1
|
Eun J, Lee JE, Yang SH. Cerebral organoid research for pediatric patients with neurological disorders. Clin Exp Pediatr 2025; 68:269-277. [PMID: 39608368 PMCID: PMC11969208 DOI: 10.3345/cep.2024.01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024] Open
Abstract
Cerebral organoids derived from human induced pluripotent stem cells offer a groundbreaking foundation for the analysis of pediatric neurological diseases. Unlike organoids from other somatic systems, cerebral organoids present unique challenges, such as the high sensitivity of neuronal cells to environmental conditions and the complexity of replicating brain-specific architectures. Cerebral organoids replicate the human brain development and pathology, enabling research on conditions such as microcephaly, Rett syndrome, autism spectrum disorders, and brain tumors. This review explores the utility of cerebral organoids for modeling diseases and testing therapeutic interventions. Despite current limitations such as variability and lack of vascularization, recent technological advancements have improved the reliability and application of such interventions. Cerebral organoids provide valuable insight into the mechanisms underlying complex neural disorders and hold promise as novel treatment strategies for pediatric neurological diseases.
Collapse
Affiliation(s)
- Jin Eun
- Department of Neurosurgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Huang W, Jeong S, Kim W, Chen L. Biomedical applications of organoids in genetic diseases. MEDICAL REVIEW (2021) 2025; 5:152-163. [PMID: 40224362 PMCID: PMC11987506 DOI: 10.1515/mr-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 04/15/2025]
Abstract
Organoid technology has significantly transformed biomedical research by providing exceptional prospects for modeling human tissues and disorders in a laboratory setting. It has significant potential for understanding the intricate relationship between genetic mutations, cellular phenotypes, and disease pathology, especially in the field of genetic diseases. The intersection of organoid technology and genetic research offers great promise for comprehending the pathophysiology of genetic diseases and creating innovative treatment approaches customized for specific patients. This review aimed to present a thorough analysis of the current advancements in organoid technology and its biomedical applications for genetic diseases. We examined techniques for modeling genetic disorders using organoid platforms, analyze the approaches for incorporating genetic disease organoids into clinical practice, and showcase current breakthroughs in preclinical application, individualized healthcare, and transplantation. Through the integration of knowledge from several disciplines, such as genetics, regenerative medicine, and biological engineering, our aim is to enhance our comprehension of the complex connection between genetic variations and organoid models in relation to human health and disease.
Collapse
Affiliation(s)
- Wenhua Huang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Chen X, Wang Y, Zhang Y, Li X, Zhang L, Gao S, Zhang C. Neural Excitatory/Inhibitory Imbalance in Motor Aging: From Genetic Mechanisms to Therapeutic Challenges. BIOLOGY 2025; 14:272. [PMID: 40136528 PMCID: PMC11939721 DOI: 10.3390/biology14030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
Neural excitatory/inhibitory (E/I) imbalance plays a pivotal role in the aging process. However, despite its significant impact, the role of E/I imbalance in motor dysfunction and neurodegenerative diseases has not received sufficient attention. This review explores the mechanisms underlying motor aging through the lens of E/I balance, emphasizing genetic and molecular factors that contribute to this imbalance (such as SCN2A, CACNA1C, GABRB3, GRIN2A, SYT, BDNF…). Key regulatory genes, including REST, vps-34, and STXBP1, are examined for their roles in modulating synaptic activity and neuronal function during aging. With insights drawn from ALS, we discuss how disruptions in E/I balance contribute to the pathophysiology of age-related motor dysfunction. The genes discussed above exhibit a certain association with age-related motor neuron diseases (like ALS), a relationship that had not been previously recognized. Innovative genetic therapies, such as gene editing technology and optogenetic manipulation, are emerging as promising tools for restoring E/I balance, offering hope for ameliorating motor deficits in aging. This review explores the potential of these technologies to intervene in aging-related motor diseases, despite challenges in their direct application to human conditions.
Collapse
Affiliation(s)
- Xuhui Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.C.); (L.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (Y.Z.); (X.L.)
| | - Yongning Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (Y.Z.); (X.L.)
| | - Xucheng Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (Y.Z.); (X.L.)
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.C.); (L.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shangbang Gao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.C.); (L.Z.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (Y.Z.); (X.L.)
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.C.); (L.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Zhang J, Argueta D, Tong X, Vinters HV, Mathern GW, Cepeda C. Iconography of abnormal non-neuronal cells in pediatric focal cortical dysplasia type IIb and tuberous sclerosis complex. Front Cell Neurosci 2025; 18:1486315. [PMID: 39835291 PMCID: PMC11743721 DOI: 10.3389/fncel.2024.1486315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs. Hence, their role in epileptogenesis remained obscure. In this review, we provide a detailed characterization of abnormal non-neuronal cells including BC/GC, intermediate cells, and dysmorphic/reactive astrocytes found in FCDIIb and TSC cases, with special emphasis on electrophysiological and morphological assessments. Regardless of pathology, the electrophysiological properties of abnormal cells appear more glial-like, while others appear more neuronal-like. Their morphology also differs in terms of somatic size, shape, and dendritic elaboration. A common feature of these types of non-neuronal cells is their inability to generate action potentials. Thus, despite their distinct properties and etiologies, they share a common functional feature. We hypothesize that, although the exact role of abnormal non-neuronal cells in FCDIIb and TSC remains mysterious, it can be suggested that cells displaying more glial-like properties function in a similar way as astrocytes do, i.e., to buffer K+ ions and neurotransmitters, while those with more neuronal properties, may represent a metabolic burden due to high energy demands but inability to receive or transmit electric signals. In addition, due to the heterogeneity of these cells, a new classification scheme based on morphological, electrophysiological, and gene/protein expression in FCDIIb and TSC cases seems warranted.
Collapse
Affiliation(s)
- Joyce Zhang
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Deneen Argueta
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Heine VM, Dooves S. Neuroglia in autism spectrum disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:303-311. [PMID: 40148051 DOI: 10.1016/b978-0-443-19102-2.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication, and repetitive behavior, typically diagnosed during early childhood and attributed to altered neuronal network connectivity. Several genetic and environmental risk factors contribute to ASD, including pre- or early life immune activation, which can trigger microglial and astroglial reactivity, impacting early neurodevelopment. In ASD, astrocytes show altered glutamate metabolism, directly influencing neuronal network activity, while microglia display impaired synaptic pruning, an essential developmental process for the refinement of neuronal connections. Additionally, reduced myelination in specific cortical and subcortical regions may affect brain connectivity in ASD, with white matter integrity correlating with the severity of the disorder, suggesting an important role for oligodendrocytes and myelin in ASD. This chapter provides an overview of current literature on the role of neuroglia cells in ASD, with a focus on immune activation, glutamate signaling, synaptic pruning, and myelination.
Collapse
Affiliation(s)
- Vivi M Heine
- Department of Child and Adolescence Psychiatry, Emma Center for Personalized Medicine, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Stephanie Dooves
- Department of Child and Adolescence Psychiatry, Emma Center for Personalized Medicine, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Niu W, Yu S, Li X, Wang Z, Chen R, Michalski C, Jahangiri A, Zohdy Y, Chern JJ, Whitworth TJ, Wang J, Xu J, Zhou Y, Qin Z, Li B, Gambello MJ, Peng J, Wen Z. Longitudinal multi-omics reveals pathogenic TSC2 variants disrupt developmental trajectories of human cortical organoids derived from Tuberous Sclerosis Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617121. [PMID: 39416123 PMCID: PMC11482767 DOI: 10.1101/2024.10.07.617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Tuberous Sclerosis Complex (TSC), an autosomal dominant condition, is caused by heterozygous mutations in either the TSC1 or TSC2 genes, manifesting in systemic growth of benign tumors. In addition to brain lesions, neurologic sequelae represent the greatest morbidity in TSC patients. Investigations utilizing TSC1/2-knockout animal or human stem cell models suggest that TSC deficiency-causing hyper-activation of mTOR signaling might precipitate anomalous neurodevelopmental processes. However, how the pathogenic variants of TSC1/2 genes affect the longitudinal trajectory of human brain development remains largely unexplored. Here, we employed 3-dimensional cortical organoids derived from induced pluripotent stem cells (iPSCs) from TSC patients harboring TSC2 variants, alongside organoids from age- and sex-matched healthy individuals as controls. Through comprehensively longitudinal molecular and cellular analyses of TSC organoids, we found that TSC2 pathogenic variants dysregulate neurogenesis, synaptogenesis, and gliogenesis, particularly for reactive astrogliosis. The altered developmental trajectory of TSC organoids significantly resembles the molecular signatures of neuropsychiatric disorders, including autism spectrum disorders, epilepsy, and intellectual disability. Intriguingly, single cell transcriptomic analyses on TSC organoids revealed that TSC2 pathogenic variants disrupt the neuron/reactive astrocyte crosstalk within the NLGN-NRXN signaling network. Furthermore, cellular and electrophysiological assessments of TSC cortical organoids, along with proteomic analyses of synaptosomes, demonstrated that the TSC2 variants precipitate perturbations in synaptic transmission, neuronal network activity, mitochondrial translational integrity, and neurofilament formation. Notably, similar perturbations were observed in surgically resected cortical specimens from TSC patients. Collectively, our study illustrates that disease-associated TSC2 variants disrupt the neurodevelopmental trajectories through perturbations of gene regulatory networks during early cortical development, leading to mitochondrial dysfunction, aberrant neurofilament formation, impaired synaptic formation and neuronal network activity.
Collapse
Affiliation(s)
- Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- These authors contributed equally
| | - Shaojun Yu
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
- These authors contributed equally
| | - Xiangru Li
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Zhen Wang
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arman Jahangiri
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Youssef Zohdy
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Joshua J Chern
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Ted J Whitworth
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA 30322, USA
| | - Jianjun Wang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
8
|
Wang C, Nagayach A, Patel H, Dao L, Zhu H, Wasylishen AR, Fan Y, Kendler A, Guo Z. Utilizing human cerebral organoids to model breast cancer brain metastasis in culture. Breast Cancer Res 2024; 26:108. [PMID: 38951862 PMCID: PMC11218086 DOI: 10.1186/s13058-024-01865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Metastasis, the spread, and growth of malignant cells at secondary sites within a patient's body, accounts for over 90% of cancer-related mortality. Breast cancer is the most common tumor type diagnosed and the leading cause of cancer lethality in women in the United States. It is estimated that 10-16% breast cancer patients will have brain metastasis. Current therapies to treat patients with breast cancer brain metastasis (BCBM) remain palliative. This is largely due to our limited understanding of the fundamental molecular and cellular mechanisms through which BCBM progresses, which represents a critical barrier for the development of efficient therapies for affected breast cancer patients. METHODS Previous research in BCBM relied on co-culture assays of tumor cells with rodent neural cells or rodent brain slice ex vivo. Given the need to overcome the obstacle for human-relevant host to study cell-cell communication in BCBM, we generated human embryonic stem cell-derived cerebral organoids to co-culture with human breast cancer cell lines. We used MDA-MB-231 and its brain metastatic derivate MDA-MB-231 Br-EGFP, other cell lines of MCF-7, HCC-1806, and SUM159PT. We leveraged this novel 3D co-culture platform to investigate the crosstalk of human breast cancer cells with neural cells in cerebral organoid. RESULTS We found that MDA-MB-231 and SUM159PT breast cancer cells formed tumor colonies in human cerebral organoids. Moreover, MDA-MB-231 Br-EGFP cells showed increased capacity to invade and expand in human cerebral organoids. CONCLUSIONS Our co-culture model has demonstrated a remarkable capacity to discern the brain metastatic ability of human breast cancer cells in cerebral organoids. The generation of BCBM-like structures in organoid will facilitate the study of human tumor microenvironment in culture.
Collapse
Affiliation(s)
- Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Aarti Nagayach
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Harsh Patel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lan Dao
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hui Zhu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Amanda R Wasylishen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ziyuan Guo
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
9
|
Danačíková Š, Straka B, Daněk J, Kořínek V, Otáhal J. In vitro human cell culture models in a bench-to-bedside approach to epilepsy. Epilepsia Open 2024; 9:865-890. [PMID: 38637998 PMCID: PMC11145627 DOI: 10.1002/epi4.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.
Collapse
Affiliation(s)
- Šárka Danačíková
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Barbora Straka
- Neurogenetics Laboratory of the Department of Paediatric Neurology, Second Faculty of MedicineCharles University and Motol University Hospital, Full Member of the ERN EpiCAREPragueCzech Republic
| | - Jan Daněk
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jakub Otáhal
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
10
|
Niu W, Siciliano B, Wen Z. Modeling tuberous sclerosis complex with human induced pluripotent stem cells. World J Pediatr 2024; 20:208-218. [PMID: 35759110 DOI: 10.1007/s12519-022-00576-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder with a birth incidence of 1:6000 in the United States that is characterized by the growth of non-cancerous tumors in multiple organ systems including the brain, kidneys, lungs, and skin. Importantly, TSC is also associated with significant neurological manifestations including epilepsy, TSC-associated neuropsychiatric disorders, intellectual disabilities, and autism spectrum disorder. Mutations in the TSC1 or TSC2 genes are well-established causes of TSC, which lead to TSC1/TSC2 deficiency in organs and hyper-activation of the mammalian target of rapamycin signaling pathway. Animal models have been widely used to study the effect of TSC1/2 genes on the development and function of the brain. Despite considerable progress in understanding the molecular mechanisms underlying TSC in animal models, a human-specific model is urgently needed to investigate the effects of TSC1/2 mutations that are unique to human neurodevelopment. DATA SOURCES Literature reviews and research articles were published in PubMed-indexed journals. RESULTS Human-induced pluripotent stem cells (iPSCs), which capture risk alleles that are identical to their donors and have the capacity to differentiate into virtually any cell type in the human body, pave the way for the empirical study of previously inaccessible biological systems such as the developing human brain. CONCLUSIONS In this review, we present an overview of the recent progress in modeling TSC with human iPSC models, the existing limitations, and potential directions for future research.
Collapse
Affiliation(s)
- Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Benjamin Siciliano
- The Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Rabeling A, Goolam M. Cerebral organoids as an in vitro model to study autism spectrum disorders. Gene Ther 2023; 30:659-669. [PMID: 35790793 DOI: 10.1038/s41434-022-00356-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorders (ASDs) are a set of disorders characterised by social and communication deficits caused by numerous genetic lesions affecting brain development. Progress in ASD research has been hampered by the lack of appropriate models, as both 2D cell culture as well as animal models cannot fully recapitulate the developing human brain or the pathogenesis of ASD. Recently, cerebral organoids have been developed to provide a more accurate, 3D in vitro model of human brain development. Cerebral organoids have been shown to recapitulate the foetal brain gene expression profile, transcriptome, epigenome, as well as disease dynamics of both idiopathic and syndromic ASDs. They are thus an excellent tool to investigate development of foetal stage ASDs, as well as interventions that can reverse or rescue the altered phenotypes observed. In this review, we discuss the development of cerebral organoids, their recent applications in the study of both syndromic and idiopathic ASDs, their use as an ASD drug development platform, as well as limitations of their use in ASD research.
Collapse
Affiliation(s)
- Alexa Rabeling
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
12
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
13
|
Sandhu A, Kumar A, Rawat K, Gautam V, Sharma A, Saha L. Modernising autism spectrum disorder model engineering and treatment via CRISPR-Cas9: A gene reprogramming approach. World J Clin Cases 2023; 11:3114-3127. [PMID: 37274051 PMCID: PMC10237133 DOI: 10.12998/wjcc.v11.i14.3114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
A neurological abnormality called autism spectrum disorder (ASD) affects how a person perceives and interacts with others, leading to social interaction and communication issues. Limited and recurring behavioural patterns are another feature of the illness. Multiple mutations throughout development are the source of the neurodevelopmental disorder autism. However, a well-established model and perfect treatment for this spectrum disease has not been discovered. The rising era of the clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) system can streamline the complexity underlying the pathogenesis of ASD. The CRISPR-Cas9 system is a powerful genetic engineering tool used to edit the genome at the targeted site in a precise manner. The major hurdle in studying ASD is the lack of appropriate animal models presenting the complex symptoms of ASD. Therefore, CRISPR-Cas9 is being used worldwide to mimic the ASD-like pathology in various systems like in vitro cell lines, in vitro 3D organoid models and in vivo animal models. Apart from being used in establishing ASD models, CRISPR-Cas9 can also be used to treat the complexities of ASD. The aim of this review was to summarize and critically analyse the CRISPR-Cas9-mediated discoveries in the field of ASD.
Collapse
Affiliation(s)
- Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| |
Collapse
|
14
|
Wang L, Owusu-Hammond C, Sievert D, Gleeson JG. Stem Cell-Based Organoid Models of Neurodevelopmental Disorders. Biol Psychiatry 2023; 93:622-631. [PMID: 36759260 PMCID: PMC10022535 DOI: 10.1016/j.biopsych.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The past decade has seen an explosion in the identification of genetic causes of neurodevelopmental disorders, including Mendelian, de novo, and somatic factors. These discoveries provide opportunities to understand cellular and molecular mechanisms as well as potential gene-gene and gene-environment interactions to support novel therapies. Stem cell-based models, particularly human brain organoids, can capture disease-associated alleles in the context of the human genome, engineered to mirror disease-relevant aspects of cellular complexity and developmental timing. These models have brought key insights into neurodevelopmental disorders as diverse as microcephaly, autism, and focal epilepsy. However, intrinsic organoid-to-organoid variability, low levels of certain brain-resident cell types, and long culture times required to reach maturity can impede progress. Several recent advances incorporate specific morphogen gradients, mixtures of diverse brain cell types, and organoid engraftment into animal models. Together with nonhuman primate organoid comparisons, mechanisms of human neurodevelopmental disorders are emerging.
Collapse
Affiliation(s)
- Lu Wang
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - Charlotte Owusu-Hammond
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - David Sievert
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - Joseph G Gleeson
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California.
| |
Collapse
|
15
|
Eichmüller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol 2022; 18:661-680. [PMID: 36253568 PMCID: PMC9576133 DOI: 10.1038/s41582-022-00723-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
The current understanding of neurological diseases is derived mostly from direct analysis of patients and from animal models of disease. However, most patient studies do not capture the earliest stages of disease development and offer limited opportunities for experimental intervention, so rarely yield complete mechanistic insights. The use of animal models relies on evolutionary conservation of pathways involved in disease and is limited by an inability to recreate human-specific processes. In vitro models that are derived from human pluripotent stem cells cultured in 3D have emerged as a new model system that could bridge the gap between patient studies and animal models. In this Review, we summarize how such organoid models can complement classical approaches to accelerate neurological research. We describe our current understanding of neurodevelopment and how this process differs between humans and other animals, making human-derived models of disease essential. We discuss different methodologies for producing organoids and how organoids can be and have been used to model neurological disorders, including microcephaly, Zika virus infection, Alzheimer disease and other neurodegenerative disorders, and neurodevelopmental diseases, such as Timothy syndrome, Angelman syndrome and tuberous sclerosis. We also discuss the current limitations of organoid models and outline how organoids can be used to revolutionize research into the human brain and neurological diseases.
Collapse
Affiliation(s)
- Oliver L Eichmüller
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- University of Heidelberg, Heidelberg, Germany
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
16
|
Hussain H, Djurin T, Rodriguez J, Daneelian L, Sundi S, Fadel A, Saadoon Z. Transactivation Response DNA-Binding Protein of 43 (TDP-43) and Glial Cell Roles in Neurological Disorders. Cureus 2022; 14:e30639. [DOI: 10.7759/cureus.30639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
|
17
|
Guo X, Liang M. Metformin alleviates dexamethasone-induced apoptosis by regulating autophagy via AMPK/mTOR/p70S6K in osteoblasts. Exp Cell Res 2022; 415:113120. [PMID: 35341775 DOI: 10.1016/j.yexcr.2022.113120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023]
Abstract
Glucocorticoid (GC)-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis. Osteoblast apoptosis induced by GCs is now considered as a crucial factor for GIOP. Many clinical, in vivo, and in vitro studies have shown that metformin has a beneficial effect on bone metabolism and bone formation. To investigate whether metformin could be used to treat GIOP, we explored the influence of metformin on dexamethasone (Dex)-induced apoptosis of osteoblasts and its underlying mechanisms. In this study, the CCK8 assay was used to determine the optimal metformin concentration and processing time. The expression levels of target proteins were examined by Western blot and immunofluorescence; the expression levels of target genes were tested by quantitative PCR. Apoptotic cells were detected using flow cytometry. Characteristics of autophagy were observed by transmission electron microscopy. An autophagy inhibitor was administered to investigate whether autophagy decreases apoptosis. Sh-AMPK transfection and an mTOR activator were used to investigate the role of AMPK/mTOR signaling in metformin-induced autophagy. The results showed that metformin alleviated Dex-induced apoptosis of osteoblasts accompanied by increased autophagy. Treatment with the autophagy inhibitor 3-methyladenine (3-MA) attenuated the effect of metformin on apoptosis, autophagy, and the AMPK/mTOR/p70S6K signaling pathway. The anti-apoptotic effect of metformin on osteoblasts is associated with the promotion of autophagy. Furthermore, sh-AMPK transfection and the mTOR activator MHY1485 impaired metformin-mediated inhibition of osteoblast apoptosis and promotion of autophagy. The AMPK/mTOR/p70S6K signaling pathway plays a role in metformin-mediated apoptosis suppression and autophagy promotion. In conclusion, metformin can alleviate Dex-induced osteoblast apoptosis by inducing autophagy via the AMPK/mTOR/p70S6K pathway. This study highlights the potential value of metformin in the treatment of GIOP.
Collapse
Affiliation(s)
- Xintong Guo
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Min Liang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China.
| |
Collapse
|
18
|
Lu X, Yang J, Xiang Y. Modeling human neurodevelopmental diseases with brain organoids. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:1. [PMID: 34982276 PMCID: PMC8727646 DOI: 10.1186/s13619-021-00103-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/24/2021] [Indexed: 04/25/2023]
Abstract
Studying the etiology of human neurodevelopmental diseases has long been a challenging task due to the brain's complexity and its limited accessibility. Human pluripotent stem cells (hPSCs)-derived brain organoids are capable of recapitulating various features and functionalities of the human brain, allowing the investigation of intricate pathogenesis of developmental abnormalities. Over the past years, brain organoids have facilitated identifying disease-associated phenotypes and underlying mechanisms for human neurodevelopmental diseases. Integrating with more cutting-edge technologies, particularly gene editing, brain organoids further empower human disease modeling. Here, we review the latest progress in modeling human neurodevelopmental disorders with brain organoids.
Collapse
Affiliation(s)
- Xiaoxiang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiajie Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
19
|
Bhattacharya A, Choi WWY, Muffat J, Li Y. Modeling Developmental Brain Diseases Using Human Pluripotent Stem Cells-Derived Brain Organoids - Progress and Perspective. J Mol Biol 2021; 434:167386. [PMID: 34883115 DOI: 10.1016/j.jmb.2021.167386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Developmental brain diseases encompass a group of conditions resulting from genetic or environmental perturbations during early development. Despite the increased research attention in recent years following recognition of the prevalence of these diseases, there is still a significant lack of knowledge of their etiology and treatment options. The genetic and clinical heterogeneity of these diseases, in addition to the limitations of experimental animal models, contribute to this difficulty. In this regard, the advent of brain organoid technology has provided a new means to study the cause and progression of developmental brain diseases in vitro. Derived from human pluripotent stem cells, brain organoids have been shown to recapitulate key developmental milestones of the early human brain. Combined with technological advancements in genome editing, tissue engineering, electrophysiology, and multi-omics analysis, brain organoids have expanded the frontiers of human neurobiology, providing valuable insight into the cellular and molecular mechanisms of normal and pathological brain development. This review will summarize the current progress of applying brain organoids to model human developmental brain diseases and discuss the challenges that need to be overcome to further advance their utility.
Collapse
Affiliation(s)
- Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Wendy W Y Choi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Julien Muffat
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
20
|
Synaptic Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2021; 22:ijms221810058. [PMID: 34576223 PMCID: PMC8466868 DOI: 10.3390/ijms221810058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disease with serious neurological and mental symptoms, including autism. Mutations in the TSC1/TSC2 genes lead to the overactivation of mTOR signalling, which is also linked to nonsyndromic autism. Our aim was to analyse synaptic pathology in a transgenic model of TSC: two-month-old male B6;129S4-Tsc2tm1Djk/J mice with Tsc2 haploinsufficiency. Significant brain-region-dependent alterations in the expression of several synaptic proteins were identified. The most prominent changes were observed in the immunoreactivity of presynaptic VAMP1/2 (ca. 50% increase) and phospho-synapsin-1 (Ser62/67) (ca. 80% increase). Transmission electron microscopy demonstrated serious ultrastructural abnormalities in synapses such as a blurred structure of synaptic density and a significantly increased number of synaptic vesicles. The impairment of synaptic mitochondrial ultrastructure was represented by excessive elongation, swelling, and blurred crista contours. Polyribosomes in the cytoplasm and swollen Golgi apparatus suggest possible impairment of protein metabolism. Moreover, the delamination of myelin and the presence of vacuolar structures in the cell nucleus were observed. We also report that Tsc2+/- mice displayed increased brain weights and sizes. The behavioural analysis demonstrated the impairment of memory function, as established in the novel object recognition test. To summarise, our data indicate serious synaptic impairment in the brains of male Tsc2+/- mice.
Collapse
|
21
|
Malchow RP, Tchernookova BK, Choi JIV, Smith PJS, Kramer RH, Kreitzer MA. Review and Hypothesis: A Potential Common Link Between Glial Cells, Calcium Changes, Modulation of Synaptic Transmission, Spreading Depression, Migraine, and Epilepsy-H . Front Cell Neurosci 2021; 15:693095. [PMID: 34539347 PMCID: PMC8446203 DOI: 10.3389/fncel.2021.693095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
There is significant evidence to support the notion that glial cells can modulate the strength of synaptic connections between nerve cells, and it has further been suggested that alterations in intracellular calcium are likely to play a key role in this process. However, the molecular mechanism(s) by which glial cells modulate neuronal signaling remains contentiously debated. Recent experiments have suggested that alterations in extracellular H+ efflux initiated by extracellular ATP may play a key role in the modulation of synaptic strength by radial glial cells in the retina and astrocytes throughout the brain. ATP-elicited alterations in H+ flux from radial glial cells were first detected from Müller cells enzymatically dissociated from the retina of tiger salamander using self-referencing H+-selective microelectrodes. The ATP-elicited alteration in H+ efflux was further found to be highly evolutionarily conserved, extending to Müller cells isolated from species as diverse as lamprey, skate, rat, mouse, monkey and human. More recently, self-referencing H+-selective electrodes have been used to detect ATP-elicited alterations in H+ efflux around individual mammalian astrocytes from the cortex and hippocampus. Tied to increases in intracellular calcium, these ATP-induced extracellular acidifications are well-positioned to be key mediators of synaptic modulation. In this article, we examine the evidence supporting H+ as a key modulator of neurotransmission, review data showing that extracellular ATP elicits an increase in H+ efflux from glial cells, and describe the potential signal transduction pathways involved in glial cell-mediated H+ efflux. We then examine the potential role that extracellular H+ released by glia might play in regulating synaptic transmission within the vertebrate retina, and then expand the focus to discuss potential roles in spreading depression, migraine, epilepsy, and alterations in brain rhythms, and suggest that alterations in extracellular H+ may be a unifying feature linking these disparate phenomena.
Collapse
Affiliation(s)
- Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Boriana K. Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ji-in Vivien Choi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Stritch School of Medicine, Loyola University, Maywood, IL, United States
| | - Peter J. S. Smith
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Richard H. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew A. Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, IN, United States
| |
Collapse
|
22
|
Bassetti D, Luhmann HJ, Kirischuk S. Effects of Mutations in TSC Genes on Neurodevelopment and Synaptic Transmission. Int J Mol Sci 2021; 22:7273. [PMID: 34298906 PMCID: PMC8305053 DOI: 10.3390/ijms22147273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in TSC1 or TSC2 genes are linked to alterations in neuronal function which ultimately lead to the development of a complex neurological phenotype. Here we review current research on the effects that reduction in TSC1 or TSC2 can produce on the developing neural network. A crucial feature of the disease pathophysiology appears to be an early deviation from typical neurodevelopment, in the form of structural abnormalities. Epileptic seizures are one of the primary early manifestation of the disease in the CNS, followed by intellectual deficits and autism spectrum disorders (ASD). Research using mouse models suggests that morphological brain alterations might arise from the interaction of different cellular types, and hyperexcitability in the early postnatal period might be transient. Moreover, the increased excitation-to-inhibition ratio might represent a transient compensatory adjustment to stabilize the developing network rather than a primary factor for the development of ASD symptoms. The inhomogeneous results suggest region-specificity as well as an evolving picture of functional alterations along development. Furthermore, ASD symptoms and epilepsy might originate from different but potentially overlapping mechanisms, which can explain recent observations obtained in patients. Potential treatment is determined not only by the type of medicament, but also by the time point of treatment.
Collapse
Affiliation(s)
- Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (H.J.L.); (S.K.)
| | | | | |
Collapse
|