1
|
Yuan L, Liu C, Li B, Wang S, Sun J, Mao X. Multi-omics analysis reveals that agaro-oligosaccharides with different degrees of polymerization alleviate colitis in mice by regulating intestinal flora and arginine synthesis. Food Funct 2024; 15:10628-10643. [PMID: 39310981 DOI: 10.1039/d4fo03650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a common chronic disease with a complex etiology, characterized by body weight loss, intestinal barrier damage, and an imbalance of intestinal flora, posing a significant threat to people's health. In this work, we studied whether safer natural active agaro-oligosaccharides (AOSs) benefit mice with IBD and elucidated their underlying mechanisms. The findings indicated that oral administration of agarobiose (A2), agarotriose (A3), and agarotetraose (A4) contributed to alleviating body weight loss and colon shortening, as well as enhancing IL-10 levels while reducing IL-6, IL-1β, and TNF-α. AOSs improved colon disruption, reduced the number of goblet cells caused by DSS, and enhanced the expression of Muc2, ZO-1, and occludin-1 to repair the intestinal barrier. It is noteworthy that A3 demonstrated superior outcomes in the evaluated AOSs relative to A2 and A4. This was evidenced by an increase in Bacteroidota and reduced Firmicutes at the phylum level, which corrected DSS-induced intestinal dysbiosis and significantly restored disrupted metabolic pathways, including amino acid and lipid metabolism. The differential metabolites between the AOS treatment groups and the model group were mainly enriched in arginine synthesis with co-regulated critical substances N-acetyl-L-citrulline and N2-acetylornithine, which alleviated colitis. This evidence offers a fresh perspective on the potential application of AOSs as functional foods to improve intestinal inflammation and metabolism.
Collapse
Affiliation(s)
- Long Yuan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Bolun Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, 572025, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, 572025, PR China
| |
Collapse
|
2
|
Wang H, Zhu B. Directed preparation of algal oligosaccharides with specific structures by algal polysaccharide degrading enzymes. Int J Biol Macromol 2024; 277:134093. [PMID: 39053825 DOI: 10.1016/j.ijbiomac.2024.134093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Seaweed polysaccharides have a wide range of sources and rich content, with various biological activities such as anti-inflammatory, anti-tumor, anticoagulant, and blood pressure lowering. They can be applied in fields such as food, agriculture, and medicine. However, the poor solubility of macromolecular seaweed polysaccharides limits their further application. Reports have shown that some biological activities of seaweed oligosaccharides are more extensive and superior to that of seaweed polysaccharides. Therefore, reducing the degree of polymerization of polysaccharides will be the key to the high value utilization of seaweed polysaccharide resources. There are three main methods for degrading algal polysaccharides into algal oligosaccharides, physical, chemical and enzymatic degradation. Among them, enzymatic degradation has been a hot research topic in recent years. Various types of algal polysaccharide hydrolases and related glycosidases are powerful tools for the preparation of algal oligosaccharides, including α-agarases, β-agaroses, α-neoagarose hydrolases and β-galactosidases that are related to agar, κ-carrageenases, ι-carrageenases and λ-carrageenases that are related to carrageenan, β-porphyranases that are related to porphyran, funoran hydrolases that are related to funoran, alginate lyases that are related to alginate and ulvan lyases related to ulvan. This paper describes the bioactivities of agar oligosaccharide, carrageenan oligosaccharide, porphyran oligosaccharide, funoran oligosaccharide, alginate oligosaccharide and ulvan oligosaccharide and provides a detailed review of the progress of research on the enzymatic preparation of these six oligosaccharides. At the same time, the problems and challenges faced are presented to guide and improve the preparation and application of algal oligosaccharides in the future.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China.
| |
Collapse
|
3
|
Shen J, Dan M, Li Y, Tao X, Zhao G, Wang D. Controllable and complete conversion of agarose into oligosaccharides and monosaccharides by microwave-assisted hydrothermal and enzymatic hydrolysis and antibacterial activity of agaro-oligosaccharides. Int J Biol Macromol 2023; 251:126319. [PMID: 37582437 DOI: 10.1016/j.ijbiomac.2023.126319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Hydrolysis of agar or agarose can yield two types of oligosaccharides: agaro-oligosaccharides (AOS) and neoagaro-oligosaccharides (NAOS). These oligosaccharides have various biological activities and promising applications in the future food industry and pharmaceuticals. In this study, we prepared AOS from agarose by microwave-assisted hydrothermal hydrolysis and then used a commercial β-galactosidase to treat AOS for producing NAOS. A complete conversion from agarose to AOS or NAOS can be achieved by microwave hydrothermal treatment and one-step enzyme reaction, and the production process was completely green. In addition, we combined β-galactosidase and α-neoagarobiose hydrolase from Saccharophagus degradans 2-40 (SdNABH) to treat AOS, and AOS was completely converted into monosaccharides. Then the results of the inhibitory activity of AOS on the growth of Streptococcus mutans showed that AOS might be a good potential sugar substitute for dental caries prevention. This study provides an efficient approach for the production of multiple mixed degrees of polymerization (DP) of pure AOS and NAOS without requiring acid catalyst and agarases while simplifying the production processes and reducing costs.
Collapse
Affiliation(s)
- Ji Shen
- College of Food Science, Southwest University, Chongqing 400715, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, PR China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoqi Tao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, PR China.
| |
Collapse
|
4
|
Krishna Perumal P, Dong CD, Chauhan AS, Anisha GS, Kadri MS, Chen CW, Singhania RR, Patel AK. Advances in oligosaccharides production from algal sources and potential applications. Biotechnol Adv 2023; 67:108195. [PMID: 37315876 DOI: 10.1016/j.biotechadv.2023.108195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
In recent years, algal-derived glycans and oligosaccharides have become increasingly important in health applications due to higher bioactivities than plant-derived oligosaccharides. The marine organisms have complex, and highly branched glycans and more reactive groups to elicit greater bioactivities. However, complex and large molecules have limited use in broad commercial applications due to dissolution limitations. In comparison to these, oligosaccharides show better solubility and retain their bioactivities, hence, offering better applications opportunity. Accordingly, efforts are being made to develop a cost-effective method for enzymatic extraction of oligosaccharides from algal polysaccharides and algal biomass. Yet detailed structural characterization of algal-derived glycans is required to produce and characterize the potential biomolecules for improved bioactivity and commercial applications. Some macroalgae and microalgae are being evaluated as in vivo biofactories for efficient clinical trials, which could be very helpful in understanding the therapeutic responses. This review discusses the recent advancements in the production of oligosaccharides from microalgae. It also discusses the bottlenecks of the oligosaccharides research, technological limitations, and probable solutions to these problems. Furthermore, it presents the emerging bioactivities of algal oligosaccharides and their promising potential for possible biotherapeutic application.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804201, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
5
|
Dan M, Shen J, Zhao G, Wang D. Complete conversion of agarose into water soluble agaro-oligosaccharides by microwave assisted hydrothermal hydrolysis. Food Chem 2022; 395:133622. [DOI: 10.1016/j.foodchem.2022.133622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/04/2022]
|
6
|
Jiang C, Cheng D, Liu Z, Sun J, Mao X. Advances in agaro-oligosaccharides preparation and bioactivities for revealing the structure-function relationship. Food Res Int 2021; 145:110408. [PMID: 34112411 DOI: 10.1016/j.foodres.2021.110408] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022]
Abstract
Agaro-oligosaccharides originating from red algae have attracted increasing attention in both basic theoretical research and applied fields due to their excellent bioactivities, which indicates the wide prospects of agaro-oligosaccharides for application in the food, pharmaceutical and cosmetic industries. Thus, a considerable number of studies regarding functional agaro-oligosaccharides preparation as well as the bioactivities exploration have been carried out. Based on these studies, this review first introduced different methods that have been used in agar extraction from red algae, and further provided research progress on arylsulfatase. Then, different methods used for agaro-oligosaccharides production were summarized. Moreover, the abundant bioactivities of agaro-oligosaccharides were described in detail. Finally, this review has discussed current research problems and further provided critical aspects, which may be helpful for revealing the structure-function relationship of agaro-oligosaccharide.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
7
|
Abstract
Biocatalysis refers to the use of microorganisms and enzymes in chemical reactions, has become increasingly popular and is frequently used in industrial applications due to the high efficiency and selectivity of biocatalysts [...]
Collapse
|
8
|
Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products. Biotechnol Adv 2020; 45:107641. [PMID: 33035614 DOI: 10.1016/j.biotechadv.2020.107641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
Red algae are important renewable bioresources with very large annual outputs. Agarose is the major carbohydrate component of many red algae and has potential to be of value in the production of agaro-oligosaccharides, biofuels and other chemicals. In this review, we summarize the degradation pathway of agarose, which includes an upstream part involving transformation of agarose into its two monomers, D-galactose (D-Gal) and 3,6-anhydro-α-L-galactose (L-AHG), and a downstream part involving monosaccharide degradation pathways. The upstream part involves agarolytic enzymes such as α-agarase, β-agarase, α-neoagarobiose hydrolase, and agarolytic β-galactosidase. The downstream part includes the degradation pathways of D-Gal and L-AHG. In addition, the production of functional agaro-oligosaccharides such as neoagarobiose and monosaccharides such as L-AHG with different agarolytic enzymes is reviewed. Third, techniques for the setup, regulation and optimization of agarose degradation to increase utilization efficiency of agarose are summarized. Although heterologous construction of the whole agarose degradation pathway in an engineered strain has not been reported, biotechnologies applied to improve D-Gal utilization efficiency and construct L-AHG catalytic routes are reviewed. Finally, critical aspects that may aid in the construction of engineered microorganisms that can fully utilize agarose to produce agaro-oligosaccharides or as carbon sources for production of biofuels or other value-adding chemicals are discussed.
Collapse
|