of EMT marker expressions and we identified Tks4-interacting proteins. Tks4-KO A549 cells exhibited an EMT-like phenotype characterized by elongated morphology and increased expression of EMT markers. Furthermore, analyses of a large-scale lung cancer database and a patient-derived tissue array data revealed that the Tks4 mRNA level was decreased in more aggressive lung cancer stages. To understand the regulatory role of Tks4 in lung cancer, we performed a Tks4-interactome analysis via Tks4 immunoprecipitation-mass spectrometry on five different cell lines and identified CAPZA1 as a novel Tks4 partner protein. Thus, we propose that the absence of Tks4 leads to disruption of a connectome of multiple proteins and that the resulting undocking and likely mislocalization of signaling molecules impairs actin cytoskeleton rearrangement and activates EMT-like cell fate switches, both of which likely influence disease severity.
Collapse
Affiliation(s)
- Loretta László
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Anita Kurilla
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Álmos Tilajka
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Rita Pancsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Tamás Takács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Julianna Novák
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Buday
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Virag Vas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| |
Collapse
|
8
|
Zhou J, Luo J, Gan R, Zhi L, Zhou H, Lv M, Huang Y, Liang G. SSPH I, A Novel Anti-cancer Saponin, Inhibits EMT and Invasion and Migration of NSCLC by Suppressing MAPK/ERK1/2 and PI3K/AKT/ mTOR Signaling Pathways. Recent Pat Anticancer Drug Discov 2024; 19:543-555. [PMID: 38305308 DOI: 10.2174/0115748928283132240103073039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Saponin of Schizocapsa plantaginea Hance I (SSPH I).a bioactive saponin found in Schizocapsa plantaginea, exhibits significant anti-proliferation and antimetastasis in lung cancer. OBJECTIVE To explore the anti-metastatic effects of SSPH I on non-small cell lung cancer (NSCLC) with emphasis on epithelial-mesenchymal transition (EMT) both in vitro and in vivo. METHODS The effects of SSPH I at the concentrations of 0, 0.875,1.75, and 3.5 μM on A549 and PC9 lung cancer cells were evaluated using colony formation assay, CCK-8 assay, transwell assay and wound-healing assay. The actin cytoskeleton reorganization of PC9 and A549 cells was detected using the FITC-phalloidin fluorescence staining assay. The proteins related to EMT (N-cadherin, E-cadherin and vimentin), p- PI3K, p- AKT, p- mTOR and p- ERK1/2 were detected by Western blotting. A mouse model of lung cancer metastasis was established by utilizing 95-D cells, and the mice were treated with SSPH I by gavage. RESULTS The results suggested that SSPH I significantly inhibited the migration and invasion of NSCLC cells under a non-cytotoxic concentration. Furthermore, SSPH I at a non-toxic concentration of 0.875 μM inhibited F-actin cytoskeleton organization. Importantly, attenuation of EMT was observed in A549 cells with upregulation in the expression of epithelial cell marker E-cadherin and downregulation of the mesenchymal cell markers vimentin as well as Ncadherin. Mechanistic studies revealed that SSPH I inhibited MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways. CONCLUSION SSPH I inhibited EMT, migration, and invasion of NSCLC cells by suppressing MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways, suggesting that the natural compound SSPH I could be used for inhibiting metastasis of NSCLC.
Collapse
Affiliation(s)
- Jinling Zhou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jian Luo
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rizhi Gan
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Limin Zhi
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Huan Zhou
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meixian Lv
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yinmei Huang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Gang Liang
- College of Pharmacy, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
9
|
Sadeghi MS, Lotfi M, Soltani N, Farmani E, Fernandez JHO, Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int 2023; 23:284. [PMID: 37986065 PMCID: PMC10661689 DOI: 10.1186/s12935-023-03133-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Lotfi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dorset SR, Daugaard TF, Larsen TV, Nielsen AL. RGMb impacts partial epithelial-mesenchymal transition and BMP2-Induced ID mRNA expression independent of PD-L2 in nonsmall cell lung cancer cells. Cell Biol Int 2023; 47:1799-1812. [PMID: 37434531 DOI: 10.1002/cbin.12071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
PD-1/PD-ligand-axis immunotherapy-mediated activation of T-cells for cancer cell elimination is a promising treatment of nonsmall cell lung cancer (NSCLC). However, the effect of immunotherapy on intracellular signaling pathways in cancer cells still needs further delineation. Repulsive Guidance Molecule b (RGMb), a regulator of Bone Morphogenetic Proteins (BMPs) signaling, interacts with the PD-ligand, PD-L2, at cancer cell membranes. Accordingly, a clarification of the functions of RGMb and its relation to PD-L2 might provide insight into NSCLC cell signaling responses to PD-1/PD-ligand-axis immunotherapy. In this study, the functions of RGMb and PD-L2 were examined using the two NSCLC cell lines HCC827 and A549. CRISPR/Cas9 was used to decrease the expression of RGMb and PD-L2, while lentiviral vectors were used to increase their expression. Downstream effects were examined by RT-qPCR and immunoassays. Ectopic expression of RGMb impacted BMP2-induced expression of ID1 and ID2 messenger RNA (mRNA) independently of PD-L2, while RGMb depletion by CRISPR/Cas9 did not affect the BMP2-mediated induction of ID1, ID2, and ID3 mRNA. However, depletion of RGMb resulted in a partial epithelial-mesenchymal transition (EMT) gene expression profile in HCC827 cells, which was not mimicked by PD-L2 depletion. The results show that RGMb is a coregulator of BMP signaling and hence, ID mRNA expression and that RGMb can control the EMT balance in NSCLC cells. However, RGMb appears to exert these functions independently of PD-L2, and accordingly, the PD-1/PD-ligand axis for immune surveillance in NSCLC cells.
Collapse
|
11
|
Gohlke L, Alahdab A, Oberhofer A, Worf K, Holdenrieder S, Michaelis M, Cinatl J, Ritter CA. Loss of Key EMT-Regulating miRNAs Highlight the Role of ZEB1 in EGFR Tyrosine Kinase Inhibitor-Resistant NSCLC. Int J Mol Sci 2023; 24:14742. [PMID: 37834189 PMCID: PMC10573279 DOI: 10.3390/ijms241914742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), acquired drug resistance to targeted therapy remains a major obstacle. Epithelial-mesenchymal transition (EMT) has been identified as a key resistance mechanism in NSCLC. Here, we investigated the mechanistic role of key EMT-regulating small non-coding microRNAs (miRNAs) in sublines of the NSCLC cell line HCC4006 adapted to afatinib, erlotinib, gefitinib, or osimertinib. The most differentially expressed miRNAs derived from extracellular vesicles were associated with EMT, and their predicted target ZEB1 was significantly overexpressed in all resistant cell lines. Transfection of a miR-205-5p mimic partially reversed EMT by inhibiting ZEB1, restoring CDH1 expression, and inhibiting migration in erlotinib-resistant cells. Gene expression of EMT-markers, transcription factors, and miRNAs were correlated during stepwise osimertinib adaptation of HCC4006 cells. Temporally relieving cells of osimertinib reversed transition trends, suggesting that the implementation of treatment pauses could provide prolonged benefits for patients. Our results provide new insights into the contribution of miRNAs to drug-resistant NSCLC harboring EGFR-activating mutations and highlight their role as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Linus Gohlke
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| | - Ahmad Alahdab
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| | - Angela Oberhofer
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Karolina Worf
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Martin Michaelis
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent CT2 7NJ, UK;
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany;
| | - Christoph A Ritter
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| |
Collapse
|
12
|
Ramundo V, Zanirato G, Palazzo ML, Riganti C, Aldieri E. APE-1/Ref-1 Inhibition Blocks Malignant Pleural Mesothelioma Cell Proliferation and Migration: Crosstalk between Oxidative Stress and Epithelial Mesenchymal Transition (EMT) in Driving Carcinogenesis and Metastasis. Int J Mol Sci 2023; 24:12570. [PMID: 37628748 PMCID: PMC10454819 DOI: 10.3390/ijms241612570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure. MPM pathogenesis has been related both to oxidative stress, evoked by and in response to asbestos fibers exposure, and epithelial mesenchymal transition (EMT), an event induced by oxidative stress itself and related to cancer proliferation and metastasis. Asbestos-related primary oxidative damage is counteracted in the lungs by various redox-sensitive factors, often hyperactivated in some cancers. Among these redox-sensitive factors, Apurinic-apyrimidinic endonuclease 1 (APE-1)/Redox effector factor 1 (Ref-1) has been demonstrated to be overexpressed in MPM and lung cancer, but the molecular mechanism has not yet been fully understood. Moreover, asbestos exposure has been associated with induced EMT events, via some EMT transcription factors, such as Twist, Zeb-1 and Snail-1, in possible crosstalk with oxidative stress and inflammation events. To demonstrate this hypothesis, we inhibited/silenced Ref-1 in MPM cells; as a consequence, both EMT (Twist, Zeb-1 and Snail-1) markers and cellular migration/proliferation were significantly inhibited. Taken as a whole, these results show, for the first time, crosstalk between oxidative stress and EMT in MPM carcinogenesis and invasiveness, thus improving the knowledge to better address a preventive and therapeutic approach against this aggressive cancer.
Collapse
Affiliation(s)
- Valeria Ramundo
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Giada Zanirato
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | | | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, 10126 Torino, Italy
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, 10126 Torino, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, 10126 Torino, Italy
| |
Collapse
|
13
|
Garinet S, Didelot A, Marisa L, Beinse G, Sroussi M, Le Pimpec-Barthes F, Fabre E, Gibault L, Laurent-Puig P, Mouillet-Richard S, Legras A, Blons H. A novel Chr1-miR-200 driven whole transcriptome signature shapes tumor immune microenvironment and predicts relapse in early-stage lung adenocarcinoma. J Transl Med 2023; 21:324. [PMID: 37189151 DOI: 10.1186/s12967-023-04086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/25/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND In Lung adenocarcinoma (LUAD), targeted therapies and immunotherapies have moved from metastatic to early stage and stratification of the relapse risk becomes mandatory. Here we identified a miR-200 based RNA signature that delineates Epithelial-to-mesenchymal transition (EMT) heterogeneity and predicts survival beyond current classification systems. METHODS A miR-200 signature was identified using RNA sequencing. We scored the miR-200 signature by WISP (Weighted In Silico Pathology), used GSEA to identify pathway enrichments and MCP-counter to characterize immune cell infiltrates. We evaluate the clinical value of this signature in our series of LUAD and using TCGA and 7 published datasets. RESULTS We identified 3 clusters based on supervised classification: I is miR-200-sign-down and enriched in TP53 mutations IIA and IIB are miR-200-sign-up: IIA is enriched in EGFR (p < 0.001), IIB is enriched in KRAS mutation (p < 0.001). WISP stratified patients into miR-200-sign-down (n = 65) and miR-200-sign-up (n = 42). Several biological processes were enriched in MiR-200-sign-down tumors, focal adhesion, actin cytoskeleton, cytokine/receptor interaction, TP53 signaling and cell cycle pathways. Fibroblast, immune cell infiltration and PDL1 expression were also significantly higher suggesting immune exhaustion. This signature stratified patients into high-vs low-risk groups, miR-200-sign-up had higher DFS, median not reached at 60 vs 41 months and within subpopulations with stage I, IA, IB, or II. Results were validated on TCGA data on 7 public datasets. CONCLUSION This EMT and miR-200-related prognostic signature refines prognosis evaluation independently of tumor stage and paves the way towards assessing the predictive value of this LUAD clustering to optimize perioperative treatment.
Collapse
Affiliation(s)
- Simon Garinet
- Assistance Publique-Hôpitaux de Paris, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, European Georges Pompidou Hospital, Paris Cancer Institute CARPEM, 20 Rue Leblanc, 75015, Paris, France.
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France.
- Department of Genetics and Molecular Medicine, Georges Pompidou European Hospital, APHP Centre, Paris, France.
| | - Audrey Didelot
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France
| | - Laetitia Marisa
- Department of Genetics and Molecular Medicine, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Guillaume Beinse
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France
| | - Marine Sroussi
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France
| | | | - Elizabeth Fabre
- Department of Thoracic Oncology, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Laure Gibault
- Department of Pathology, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France
- Department of Genetics and Molecular Medicine, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France
| | - Antoine Legras
- Department of Thoracic Surgery, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Hélène Blons
- Assistance Publique-Hôpitaux de Paris, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, European Georges Pompidou Hospital, Paris Cancer Institute CARPEM, 20 Rue Leblanc, 75015, Paris, France.
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France.
- Department of Genetics and Molecular Medicine, Georges Pompidou European Hospital, APHP Centre, Paris, France.
| |
Collapse
|
14
|
Gao J, Li Y, Zou X, Lei T, Xu T, Chen Y, Wang Z. HEY1-mediated cisplatin resistance in lung adenocarcinoma via epithelial-mesenchymal transition. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:18. [PMID: 36396748 DOI: 10.1007/s12032-022-01886-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Lung cancer is one of the most common malignancies and the leading cause of cancer-related death in the world. In patients with advanced lung adenocarcinoma who are negative for driver gene mutations, platinum-based chemotherapy represented by cisplatin remain the standard of care. Therefore, studying the mechanism behind inevitable cisplatin resistance in lung adenocarcinoma is still important. In this study, the potentially related differential expression gene for cisplatin resistance in lung adenocarcinoma was screened in the GEO database. The expression level of HEY1 in cell lines of lung adenocarcinoma was detected and HEY1 expression was up-regulated in cisplatin-resistant lung adenocarcinoma tissues and cell lines A549/DDP. Patients with high HEY1 expression have poor prognosis after cisplatin therapy. Gain and loss function assays uncovered that HEY1 could regulate the cisplatin sensitivity of NSCLC cells. In vivo experiments have confirmed that silence of HEY1 expression can induce cisplatin resistance, and epithelial-mesenchymal transition (EMT) changes occur during this process. Mechanically, HEY1 silencing significantly up-regulated E-cadherin expression and down-regulated Vimentin in A549/DDP cells. While up-regulation of HEY1 resulted in down-regulation of E-cadherin and up-regulation of Vimentin in A549 cells. Immunohistochemical experiments confirmed that E-cadherin was significantly decreased, and Vimentin expression was significantly up-regulated in cisplatin-resistant lung adenocarcinoma tissues. HEY1 can mediate the occurrence of cisplatin-acquired resistance in lung adenocarcinoma, and the possible mechanism is to regulate the EMT. The results of this study can provide a new direction and target for clinical research on the reversal of cisplatin resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jin Gao
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China.,Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing, Medical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yadong Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 30#, Nanjing, 210029, Jiangsu, People's Republic of China.,Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Xiaoteng Zou
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Tianyao Lei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 30#, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Histological Transformation after Acquired Resistance to the Third-Generation EGFR-TKI in Patients with Advanced EGFR-Mutant Lung Adenocarcinoma. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070908. [PMID: 35888627 PMCID: PMC9323036 DOI: 10.3390/medicina58070908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Background and Objectives: Third-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) is one of the standard-of-care therapies in patients with EGFR-mutant lung adenocarcinoma; however, acquired resistance inevitably developed. Despite the proposition of histological transformation being one of the resistance mechanisms, its incidence and influence on outcome remain unclear. Materials and Methods: This was a retrospective study conducted at Taichung Veterans General Hospital on patients with advanced EGFR-mutant lung adenocarcinoma receiving the third-generation EGFR-TKI. Only patients receiving rebiopsy were included in the analysis. Results: A total of 55 patients were studied. Eight patients (14.5%) showed histological transformation, including three small cell carcinoma, three squamous cell carcinoma, one large cell neuroendocrine carcinoma, and one with a mixture of adenocarcinoma and squamous cell carcinoma components. The median treatment duration of the third-generation EGFR-TKI before rebiopsy was numerically longer in patients with histological transformation than those without (16.0 vs. 10.9 months). Both the overall survival time from the start of third-generation EGFR-TKI initiation (30.8 vs. 41.2 months) and from rebiopsy (6.6 vs. 12.9 months) to mortality were numerically shorter amongst the transformed population. All patients in the transformed group did not respond to the next line of systemic treatment. One patient with histological transformation receiving local treatment for the metastatic site had a longer overall survival. Conclusions: Repeating biopsy to identify histological transformation should be considered in patients with progression to the third-generation EGFR-TKI. Histological transformations could contribute to the acquired resistance with the implication of a worse prognosis. Further studies are needed to determine the optimal therapy for these patients.
Collapse
|
16
|
Nam DY, Rhee JK. Assessment of MicroRNAs Associated with Tumor Purity by Random Forest Regression. BIOLOGY 2022; 11:biology11050787. [PMID: 35625515 PMCID: PMC9138977 DOI: 10.3390/biology11050787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Cancer is a disease with high mortality and recurrence rates. To understand cancer biology, it is important to accurately determine the proportion of tumor and non-tumor cells in tumor tissues. In this study, the proportion of tumor cells in tumor tissues was predicted using miRNA expression data that had not been sufficiently studied before. Using a random forest regression model, the tumor purity was predicted accurately, and subsequent investigations into the association between the informative microRNAs and tumor purity could be conducted. Abstract Tumor purity refers to the proportion of tumor cells in tumor tissue samples. This value plays an important role in understanding the mechanisms of the tumor microenvironment. Although various attempts have been made to predict tumor purity, attempts to predict tumor purity using miRNAs are still lacking. We predicted tumor purity using miRNA expression data for 16 TCGA tumor types using random forest regression. In addition, we identified miRNAs with high feature-importance scores and examined the extent of the change in predictive performance using informative miRNAs. The predictive performance obtained using only 10 miRNAs with high feature importance was close to the result obtained using all miRNAs. Furthermore, we also found genes targeted by miRNAs and confirmed that these genes were mainly related to immune and cancer pathways. Therefore, we found that the miRNA expression data could predict tumor purity well, and the results suggested the possibility that 10 miRNAs with high feature importance could be used as potential markers to predict tumor purity and to help improve our understanding of the tumor microenvironment.
Collapse
|
17
|
Suppression of MGAT3 expression and the epithelial–mesenchymal transition of lung cancer cells by miR-188-5p. Biomed J 2021; 44:678-685. [PMID: 35166206 PMCID: PMC8847825 DOI: 10.1016/j.bj.2020.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background To investigate the effect of miR-188-5p overexpression on the invasion and migration of cultured lung cancer cells, and on related cellular mechanisms that underlie epithelial mesenchymal transition (EMT). Methods Human lung cancer cell line 95D was transfected with miR-188-5p mimic. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to quantify the expression levels of genes including E-cadherin, Snail, α-SMA, and MGAT3. Changes in cell motility, invasion and proliferation were studied using scratch migration assay, transwell invasion assay, and colony formation assay, respectively. The expression levels of EMT-related proteins and MGAT3 protein were also determined via immunofluorescent staining. The ability of miR-188-5p to regulate its target gene, MGAT3, was assessed using dual luciferase activity assay. Results Lung cancer cell line 95D showed the lowest miR-188-5p expression level thus was used in this study. Transfection with miR-188-5p mimic significantly suppressed migration, invasion and clonal formation potency of 95D cells. Dual luciferase activity assay implicated that miR-188-5p exerts its negative regulatory effect on MGAT3 expression through recognizing the 3′ untranslated region (3′UTR) of the MGAT3 gene. Over-expression of miR-188-5p in 95D cells also remarkably increased E-cadherin protein expression and decreased the expression levels of Snail and α-SMA, which suppressed the EMT process. Conclusion MiR-188-5p reduces the expression of MGAT3 and inhibits the metastatic properties of a highly invasive lung cancer cell line, probably via targeted regulation of EMT process. Further research to explore the potential therapeutic value of miR-188-5p, both as a biomarker and as a drug candidate for the management of metastatic lung cancer may be warranted.
Collapse
|
18
|
Garinet S, Didelot A, Denize T, Perrier A, Beinse G, Leclere JB, Oudart JB, Gibault L, Badoual C, Le Pimpec-Barthes F, Laurent-Puig P, Legras A, Blons H. Clinical assessment of the miR-34, miR-200, ZEB1 and SNAIL EMT regulation hub underlines the differential prognostic value of EMT miRs to drive mesenchymal transition and prognosis in resected NSCLC. Br J Cancer 2021; 125:1544-1551. [PMID: 34642464 PMCID: PMC8609001 DOI: 10.1038/s41416-021-01568-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer (NSCLC) receiving curative surgery have a risk of relapse, and adjuvant treatments only translate into a 5% increase in 5-year survival. We assessed the clinical significance of epithelial-mesenchymal transition (EMT) and explored its association with the [SNAIL/miR-34]:[ZEB/miR-200] regulation hub to refine prognostic information. METHODS We validated a 7-gene EMT score using a consecutive series of 176 resected NSCLC. We quantified EMT transcription factors, microRNAs (miRs) of the miR-200, miR-34 families and miR-200 promoter hypermethylation to identify outcome predictors. RESULTS Most tumours presented with an EMT-hybrid state and the EMT score was not predictive of outcome. Individually, all miR-200 were inversely associated with the EMT score, but only chromosome-1 miRs, miR-200a, b, 429, were associated with disease-free survival (p = 0.08, 0.05 and 0.025) and overall survival (p = 0.013, 0.003 and 0.006). We validated these associations on The Cancer Genome Atlas data. Tumour unsupervised clustering based on miR expression identified two good prognostic groups, unrelated to the EMT score, suggesting that miR profiling may have an important clinical value. CONCLUSION miR-200 family members do not have similar predictive value. Core EMT-miR, regulators and not EMT itself, identify NSCLC patients with a low risk of relapse after surgery.
Collapse
Affiliation(s)
- Simon Garinet
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Audrey Didelot
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Thomas Denize
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
| | - Alexandre Perrier
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Guillaume Beinse
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Jean-Baptiste Leclere
- Department of Thoracic Surgery, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Baptiste Oudart
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
| | - Laure Gibault
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Pathology, Paris Cancer Institute CARPEM, Paris, France
| | - Cecile Badoual
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Pathology, Paris Cancer Institute CARPEM, Paris, France
| | - Françoise Le Pimpec-Barthes
- Department of Thoracic Surgery, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pierre Laurent-Puig
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Antoine Legras
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
- Department of Thoracic Surgery, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Helene Blons
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France.
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
19
|
Pathak R, Villaflor VM. Histologic Transformation in EGFR-Mutant Lung Adenocarcinomas: Mechanisms and Therapeutic Implications. Cancers (Basel) 2021; 13:4641. [PMID: 34572868 PMCID: PMC8470834 DOI: 10.3390/cancers13184641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023] Open
Abstract
With the advent of potent EGFR tyrosine kinase inhibitors (TKIs), the treatment landscape of EGFR-mutant lung adenocarcinomas has changed drastically in recent years. However, the development of resistance to EGFR TKIs remains a critical barrier to improving survival in these patients. Histologic transformations to small cell lung carcinoma, large cell neuroendocrine carcinoma, squamous cell carcinoma, and the sarcomatoid phenotype have been increasingly recognized as important mechanisms of resistance. In this article, we summarize the known biological bases for such phenotypic switches in regard to EGFR TKIs and describe novel pathways that might be harnessed to develop effective novel therapies for patients with EGFR-mutant non-small cell lung cancers.
Collapse
Affiliation(s)
| | - Victoria M. Villaflor
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA;
| |
Collapse
|
20
|
Tumor Nonimmune-Microenvironment-Related Gene Expression Signature Predicts Brain Metastasis in Lung Adenocarcinoma Patients after Surgery: A Machine Learning Approach Using Gene Expression Profiling. Cancers (Basel) 2021; 13:cancers13174468. [PMID: 34503278 PMCID: PMC8430997 DOI: 10.3390/cancers13174468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary It is important to be able to predict brain metastasis in lung adenocarcinoma patients; however, research in this area is still lacking. Much of the previous work on tumor microenvironments in lung adenocarcinoma with brain metastasis concerns the tumor immune microenvironment. The importance of the tumor nonimmune microenvironment (extracellular matrix (ECM), epithelial–mesenchymal transition (EMT) feature, and angiogenesis) has been overlooked with regard to brain metastasis. We evaluated tumor nonimmune-microenvironment-related gene expression signatures that could predict brain metastasis after the surgical resection of lung adenocarcinoma using a machine learning approach. We identified a tumor nonimmune-microenvironment-related 17-gene expression signature, and this signature showed high brain metastasis predictive power in four machine learning classifiers. The immunohistochemical expression of the top three genes of the 17-gene expression signature yielded similar results to NanoString tests. Our tumor nonimmune-microenvironment-related gene expression signatures are important biological markers that can predict brain metastasis and provide patient-specific treatment options. Abstract Using a machine learning approach with a gene expression profile, we discovered a tumor nonimmune-microenvironment-related gene expression signature, including extracellular matrix (ECM) remodeling, epithelial–mesenchymal transition (EMT), and angiogenesis, that could predict brain metastasis (BM) after the surgical resection of 64 lung adenocarcinomas (LUAD). Gene expression profiling identified a tumor nonimmune-microenvironment-related 17-gene expression signature that significantly correlated with BM. Of the 17 genes, 11 were ECM-remodeling-related genes. The 17-gene expression signature showed high BM predictive power in four machine learning classifiers (areas under the receiver operating characteristic curve = 0.845 for naïve Bayes, 0.849 for support vector machine, 0.858 for random forest, and 0.839 for neural network). Subgroup analysis revealed that the BM predictive power of the 17-gene signature was higher in the early-stage LUAD than in the late-stage LUAD. Pathway enrichment analysis showed that the upregulated differentially expressed genes were mainly enriched in the ECM–receptor interaction pathway. The immunohistochemical expression of the top three genes of the 17-gene expression signature yielded similar results to NanoString tests. The tumor nonimmune-microenvironment-related gene expression signatures found in this study are important biological markers that can predict BM and provide patient-specific treatment options.
Collapse
|
21
|
Chen C, Ma Z, Jiang H. EMT Participates in the Regulation of Exosomes Secretion and Function in Esophageal Cancer Cells. Technol Cancer Res Treat 2021; 20:15330338211033077. [PMID: 34278849 PMCID: PMC8293843 DOI: 10.1177/15330338211033077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key step in tumor invasion and distant metastasis. Abundant evidence has documented that exosomes can mediate EMT of tumor cells and endow them with the ability of invasion and migration. However, there are few studies focusing on whether EMT can reverse the secretion of exosomes. In this study, 2 esophageal cancer cells (FLO-1 and SK-GT-4) were selected to compare the migration ability and EMT activation, and to further analyze the secretion ability of exosomes of the 2 cell lines. According to the results, inhibited activation of EMT in FLO-1 cells with relatively high migration ability could effectively reduce the secretion of exosomes. Besides, in SK-GT-4 cells, EMT activation induced by TGF-β could promote the secretion of exosomes. FLO-1 cell derived exosomes exhibited a paracrine effect of promoting the migration of SK-GT-4 cells, and the use of EMT inhibitors could weaken this ability. Furthermore, inhibition of EMT could change the relative content of some miRNAs in exosomes, with a particularly significant downregulation in the expression of miR-196-5p, miR-21-5p and miR-194-5p. Significantly, artificial transfection of the 3 miRNAs into exosomes by electroporation resulted in the recovery of migration-promoting effect of exosomes. Subsequent experiments further revealed that the effect of EMT on these miRNAs could be explained by the intracellular transcription level or the specific sorting mechanism of exosomes. To sum up, our study undoubtedly reveals that EMT has a regulatory effect on exosomes in the quantity and contents in esophageal cancer cells. Significantly, findings in our study provide experimental evidence for the interaction of EMT with the secretion and sorting pathway of exosomes, and also give a new direction for the further study of tumor metastasis.
Collapse
Affiliation(s)
- Chuangui Chen
- Department of Minimally Invasive Esophagus Surgery, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China
| | - Zhao Ma
- Department of Minimally Invasive Esophagus Surgery, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China
| | - Hongjing Jiang
- Department of Minimally Invasive Esophagus Surgery, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China
| |
Collapse
|
22
|
Jin Y, Kang Y, Peng X, Yang L, Li Q, Mei Q, Chen X, Hu G, Tang Y, Yuan X. Irradiation-Induced Activated Microglia Affect Brain Metastatic Colonization of NSCLC Cells via miR-9/ CDH1 Axis. Onco Targets Ther 2021; 14:1911-1922. [PMID: 33758511 PMCID: PMC7981147 DOI: 10.2147/ott.s301412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Brain metastasis is among the leading causes of death in patients with non-small-cell lung cancer (NSCLC). Through yet unknown mechanisms, prophylactic cranial irradiation (PCI) can significantly decrease the incidence of brain metastases. Given that PCI probably exerts indirect anti-tumoral effects by turning cerebral "soil" unfavorable for the colonization of metastatic tumor "seeds". This study aims to reveal how PCI regulates the brain microenvironment conducing to a reduction in brain metastases. MATERIALS AND METHODS Key markers of M1/M2 microglia types and mesenchymal-to-epithelial transition (MET) were analyzed by qRT-PCR and Western Blot in vitro. The target miR-9 was obtained by miRNA array analysis and confirmed by qRT-PCR in microglia. We used miRTarBase and TargetScan to analyze the target genes of miR-9 and confirmed by luciferase activity assay. Anti-metastatic effects of irradiation on the brain were evaluated by intravital imaging using a brain metastatic A549-F3 cell line in a nude mouse model. RESULTS Irradiation induced M1 microglia activation, which inhibited the MET process of A549 cell lines. Furthermore, levels of miR-9 secreted by irradiated M1 microglia significantly increased and played a vital role in the inhibition of the A549 MET process by directly targeting CDH1, concurrently decreasing cell capacity for localization in the brain, thus reducing brain metastases. CONCLUSION We demonstrated that miR-9 secreted by irradiated M1-type microglia played an important role in modulating A549 cell lines into mesenchymal phenotype and further decreased their localization capabilities in the brain. Our findings signify the modulating effect of irradiation on metastatic soil and the cross-talk between tumour cells and the metastatic microenvironment; importantly, they provide new opportunities for effective anti-metastasis therapies, especially for brain metastasis patients.
Collapse
Affiliation(s)
- Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Yalin Kang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Li Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Yang Tang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
23
|
Extracellular MicroRNAs as Intercellular Mediators and Noninvasive Biomarkers of Cancer. Cancers (Basel) 2020; 12:cancers12113455. [PMID: 33233600 PMCID: PMC7699762 DOI: 10.3390/cancers12113455] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary There are an extensive number of publications regarding the role of endogenous miRNAs as regulators of gene expression in cancer. However, extracellular miRNAs have emerged as a novel mechanism of cell-to-cell communication in normal conditions and disease and have drawn a large amount of interest as regulators of gene expression and as potential non-invasive biomarkers in cancer. Despite this high interest and the abundance of research on the biology and role of extracellular miRNAs in cancer, they are not yet completely understood. The aim of this review is to highlight the relevant biological characteristics of extracellular miRNAs that enable them to function as intercellular mediators of gene expression regulation and provide the recently published evidence of the specific role of extracellular miRNAs in tumor development and progression. Abstract MicroRNAs (miRNAs) are released by different types of cells through highly regulated mechanisms under normal and pathological conditions. These extracellular miRNAs can be delivered into recipient cells for functional purposes, acting as cell-to-cell signaling mediators. It has been discovered that cancer cells release miRNAs into their surroundings, targeting normal cells or other cancer cells, presumably to promote tumor development and progression. These extracellular miRNAs are associated with oncogenic mechanisms and, because they can be quantified in blood and other bodily fluids, may be suitable noninvasive biomarkers for cancer detection. This review summarizes recent evidence of the role of extracellular miRNAs as intercellular mediators, with an emphasis on their role in the mechanisms of tumor development and progression and their potential value as biomarkers in solid tumors. It also highlights the biological characteristics of extracellular miRNAs that enable them to function as regulators of gene expression, such as biogenesis, gene silencing mechanisms, subcellular compartmentalization, and the functions and mechanisms of release.
Collapse
|
24
|
Lee PH, Chang GC. Transformations First Into Squamous-Cell Carcinoma and Later Into Sarcomatoid Carcinoma After Acquired Resistance to Osimertinib in a Patient With EGFR-Mutant Lung Adenocarcinoma: Case Report. Clin Lung Cancer 2020; 22:e536-e541. [PMID: 32839131 DOI: 10.1016/j.cllc.2020.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Po-Hsin Lee
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
25
|
miR-410 induces both epithelial-mesenchymal transition and radioresistance through activation of the PI3K/mTOR pathway in non-small cell lung cancer. Signal Transduct Target Ther 2020; 5:85. [PMID: 32528035 PMCID: PMC7290026 DOI: 10.1038/s41392-020-0182-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy remains one of the major treatments for non-small cell lung cancer (NSCLC) patients; whereas intrinsic or acquired radioresistance limits its efficacy. Nevertheless, most studies so far have only focused on acquired resistance. The exact mechanisms of intrinsic radioresistance in NSCLC are still unclear. A few studies have suggested that epithelial–mesenchymal transition (EMT) is associated with radioresistance in NSCLC. However, little is known about whether the abnormal expression of specific microRNAs induces both EMT and radioresistance. We previously found that miR-410 has multiple roles as an oncomiRNA in NSCLC. In this study, we revealed that miR-410 overexpression promoted EMT and radioresistance, accompanied by enhanced DNA damage repair both in vitro and in vivo. Conversely, knockdown of miR-410 showed the opposite effects. We further demonstrated that PTEN was a direct target of miR-410 by using bioinformatic tools and dual-luciferase reporter assays, and the miR-410-induced EMT and radioresistance were reversed by PI3K, Akt, and mTOR inhibitors or by restoring the expression of PTEN in NSCLC cells. In addition, we preliminarily found that the expression of miR-410 was positively correlated with EMT and negatively associated with the expression of PTEN in NSCLC specimens. In summary, these results demonstrated that miR-410 is an important regulator on enhancing both NSCLC EMT and radioresistance by targeting the PTEN/PI3K/mTOR axis. The findings suggest that miR-410-induced EMT might significantly contribute to the enhanced radioresistance. Therefore, miR-410 may serve as a potential biomarker or therapeutic target for NSCLC radiotherapy.
Collapse
|
26
|
Deji QZ, Yan F, Zhaba WD, Liu YJ, Yin J, Huang ZP. Cross-talk between microRNA-let7c and transforming growth factor-β2 during epithelial-to-mesenchymal transition of retinal pigment epithelial cells. Int J Ophthalmol 2020; 13:693-700. [PMID: 32420214 DOI: 10.18240/ijo.2020.05.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
AIM To explore the roles of microRNA-let7c (miR-let7c) and transforming growth factor-β2 (TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelial cells. METHODS Retinal pigment epithelial (ARPE-19) cells were cultured with no serum for 12h, and then with recombinant human TGF-β2 for different lengths of time. ARPE-19 cells were transfected with 1×106 TU/mL miR-let7c mimcs (miR-let7cM), miR-let7c mimcs negative control (miR-let7cMNC) and miR-let7c inhibitor (miR-let7cI) using the transfection reagent. The expression of keratin-18, vimentin, N-cadherin, IKB alpha, p65 were detected by Western blot, quantitative polymerase chain reaction and immunofluorescence. RESULTS The expression of miR-let7c was dramatically reduced and the nuclear factor-kappa B (NF-κB) signaling pathway was activated after induction by TGF-β2 (P<0.05). In turn, overexpressed miR-let7c significantly inhibited TGF-β2-induced EMT (P<0.05). However, miR-let7c was unable to inhibit TGF-β2-induced EMT when the NF-κB signaling pathway was inhibited by BAY11-7082 (P<0.01). CONCLUSION The miR-let7c regulates TGF-β2-induced EMT through the NF-κB signaling pathway in ARPE-19 cells.
Collapse
Affiliation(s)
- Qu-Zhen Deji
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Feng Yan
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wang-Dui Zhaba
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Ya-Jun Liu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Jie Yin
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhen-Ping Huang
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
27
|
Zhao L, Bi M, Zhang H, Shi M. Downregulation of NEAT1 Suppresses Cell Proliferation, Migration, and Invasion in NSCLC Via Sponging miR-153-3p. Cancer Biother Radiopharm 2020; 35:362-370. [PMID: 32380843 DOI: 10.1089/cbr.2019.3119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Long noncoding RNA nuclear enriched abundant transcript 1 (NEAT1) has been reported to play a promotive role in nonsmall cell lung cancer (NSCLC) progression through microRNAs (miRNAs). However, the exact influence and mechanism of NEAT1 were unsatisfied. Methods: Quantitative real-time polymerase chain reaction was applied to examine the expression of NEAT1 and miR-153-3p. The cell proliferation ability, apoptosis rate, migration, and invasion were measured by Cell Counting Kit-8 (CCK8) assay, flow cytometry, and transwell assay, respectively. The epithelial-mesenchymal transition process and Wnt/β-catenin signaling pathway were verified by Western blot. The interaction between NEAT1 and miR-153-3p was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. Results: These data showed that NEAT1 is highly expressed in NSCLC tissues and cell lines. Knockdown of NEAT1 suppresses cell proliferation, invasion, migration, and induces the cell apoptosis in NSCLC cell lines. At the same time, NEAT1 directly interacts with miR-153-3p in NSCLC. In addition, upregulation of miR-153-3p inhibits the cell progression, and miR-153-3p inhibitor recovers the inhibition effect of si-NEAT1 in NSCLC cell lines. Subsequently, si-NEAT1 inhibits Wnt/β-catenin signaling pathway, which is reactivated by miR-153-3p inhibitor. Conclusions: Knockdown of NEAT1 could suppress cell proliferation, migration, and invasion of NSCLC while promoting cell apoptosis through sponging miR-153-3p.
Collapse
Affiliation(s)
- Lun Zhao
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Minghong Bi
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Haoran Zhang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mohan Shi
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
28
|
Velazquez AI, McCoach CE. Tumor evolution in epidermal growth factor receptor mutated non-small cell lung cancer. J Thorac Dis 2020; 12:2896-2909. [PMID: 32642202 PMCID: PMC7330358 DOI: 10.21037/jtd.2019.08.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
As the incidence of cancer increases worldwide there is an unmet need to understand cancer evolution to improve patient outcomes. Our growing knowledge of cancer cells' clonal expansion, heterogeneity, adaptation, and relationships within the tumor immune compartment and with the tumor microenvironment has made clear that cancer is a disease that benefits from heterogeneity and evolution. This review outlines recent knowledge of non-small cell lung cancer (NSCLC) pathogenesis and tumor progression from an evolutionary standpoint, focused on the role of oncogenic driver mutations as epidermal growth factor receptor (EGFR). Understanding lung cancer evolution during tumor development, growth, and under treatment pressures is crucial to improve therapeutic interventions and patient outcomes.
Collapse
Affiliation(s)
- Ana I. Velazquez
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Caroline E. McCoach
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
29
|
Cai K, Li HX, Li PP, Guo ZJ, Yang Y. MicroRNA-449b-3p inhibits epithelial-mesenchymal transition by targeting IL-6 and through the JAK2/STAT3 signaling pathway in non-small cell lung cancer. Exp Ther Med 2020; 19:2527-2534. [PMID: 32256731 PMCID: PMC7086287 DOI: 10.3892/etm.2020.8504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRs) have vital involvement in the advancement of non-small cell lung cancer (NSCLC); however, the methods of action of miR-449b-3p in the disease are yet to be examined. The present study revealed a distinct downregulation of miR-449b-3p in NSCLC tissue, which was related to the clinicopathological characteristics, and may serve as an independent marker for NSCLC prognosis. NSCLC cell epithelial-mesenchymal transition (EMT), metastasis and migration were distinctly controlled in vitro by miR-449b-3p, that was found to directly target interleukin (IL)-6. Additionally, increased IL-6 level could inhibit miR-449b-3p and suppress the effect of EMT in NSCLC cells by inactivating the Janus kinase 2 (JAK2)/STAT3 signaling pathway. In conclusion, the data from the present study demonstrated that IL-6 is targeted by miR-449b-3p, which affects the JAK2/STAT3 signaling pathway, impacting on the development of NSCLC.
Collapse
Affiliation(s)
- Kai Cai
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Hong-Xia Li
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Pan-Pan Li
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Zi-Jian Guo
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Yang Yang
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
30
|
Shi YB, Li J, Lai XN, Jiang R, Zhao RC, Xiong LX. Multifaceted Roles of Caveolin-1 in Lung Cancer: A New Investigation Focused on Tumor Occurrence, Development and Therapy. Cancers (Basel) 2020; 12:cancers12020291. [PMID: 31991790 PMCID: PMC7073165 DOI: 10.3390/cancers12020291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is one of the most common and malignant cancers with extremely high morbidity and mortality in both males and females. Although traditional lung cancer treatments are fast progressing, there are still limitations. Caveolin-1 (Cav-1), a main component of caveolae, participates in multiple cellular events such as immune responses, endocytosis, membrane trafficking, cellular signaling and cancer progression. It has been found tightly associated with lung cancer cell proliferation, migration, apoptosis resistance and drug resistance. In addition to this, multiple bioactive molecules have been confirmed to target Cav-1 to carry on their anti-tumor functions in lung cancers. Cav-1 can also be a predictor for lung cancer patients’ prognosis. In this review, we have summarized the valuable research on Cav-1 and lung cancer in recent years and discussed the multifaceted roles of Cav-1 on lung cancer occurrence, development and therapy, hoping to provide new insights into lung cancer treatment.
Collapse
Affiliation(s)
- Yu-Bo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Jun Li
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xing-Ning Lai
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Rui Jiang
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Rui-Chen Zhao
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
31
|
Li Y, Zhang J, Pan S, Zhou J, Diao X, Liu S. CircRNA CDR1as knockdown inhibits progression of non-small-cell lung cancer by regulating miR-219a-5p/SOX5 axis. Thorac Cancer 2020; 11:537-548. [PMID: 31917898 PMCID: PMC7049501 DOI: 10.1111/1759-7714.13274] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) participate in the development of human cancers by regulating multiple cell processes. CircRNA antisense to the cerebellar degeneration-related protein 1 transcript (circCDR1as) expression is dysregulated in many cancers, including non-small-cell lung cancer (NSCLC). However, the mechanism by which circCDR1as mediates the development of NSCLC remains unknown. METHODS A total of 30 paired cancer and normal tissues were collected from patients with NSCLC. The expression levels of circCDR1as, microRNA (miR)-219a-5p and Sex determining region Y-box protein 5 (SOX5) were measured in tissues or cells by quantitative real-time polymerase chain reaction or western blot. Cell viability, apoptosis, migration and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, colony formation, flow cytometry and transwell assays, respectively. The target relationship between miR-219a-5p and circCDR1as or SOX5 was validated by dual-luciferase reporter assay. RESULTS CircCDR1as expression was elevated in NSCLC tissues and cells in comparison to the matched controls. Interference of circCDR1as led to obvious inhibition of cell viability, migration and invasion and increase of apoptosis in NSCLC cells. MiR-219a-5p acted as a target of circCDR1as and miR-219a-5p downregulation attenuated the regulatory effect of circCDR1as silencing on NSCLC progression. Moreover, miR-219a-5p targeted SOX5 to repress the progression of NSCLC in vitro. Besides, circCDR1as knockdown reduced the expression of SOX5 by increasing miR-219a-5p level. CONCLUSION Knockdown of circCDR1as inhibited the progression of NSCLC by decreasing cell viability, migration and invasion and increasing apoptosis by upregulating miR-219a-5p and downregulating SOX5.
Collapse
Affiliation(s)
- Yaming Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jinzhao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Shuang Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jing Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xin Diao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Song Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
32
|
Qiu C, Li S, Sun D, Yang S. lncRNA PVT1 accelerates progression of non-small cell lung cancer via targeting miRNA-526b/EZH2 regulatory loop. Oncol Lett 2019; 19:1267-1272. [PMID: 32002028 PMCID: PMC6960390 DOI: 10.3892/ol.2019.11237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Biological function of plasmacytoma variant translocation 1 (PVT1) in influencing the progression of non-small cell lung cancer (NSCLC) through Micro ribonucleic acid (miRNA)-526b/EZH2 regulatory loop was elucidated. Relative levels of PVT1 and miRNA-526b in NSCLC tissues were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Prognostic potential of PVT1 in NSCLC was assessed by Kaplan-Meier curves. The interaction among PVT1/miRNA-526b/EZH2 regulatory loop was confirmed by dual-luciferase reporter gene assay. Regulatory effects of PVT1/miRNA-526b/EZH2 axis on viability and wound closure of A549 cells were evaluated by cell counting kit-8 (CCK-8) and wound closure assay, respectively. PVT1 was upregulated in NSCLC tissues, while miRNA-526b was downregulated. PVT1 level was negatively related to that of miR-526 in NSCLC tissues. Worse survival was seen in NSCLC patients expressing high level of PVT1 compared to those with low level. Knockdown of PVT1 attenuated viability and wound closure ability in A549 cells, which were partially reversed after miRNA-526b knockdown. miRNA-526b is the downstream target of PVT1 and its level was negatively regulated by PVT1. EZH2 is the target gene of miRNA-526b. Transfection of miRNA-526b mimic remarkably downregulated EZH2 in A549 cells. Importantly, the attenuated viability and wound closure ability in A549 cells overexpressing miRNA-526b were reversed after EZH2 overexpression. PVT1 is upregulated in NSCLC, and predicts a poor prognosis. PVT1 accelerates the progression of NSCLC via targeting miRNA-526b/EZH2 regulatory loop.
Collapse
Affiliation(s)
- Chun Qiu
- Department of Medical Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 570311, P.R. China
| | - Sai Li
- Department of Medical Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 570311, P.R. China
| | - Datong Sun
- Department of Medical Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 570311, P.R. China
| | - Shenghui Yang
- Department of Medical Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
33
|
Chang AC, Lien MY, Tsai MH, Hua CH, Tang CH. WISP-1 Promotes Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Cells Via the miR-153-3p/Snail Axis. Cancers (Basel) 2019; 11:cancers11121903. [PMID: 31795469 PMCID: PMC6966565 DOI: 10.3390/cancers11121903] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Around half of all patients with oral squamous cell carcinoma (OSCC) present with lymphatic metastasis, a strong predictor of poor survival. Improving survival rates depends on preventing the first step in the “invasion-metastasis cascade,” epithelial-to-mesenchymal transition (EMT), and developing antilymphangiogenesis therapies that antagonize lymphatic metastasis. The extracellular matrix-related protein WISP-1 (WNT1-inducible signaling pathway protein-1) stimulates bone remodeling and tumor progression. We have previously reported that WISP-1 promotes OSCC cell migration and lymphangiogenesis induced by vascular endothelial growth factor C (VEGF-C). This investigation sought to determine the role of WISP-1 in regulating EMT in OSCC. Our analysis of oral cancer data from The Cancer Genome Atlas (TCGA) database revealed significant and positive associations between levels of WISP-1 expression and clinical disease stage, as well as regional lymph node metastasis. We also found higher levels of WISP-1 expression in serum samples obtained from patients with OSCC compared with samples from healthy controls. In a series of in vitro investigations, WISP-1 activated EMT signaling via the FAK/ILK/Akt and Snail signaling transduction pathways and downregulated miR-153-3p expression in OSCC cells. Our findings detail how WISP-1 promotes EMT via the miR-153-3p/Snail axis in OSCC cells.
Collapse
Affiliation(s)
- An-Chen Chang
- School and Medicine, China Medical University, Taichung 404, Taiwan; (A.-C.C.); (M.-H.T.)
| | - Ming-Yu Lien
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ming-Hsui Tsai
- School and Medicine, China Medical University, Taichung 404, Taiwan; (A.-C.C.); (M.-H.T.)
- Department of Otolaryngology, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chih-Hsin Tang
- School and Medicine, China Medical University, Taichung 404, Taiwan; (A.-C.C.); (M.-H.T.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan
- Correspondence:
| |
Collapse
|
34
|
Xue D, Yang P, Wei Q, Li X, Lin L, Lin T. IL‑21/IL‑21R inhibit tumor growth and invasion in non‑small cell lung cancer cells via suppressing Wnt/β‑catenin signaling and PD‑L1 expression. Int J Mol Med 2019; 44:1697-1706. [PMID: 31573051 PMCID: PMC6777672 DOI: 10.3892/ijmm.2019.4354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/02/2019] [Indexed: 11/07/2022] Open
Abstract
Lung cancer is considered to be one of the world's deadliest diseases, with non-small cell lung cancer (NSCLC) accounting for 85% of all lung cancer cases. The present study aimed to investigate the role and underlying mechanisms of interleukin-21 (IL-21), and its receptor IL-21R, in NSCLC. Lung tissues and blood samples of NSCLC were used to measure IL-21, IL-21R and programmed death 1 ligand 1 (PD-L1) expression using ELISA, western blot and immunohistochemistry analyses. Following treatment with different doses of IL-21, the proliferation, invasion and migration of human NSCLC cell line A549 was evaluated using a cell counting kit-8, colony formation, Transwell and scratch wound healing assays, respectively. Additionally, IL-21R and PD-L1 expression in A549 cells was detected using western blot analysis and immunofluorescence. IL-21R silencing was subsequently used to investigate its effects in cell proliferation, invasion and migration. PD-L1, IL-1β and tumor necrosis factor α (TNF-α) expression were measured. Finally, Wnt/β-catenin signaling expression was evaluated using western blot analysis following treatment with IL-21. Cells were then treated with lithium chloride (LiCl), which is an agonist of Wnt/β-catenin signaling, and the levels of PD-L1, IL-1β and TNF-α were detected. The results revealed that IL-21 and IL-21R expression in the lung tissues and blood samples of patients with NSCLC were decreased, while PD-L1 expression was increased, compared with normal tissues or healthy controls. Treatment of A549 cells with IL-21 upregulated IL-21R expression, downregulated PD-L1 and inhibited cell growth and metastasis in a dose-dependent manner. Following IL-21R silencing, the effects of IL-21 treatment were reversed, suggesting that IL-21 acted on A549 cells through binding to IL-21R. In addition, the results demonstrated that IL-21 treatment reduced the expression levels of proteins associated with the Wnt/β-catenin signaling, whereas activation of Wnt/β-catenin signaling with the LiCl agonist upregulated PD-L1, IL-1β and TNF-α expression. In conclusion, the IL-21/IL-21R axis reduced the growth and invasion of NSCLC cells via inhibiting Wnt/β-catenin signaling and PD-L1 expression. The present results may provide a novel molecular target for NSCLC diagnosis and therapy.
Collapse
Affiliation(s)
- Dan Xue
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ping Yang
- Department of Respiratory Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Qiongying Wei
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiaoping Li
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Lan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Tingyan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
35
|
Hou H, Sun D, Zhang X. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int 2019; 19:216. [PMID: 31440117 PMCID: PMC6704499 DOI: 10.1186/s12935-019-0937-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/18/2019] [Indexed: 01/09/2023] Open
Abstract
The MDM2 protein encoded by the mouse double minute 2 (MDM2) gene is the primary negative regulatory factor of the p53 protein. MDM2 can ligate the p53 protein via its E3 ubiquitin ligase, and the ubiquitinated p53 can be transferred to the cytoplasm and degraded by proteasomes. Therefore, MDM2 can maintain the stability of p53 signaling pathway. MDM2 amplification has been detected in many human malignancies, including lung cancer, colon cancer and other malignancies. MDM2 overexpression is associated with chemotherapeutic resistance in human malignancies. The mechanisms of chemotherapeutic resistance by MDM2 overexpression mainly include the p53–MDM2 loop-dependent and p53–MDM2 loop-independent pathways. But the role of MDM2 overexpression in tyrosine kinase inhibitors resistance remains to be further study. This paper reviews the possible mechanisms of therapeutic resistance of malignancies induced by MDM2 amplification and overexpression, including chemotherapy, radiotherapy, targeted agents and hyperprogressive disease of immunotherapy. Besides, MDM2-targeted therapy may be a potential new strategy for treating advanced malignancies.
Collapse
Affiliation(s)
- Helei Hou
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005 China
| | - Dantong Sun
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005 China
| | - Xiaochun Zhang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005 China
| |
Collapse
|
36
|
Poh ME, Liam CK, Mun KS, Chai CS, Wong CK, Tan JL, Loh TC, Chin KK. Epithelial-to-mesenchymal transition (EMT) to sarcoma in recurrent lung adenosquamous carcinoma following adjuvant chemotherapy. Thorac Cancer 2019; 10:1841-1845. [PMID: 31350945 PMCID: PMC6718027 DOI: 10.1111/1759-7714.13156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/19/2022] Open
Abstract
Adjuvant chemotherapy has long been indicated to extend survival in completely resected stage IB to IIIA non‐small cell lung cancer (NSCLC). However, there is accumulating evidence that chemotherapy or chemoradiotherapy can induce epithelial‐to‐mesenchymal transition (EMT) in disseminated or circulating NSCLC cells. Here, we describe the first case of EMT as the cause of recurrence and metastasis in a patient with resected stage IIB lung adenosquamous carcinoma after adjuvant chemotherapy. We review the literature and explore the possible mechanisms by which EMT occurs in disseminated tumor cells (DTC) or circulating tumor cells (CTC) in response to adjuvant chemotherapy (cisplatin) as a stressor. We also explore the possible therapeutic strategies to reverse EMT in patients with recurrence. In summary, although adjuvant cisplatin‐based chemotherapy in resected NSCLC does extend survival, it may lead to the adverse phenomenon of EMT in disseminated tumor cells (DTC) or circulating tumor cells (CTC) causing recurrence and metastasis.
Collapse
Affiliation(s)
- Mau Ern Poh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chong Kin Liam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kein Seong Mun
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Shee Chai
- Department of Medicine, Faculty of Medicine, University Malaysia Sarawak, Sarawak, Malaysia
| | - Chee Kuan Wong
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jiunn Liang Tan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Thian Chee Loh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ka Kiat Chin
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Chung VY, Tan TZ, Ye J, Huang RL, Lai HC, Kappei D, Wollmann H, Guccione E, Huang RYJ. The role of GRHL2 and epigenetic remodeling in epithelial-mesenchymal plasticity in ovarian cancer cells. Commun Biol 2019; 2:272. [PMID: 31372511 PMCID: PMC6656769 DOI: 10.1038/s42003-019-0506-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells exhibit phenotypic plasticity during epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) involving intermediate states. To study genome-wide epigenetic remodeling associated with EMT plasticity, we integrate the analyses of DNA methylation, ChIP-sequencing of five histone marks (H3K4me1, H3K4me3, H3K27Ac, H3K27me3 and H3K9me3) and transcriptome profiling performed on ovarian cancer cells with different epithelial/mesenchymal states and on a knockdown model of EMT suppressor Grainyhead-like 2 (GRHL2). We have identified differentially methylated CpG sites associated with EMT, found at promoters of epithelial genes and GRHL2 binding sites. GRHL2 knockdown results in CpG methylation gain and nucleosomal remodeling (reduction in permissive marks H3K4me3 and H3K27ac; elevated repressive mark H3K27me3), resembling the changes observed across progressive EMT states. Epigenetic-modifying agents such as 5-azacitidine, GSK126 and mocetinostat further reveal cell state-dependent plasticity upon GRHL2 overexpression. Overall, we demonstrate that epithelial genes are subject to epigenetic control during intermediate phases of EMT/MET involving GRHL2.
Collapse
Affiliation(s)
- Vin Yee Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Jieru Ye
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, 11031 Taipei, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, 11031 Taipei, Taiwan
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673 Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673 Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
- School of Medicine, College of Medicine, National Taiwan University, 10051 Taipei, Taiwan
| |
Collapse
|
38
|
Gan H, Lin L, Hu N, Yang Y, Gao Y, Pei Y, Chen K, Sun B. KIF2C exerts an oncogenic role in nonsmall cell lung cancer and is negatively regulated by miR‐325‐3p. Cell Biochem Funct 2019; 37:424-431. [PMID: 31328811 DOI: 10.1002/cbf.3420] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/11/2019] [Accepted: 06/05/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Huizhu Gan
- Department of Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Lin
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nanjun Hu
- Department of Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Yang
- Department of Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Gao
- Department of Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Pei
- Department of Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kang Chen
- Department of Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Butong Sun
- Department of Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Reactive Oxygen Species Are Involved in the Development of Gastric Cancer and Gastric Cancer-Related Depression through ABL1-Mediated Inflammation Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5813985. [PMID: 31396300 PMCID: PMC6664690 DOI: 10.1155/2019/5813985] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Background The mechanisms of crosstalk between depression and gastric cancer (GC) remain ill defined. Given that reactive oxygen species (ROS) is involved in the pathophysiology of both GC and depression, we try to explore the activities of ROS in the development of GC and GC-related depression. Methods 110 patients with newly diagnosed GC were recruited in our study. The clinical characteristics of these patients were recorded. Inflammation and oxidative stress markers were detected by ELISA. The depression status of patients with GC was assessed during follow-up. The association between ROS, ABL1, and inflammation factors was evaluated in H2O2-treated GC cell lines and The Cancer Genome Atlas (TCGA) database. The effect of ABL1 on inflammation was detected with Imatinib/Nilotinib-treated GC cell lines. A chronic mild stress- (CMS-) induced patient-derived xenograft (PDX) mice model was established to assess the crosstalk between depression and GC. Results Depression was correlated with poor prognosis of patients with GC. GC patients with depression were under a high level of oxidative status as well as dysregulated inflammation. In the CMS-induced GC PDX mice model, CMS could facilitate the development of GC. Additionally, tumor bearing could induce depressive-like behaviors of mice. With the treatment of ROS, the activities of ABL1 and inflammatory signaling were enhanced both in vitro and in vivo, and blocking the activities of ABL1 inhibited inflammatory signaling. Conclusions ROS-activated ABL1 mediates inflammation through regulating NF-κB1 and STAT3, which subsequently leads to the development of GC and GC-related depression.
Collapse
|
40
|
Kuhn H, Zobel C, Vollert G, Gurcke M, Jenszöwski C, Barina C, Frille A, Wirtz H. High amplitude stretching of ATII cells and fibroblasts results in profibrotic effects. Exp Lung Res 2019; 45:167-174. [PMID: 31290711 DOI: 10.1080/01902148.2019.1636424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Inappropriate mechanical forces act on alveolar epithelial cells during mechanical ventilation e.g. in ARDS and possibly in patients with pulmonary fibrosis. These forces can cause lung injury and may contribute to the development or aggravation of pulmonary fibrosis. Aim of the study: We investigated the hypothesis that high amplitude mechanical stretching of alveolar type II (ATII) cells and lung fibroblasts promotes profibrotic processes. Material and Methods: ATII cells and fibroblasts were stretched on elastic membranes using a pattern of higher amplitudes ("unphysiological"). The production of profibrotic cytokines and extra cellular matrix (ECM) proteins were investigated in supernatants. In addition, we determined the expression of relevant microRNAs (miRNA) and the process of epithelial-mesenchymal transition (EMT) in ATII cells. Results: Unphysiological stretch of ATII cells led to increased release of TGF-β1 into supernatants. We also found elevated protein levels of collagen I and IV in supernatants of stretched cells. By contrast, stretching of fibroblasts changed neither the expression of fibrosis-modulating factors nor ECM-proteins. However, fibroblasts significantly withstood stretch-induced cell injury and seemed to have a survival benefit. Further, stretched ATII cells exhibited a higher expression of miRNAs (miR-15b, miR-25, let-7d) relevant to EMT. The process of EMT, which is characterized by an increase of vimentin and a decrease of cytokeratin expression, was significantly accelerated due to stretching of ATII cells. Conclusion: These data provide evidence that unphysiological mechanical stretching of lung cells induced several profibrotic effects and accelerated EMT, which may have critical implications in terms of development or aggravation of pulmonary fibrosis in the clinical context.
Collapse
Affiliation(s)
- Hartmut Kuhn
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| | - Christian Zobel
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| | - Gordon Vollert
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| | - Maurice Gurcke
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| | | | - Christine Barina
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| | - Armin Frille
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany.,b Integrated Research and Treatment Center (IFB) Adiposity Diseases, University Medical Center Leipzig , Leipzig , Germany
| | - Hubert Wirtz
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| |
Collapse
|
41
|
Stratmann JA, Sebastian M. Polo-like kinase 1 inhibition in NSCLC: mechanism of action and emerging predictive biomarkers. LUNG CANCER-TARGETS AND THERAPY 2019; 10:67-80. [PMID: 31308774 PMCID: PMC6612950 DOI: 10.2147/lctt.s177618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Due to often unspecific disease symptoms, locally advanced or metastatic disease is diagnosed in the majority of all cases. Palliative treatment options comprise of conventional cytotoxic agents, immunotherapy with checkpoint inhibitors and the use of specific small-molecule tyrosine kinase inhibitors (TKI). However, these TKIs are mainly restricted to a small proportion of patients with lung cancer that harbor activating driver mutations. Still, the effectiveness and favorable safety profile of these compounds have prompted a systematic search for specific driver mechanisms of tumorigenesis and moreover the development of corresponding kinase inhibitors. In recent years, the Polo-like kinase (PLK) family has emerged as a key regulator in mitotic regulation. Its role in cell proliferation and the frequently observed overexpression in various tumor entities have raised much interest in basic and clinical oncology aiming to attenuate tumor growth by targeting the PLK. In this review, we give a comprehensive summary on the (pre-) clinical development of the different types of PLK inhibitors in lung cancer and summarize their mechanisms of action, safety and efficacy data and give an overview on translational research aiming to identify predictive biomarkers for a rational use of PLK inhibitors.
Collapse
Affiliation(s)
- Jan A Stratmann
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| | - Martin Sebastian
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
42
|
Gan Z, Zou Q, Lin Y, Huang X, Huang Z, Chen Z, Xu Z, Lv Y. Construction and validation of a seven-microRNA signature as a prognostic tool for lung squamous cell carcinoma. Cancer Manag Res 2019; 11:5701-5709. [PMID: 31417313 PMCID: PMC6593749 DOI: 10.2147/cmar.s191637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/23/2019] [Indexed: 11/23/2022] Open
Abstract
Objective: The aim of this study was to construct and validate a microRNA (miR)-based signature as a prognostic tool for lung squamous cell carcinoma (LUSC). Materials and methods: With the use of mature miR expression profiles downloaded from The Cancer Genome Atlas database, we identified differentially expressed miRs between LUSC and matched healthy lung tissue. Thereafter, we carried out an evaluation of the association of differentially expressed miRs with overall survival (OS) with the use of univariate and multivariate Cox regression analysis. This analysis was eventually employed for the construction of a miR-based signature, which effectively predicted the prognosis. The functional enrichment analysis of the miRs included in the signature was used to explore their potential molecular mechanism in LUSC. Results: A total of 316 miRs were differentially expressed between LUSC and matched healthy lung tissues in the training set. Following the univariate and multivariate Cox regression analysis, we found that seven miRs were independent prognostic factors. Each patient received a signature index ranging from 0 to 7. Patients with LUSC were divided into high-risk, intermediate-risk, and low-risk groups in accordance with their signature index and the OS in the three groups was significantly different. This finding remains consistent in the validation set. Besides that, this seven-miR signature remained an independent prognostic factor in comparison with routine clinicopathologic features. The seven-miR signature is a promising biomarker for predicting the 5-year survival rate of LUSC with an area under the receiver operating characteristic curveof 0.712 in the training set and 0.688 in the validation set, respectively. The target genes of seven miRs may be involved in various pathways associated with lung cancer, for instance the mitogen-activated protein kinase signaling pathway and the Wnt signaling pathway. Conclusion: Using this signature, patients with LUSC can be divided into high-risk, intermediate-risk, and low-risk groups for more personalized management.
Collapse
Affiliation(s)
- Zuhuan Gan
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Qiyun Zou
- Department 1 of Internal Medicine, Affiliated Langdong Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiaoyuan Huang
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Zhong Huang
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Zhichao Chen
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Zihai Xu
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| | - Yufeng Lv
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, 530029, People’s Republic of China
| |
Collapse
|
43
|
Liu B, Wang Z, Cheng S, Du L, Yin Y, Yang Z, Zhou J. miR‑379 inhibits cell proliferation and epithelial‑mesenchymal transition by targeting CHUK through the NF‑κB pathway in non‑small cell lung cancer. Mol Med Rep 2019; 20:1418-1428. [PMID: 31173238 DOI: 10.3892/mmr.2019.10362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/29/2019] [Indexed: 11/05/2022] Open
Abstract
An increasing body of evidence has demonstrated that microRNA (miR) deregulation serves pivotal roles in tumor progression and metastasis. However, the function of miR‑379 in lung cancer remains understudied, particularly in non‑small cell lung cancer (NSCLC). Bioinformatics and luciferase reporter analyses confirmed that conserved helix‑loop‑helix ubiquitous kinase (CHUK) is a target of miR‑379, which may directly bind to the 3'‑untranslated region of CHUK and significantly downregulate its expression in NSCLC cells. Transwell assays were used to evaluate the role of miR‑379 in cell migration and invasion, and western blotting was used to address the association between miR‑379 and epithelial‑mesenchymal markers, including E‑cadherin, cytokeratin and Vimentin. In the present study, miR‑379 expression in NSCLC tissues and cell lines was downregulated, which may be associated with the poor survival of patients with NSCLC. miR‑379 may act as a tumor suppressor in NSCLC, potentially by suppressing cell growth and proliferation, delaying G1‑S transition, enhancing cell apoptosis and suppressing NSCLC cell migration and invasion. Furthermore, it was also observed that CHUK may function as an oncogene, and downregulation of CHUK induced by miR‑379 may partially rescue the malignant characteristics of tumors, indicating that miR‑379 may be suppressed in tumorigenesis. The overexpression of miR‑379 may prevent the growth of NSCLC tumors via CHUK suppression and the downstream nuclear factor‑κB pathway. The results of the present study demonstrated that miR‑379 may act as a tumor suppressor, and may constitute a potential biomarker and a promising therapeutic agent for the treatment for NSCLC.
Collapse
Affiliation(s)
- Bin Liu
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Zheng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Shizhao Cheng
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Lin Du
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Yan Yin
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Zhen Yang
- Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jingmin Zhou
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| |
Collapse
|
44
|
Li X, Zhu J, Liu Y, Duan C, Chang R, Zhang C. MicroRNA-331-3p inhibits epithelial-mesenchymal transition by targeting ErbB2 and VAV2 through the Rac1/PAK1/β-catenin axis in non-small-cell lung cancer. Cancer Sci 2019; 110:1883-1896. [PMID: 30955235 PMCID: PMC6550127 DOI: 10.1111/cas.14014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs have been reported to play critical roles in the regulation of non-small-cell cancer (NSCLC) development, but the role of microRNA (miR)-331-3p in NSCLC is still unclear. In this study, the expression levels of miR-331-3p in NSCLC tumor tissues and adjacent normal tissues were examined by quantitative RT-PCR, and the relationship between miR-331-3p expression and patient clinicopathological characteristics was analyzed. The effects of miR-331-3p on epithelial-mesenchymal transition (EMT), migration, and metastasis of NSCLC cells were determined in vitro and vivo. Direct functional targets of miR-331-3p were identified by luciferase reporter assay, western blot assay, immunohistochemical staining, and rescue assay. The downstream pathway regulated by miR-331-3p was identified by immunofluorescence, immunoprecipitation, and Rac1 activity examination. Our results showed that miR-331-3p was significantly downregulated in NSCLC tumor tissues and was correlated with clinicopathological characteristics, and miR-331-3p could be an independent prognostic marker for NSCLC patients. Furthermore, miR-331-3p significantly suppressed EMT, migration and metastasis of NSCLC cells in vitro and in vivo. Both ErbB2 and VAV2 were direct functional targets of miR-331-3p. The activities of Rac1, PAK1, and β-catenin were regulated by miR-331-3p through ErbB2 and VAV2 targeting. These results indicated that miR-331-3p suppresses EMT, migratory capacity, and metastatic ability by targeting ErbB2 and VAV2 through the Rac1/PAK1/β-catenin axis in NSCLC.
Collapse
Affiliation(s)
- Xizhe Li
- Department of Thoracic SurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Jiali Zhu
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangshaChina
| | - Yuanqi Liu
- Department of Thoracic SurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Chaojun Duan
- Institute of Medical SciencesKey Laboratory of Cancer Proteomics of Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaChina
| | - Ruimin Chang
- Department of Thoracic SurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Chunfang Zhang
- Department of Thoracic SurgeryXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
45
|
Chen X, Lin ZF, Xi WJ, Wang W, Zhang D, Yang F, Li YF, Huo Y, Zhang TZ, Jiang YH, Qin WW, Yang AG, Wang T. DNA methylation-regulated and tumor-suppressive roles of miR-487b in colorectal cancer via targeting MYC, SUZ12, and KRAS. Cancer Med 2019; 8:1694-1709. [PMID: 30791232 PMCID: PMC6488202 DOI: 10.1002/cam4.2032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Human colorectal cancer (CRC), characterized by its high morbidity and lethality, seriously threatens human health and lives. MicroRNA‐487b (miR‐487b) is currently reported to be aberrantly expressed in several tumors, but the detailed functions and underlying mechanisms of miR‐487b in CRC remain unclear. Here, we found that miR‐487b is downregulated in CRC cell lines and is markedly decreased in tumor specimens derived from CRC patients. MiR‐487b inhibits cell proliferation, migration and invasion and promotes the apoptosis of CRC cells in vitro. Statistical analysis of clinical samples indicates that miR‐487b may serve as a biomarker for early CRC diagnosis. Inverse correlations between the expression levels of MYC, SUZ12, and KRAS and that of miR‐487b exist in vitro and in CRC patient tissue specimens. Further experiments demonstrated the regulatory effects of miR‐487b on MYC, SUZ12, and KRAS, and the disruption of these genes partially restores the miR‐487b inhibitor‐induced phenotype. Additionally, miR‐487b promoter region is in a DNA hypermethylated condition and the DNA methyltransferase inhibitor 5‐aza‐2’‐deoxycytidine (5‐Aza) increases the levels of miR‐487b but suppresses the expression of MYC, SUZ12, and KRAS in a time‐ and concentration‐dependent manner in CRC cells. Collectively, miR‐487b is regulated by DNA methylation and it functions as a tumor suppressor in CRC mainly through targeting MYC, SUZ12, and KRAS. Our study provides insight into the regulatory network in CRC cells, offering a new target for treating CRC patients.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zhi-Feng Lin
- Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Wen-Jin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Dan Zhang
- Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Fan Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yu-Fang Li
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yi Huo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Tian-Ze Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yi-Hong Jiang
- Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Wei-Wei Qin
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
46
|
Chen Q, Liu D, Hu Z, Luo C, Zheng SL. miRNA-101-5p inhibits the growth and aggressiveness of NSCLC cells through targeting CXCL6. Onco Targets Ther 2019; 12:835-848. [PMID: 30774371 PMCID: PMC6355169 DOI: 10.2147/ott.s184235] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The purpose of this study is to explore the potential biological roles of miR-101-5p in the progression of non-small-cell lung carcinoma (NSCLC). Methods The levels of miR-101-5p and chemokine (C-X-C motif) ligand 6 (CXCL6) in NSCLC tissues and cells were detected using the quantitative real-time PCR (qRT-PCR) assay. Proliferation, colony formation, migration and invasion assays were conducted using miR-101-5p-transfected NSCLC cells in vitro. The expression of CXCL6 was measured using immunofluorescence assay. Xenograft model and lung metastasis model were constructed to further reveal the precise roles of miR-101-5p in the lung metastasis and growth of NSCLC cells in vivo. Results miR-101-5p was underregulated in NSCLC tissues when compared with that in the normal controls. The levels of miR-101-5p were lower in NSCLC cells (H1975, A549, HCC827 and H1650) than in non-tumorigenic human bronchial epithelial cells (BEAS-2B). Overregulation of miR-101-5p restrained the aggressiveness phenotypes of NSCLC cells in vitro. Furthermore, overregulation of miR-101-5p reduced the tumor growth and pulmonary metastasis of NSCLC cells in vivo. CXCL6 was the target gene of miR-101-5p in NSCLC. The mRNA levels of CXCL6 were negatively associated with the levels of miR-101-5p in NSCLC tissues. Finally, the rescue experiments suggested that the inhibitory role of miR-101-5p was mediated by regulating the expression of CXCL6 in NSCLC. Conclusion These findings indicated that overregulation of miR-101-5p restrained the progression of NSCLC cells by targeting CXCL6 and might function as a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.,Department of Nursing, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China,
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Pulmonary and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Zhi Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Cheng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Si Lin Zheng
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China,
| |
Collapse
|
47
|
Garinet S, Didelot A, Garelli E, Pallier K, Blons H, Legras A. How apoptosis and epithelial-to-mesenchymal transition are nested in EGFR inhibitors resistance in lung cancer. J Thorac Dis 2019; 11:47-49. [PMID: 30863568 DOI: 10.21037/jtd.2018.12.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Garinet
- INSERM UMR-S1147, CNRS SNC 5014, Saints-Pères Research Center, 45 rue des Saints-Pères Paris-Descartes University, Sorbonne Paris Cité University, Paris 75006, France.,Molecular Biology Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris 75015, France
| | - Audrey Didelot
- INSERM UMR-S1147, CNRS SNC 5014, Saints-Pères Research Center, 45 rue des Saints-Pères Paris-Descartes University, Sorbonne Paris Cité University, Paris 75006, France
| | - Elena Garelli
- Thoracic Surgery Department, Cochin Hospital, Sorbonne Paris Cité University, Assistance Publique des Hôpitaux de Paris, Paris 75014, France
| | - Karine Pallier
- Haute-Vienne Coordination Center in Oncology, Limoges University Hospital Center, Limoges 87000, France
| | - Hélène Blons
- INSERM UMR-S1147, CNRS SNC 5014, Saints-Pères Research Center, 45 rue des Saints-Pères Paris-Descartes University, Sorbonne Paris Cité University, Paris 75006, France.,Molecular Biology Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris 75015, France
| | - Antoine Legras
- INSERM UMR-S1147, CNRS SNC 5014, Saints-Pères Research Center, 45 rue des Saints-Pères Paris-Descartes University, Sorbonne Paris Cité University, Paris 75006, France.,Thoracic Surgery Department, Trousseau Hospital, Tours University Hospital Center, Chambray-lès-Tours 37170, France
| |
Collapse
|
48
|
Zhang X, Liu Y, Huang WC, Zheng LC. MiR-125b-1-3p Exerts Antitumor Functions in Lung Carcinoma Cells by Targeting S1PR1. Chin Med J (Engl) 2018; 131:1909-1916. [PMID: 30082521 PMCID: PMC6085848 DOI: 10.4103/0366-6999.238135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background MicroRNAs (miRNAs) have been extensively studied over the decades and have been identified as potential molecular targets for cancer therapy. To date, many miRNAs have been found participating in the tumorigenesis of non-small cell lung cancer (NSCLC). The present study was designed to evaluate the functions of miR-125b-1-3p in NSCLC cells. Methods MiR-125b-1-3p expression was detected in tissue samples from 21 NSCLC patients and in NSCLC cell lines using the real-time polymerase chain reaction. A549 cell lines were transfected with a miR-125b-1-3p mimic or miR-125b-1-3p antisense. Cell counting kit-8, wound healing, Matrigel invasion assays, and flow cytometry were used to assess the effects of these transfections on cell growth, migration, invasion, and apoptosis, respectively. Western blotting was used to detect apoptosis-related proteins, expression of S1PR1, and the phosphorylation status of STAT3. Significant differences between groups were estimated using Student's t-test or a one-way analysis of variance. Results MiR-125b-1-3p was downregulated in NSCLC samples and cell lines. Overexpression of miR-125b-1-3p inhibited NSCLC cell proliferation (37.8 ± 9.1%, t = 3.191, P = 0.013), migration (42.3 ± 6.7%, t = 6.321, P = 0.003), and invasion (57.6 ± 11.3%, t = 4.112, P = 0.001) and simultaneously induced more NSCLC cell apoptosis (2.76 ± 0.78 folds, t = 3.772, P = 0.001). MiR-125b-1-3p antisense resulted in completely opposite results. S1PR1 was found as the target gene of miR-125b-1-3p. Overexpression of miR-125b-1-3p inhibited S1PR1 protein expression (27.4 ± 6.1% of control, t = 4.083, P = 0.007). In addition, S1PR1 siRNA decreased STAT3 phosphorylation (16.4 ± 0.14% of control, t = 3.023, P = 0.015), as in cells overexpressing miR-125b-1-3p (16.7 ± 0.17% of control, t = 4.162, P = 0.026). Conclusion Our results suggest that miR-125b-1-3p exerts antitumor functions in NSCLC cells by targeting S1PR1.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wei-Cong Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Liang-Cheng Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
49
|
Greenawalt EJ, Edmonds MD, Jain N, Adams CM, Mitra R, Eischen CM. Targeting of SGK1 by miR-576-3p Inhibits Lung Adenocarcinoma Migration and Invasion. Mol Cancer Res 2018; 17:289-298. [PMID: 30257988 DOI: 10.1158/1541-7786.mcr-18-0364] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/28/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
Metastatic lung cancer is common in patients with lung adenocarcinoma, but the molecular mechanisms of metastasis remain incompletely resolved. miRNA regulate gene expression and contribute to cancer development and progression. This report identifies miR-576-3p and its mechanism of action in lung cancer progression. miR-576-3p was determined to be significantly decreased in clinical specimens of late-stage lung adenocarcinoma. Overexpression of miR-576-3p in lung adenocarcinoma cells decreased mesenchymal marker expression and inhibited migration and invasion. Inhibition of miR-576-3p in nonmalignant lung epithelial cells increased migration and invasion as well as mesenchymal markers. Serum/glucocorticoid-regulated kinase 1 (SGK1) was a direct target of miR-576-3p, and modulation of miR-576-3p levels led to alterations in SGK1 protein and mRNA as well as changes in activation of its downstream target linked to metastasis, N-myc downstream regulated 1 (NDRG1). Loss of the ability of miR-576-3p to bind the 3'-UTR of SGK1 rescued the inhibition in migration and invasion observed with miR-576-3p overexpression. In addition, increased SGK1 levels were detected in lung adenocarcinoma patient samples expressing mesenchymal markers, and pharmacologic inhibition of SGK1 resulted in a similar inhibition of migration and invasion of lung adenocarcinoma cells as observed with miR-576-3p overexpression. Together, these results reveal miR-576-3p downregulation is selected for in late-stage lung adenocarcinoma due to its ability to inhibit migration and invasion by targeting SGK1. Furthermore, these results also support targeting SGK1 as a potential therapeutic for lung adenocarcinoma. IMPLICATIONS: This study reveals SGK1 inhibition with miR-576-3p or pharmacologically inhibits migration and invasion of lung adenocarcinoma, providing mechanistic insights into late-stage lung adenocarcinoma and a potential new treatment avenue.
Collapse
Affiliation(s)
- Evan J Greenawalt
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mick D Edmonds
- Department of Genetics, University of Alabama, Birmingham, Alabama
| | - Neha Jain
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Clare M Adams
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ramkrishna Mitra
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christine M Eischen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
50
|
Magalhães M, Alvarez-Lorenzo C, Concheiro A, Figueiras A, Santos AC, Veiga F. RNAi-based therapeutics for lung cancer: biomarkers, microRNAs, and nanocarriers. Expert Opin Drug Deliv 2018; 15:965-982. [PMID: 30232915 DOI: 10.1080/17425247.2018.1517744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Despite the current advances in the discovery of the lung cancer biomarkers and, consequently, in the diagnosis, this pathology continues to be the primary cause of cancer-related death worldwide. In most cases, the illness is diagnosed in an advanced stage, which limits the current treatment options available and reduces the survival rate. Therefore, RNAi-based therapy arises as a promising option to treat lung cancer. AREAS COVERED This review provides an overview on the exploitation of lung cancer biology to develop RNAi-based therapeutics to be applied in the treatment of lung cancer. Furthermore, the review analyzes the main nanocarriers designed to deliver RNAi molecules and induce antitumoral effects in lung cancer, and provides updated information about current RNAi-based therapeutics for lung cancer in clinical trials. EXPERT OPINION RNAi-based therapy uses nanocarriers to perform a targeted and efficient delivery of therapeutic genes into lung cancer cells, by taking advantage of the known biomarkers in lung cancer. These therapeutic genes are key regulatory molecules of crucial cellular pathways involved in cell proliferation, migration, and apoptosis. Thereby, the characteristics and functionalization of the nanocarrier and the knowledge of lung cancer biology have direct influence in improving the therapeutic effect of this therapy.
Collapse
Affiliation(s)
- Mariana Magalhães
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Carmen Alvarez-Lorenzo
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Angel Concheiro
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Ana Figueiras
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Ana Cláudia Santos
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Francisco Veiga
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| |
Collapse
|