1
|
Jalilvand A, Kennedy PJ, Loftus J, Collins C, Kellett W, Wahl W, Wisler J. PRE-ADMISSION BARIATRIC SURGERY IS ASSOCIATED WITH REDUCED MORTALITY IN SURGICAL PATIENTS WITH SEPSIS. Shock 2025; 63:844-850. [PMID: 40202402 DOI: 10.1097/shk.0000000000002568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
ABSTRACT Background: Obesity is associated with higher 90-day mortality compared to nonobese surgical patients. Bariatric surgery (BS) can reduce obesity-related comorbidities, even in those with persistent obesity. Objective: Evaluate the impact of prior BS on sepsis outcomes in surgical patients with obesity. Setting: University Hospital, United States. Methods: A single-institution retrospective review of all surgical patients with sepsis (SOFA≥2) was conducted. Patients were grouped into people with obesity and prior BS (OB/BS; n = 48), people with obesity without BS (OB; n = 717), nonobese (NOB; n = 574), and nonobese with prior BS (NOB/BS; n = 27). Demographic data, comorbidities, and sepsis presentation were compared. The primary outcome was cumulative 90-day mortality and survival. Results: Most OB/BS patients underwent gastric bypass <5 years from admission (61%). The OB/BS group was younger, more likely to be female, and transferred from an outside hospital. The mean BMI was highest in the OB/BS group (46.3± 14.7 kg/m 2 , P < 0.0005). Charlson Comorbidity Index was lower in the OB/BS and NOB/BS groups (2 (1-4) and 2 (2-4), respectively, P = 0.0033). Cumulative 90-day mortality was significantly lower in the OB/BS cohort (20.8%, P = 0.002). The OB/BS cohort was more likely to die from intra-abdominal sepsis not amenable to source control (60% vs. 22.5% vs. 22.8% vs. 37.5%, P = 0.04). Compared to the other groups, 90-day survival was highest in the OB/BS cohort (log-rank P < 0.009). Conclusions: This study demonstrated improvement in 90-day survival in OB/BS patients despite higher BMIs. However, this group was more likely to die from intra-abdominal sources, likely reflecting surgical complexity in the setting of prior bypasses.
Collapse
Affiliation(s)
- Anahita Jalilvand
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | | | - John Loftus
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Courtney Collins
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Whitney Kellett
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Wendy Wahl
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Jon Wisler
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| |
Collapse
|
2
|
Zhang X, Yuan W, Li T, Sha H, Hui Z. The Association Between Body Mass Index and 28-day Mortality in Patients With Sepsis: A Retrospective Cohort Study. Am Surg 2025; 91:494-504. [PMID: 39606891 DOI: 10.1177/00031348241304040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
BackgroundSepsis is a severe clinical syndrome with high morbidity and mortality in intensive care units (ICUs). Body Mass Index (BMI) shows a rising trend of obese patients being admitted to ICUs. The relationship between BMI and the clinical outcome of sepsis remains highly debated.MethodsThe data used in this study were sourced from the Intensive Care Information Center IV (MIMIC-IV) database. Baseline information extracted within 24 hours of ICU admission was categorized according to World Health Organization (WHO)'s BMI classifications. A multivariate Cox regression model and curve fitting assessed the independent correlation between BMI and the primary outcome.ResultsA total of 7836 patients were included in the study and categorized into five groups based on BMI. The overall 28-day mortality rate was 21.94% (1719/7836). Class I obesity (17.14%) and class II/III obesity (13.49%) individuals tended to be younger and male. Compared to patients with normal BMI (32.55%), those with low BMI (5.79%) had a 47% increased risk of 28-day mortality (HR 1.47, 95% CI 1.16-1.85, P = 0.0013), while class II/III obesity patients had a 17% lower 28-day mortality rate (HR 0.83, 95% CI 0.71-0.97, P = 0.0218). Curve fitting revealed a nonlinear relationship between BMI and 28-day mortality. The Kaplan-Meier survival analysis highlighted variations in survival rates across the five groups (P = 0.0123), with underweight patients exhibiting poorer survival outcomes.ConclusionIn sepsis patients, a low BMI is related to higher 28-day mortality compared to those with a normal BMI. Conversely, patients with a BMI≥35 kg/m2 have significantly reduced mortality risks.
Collapse
Affiliation(s)
- Xu Zhang
- Yan'an University Affiliated Hospital, Yan'an, China
| | - Weiwei Yuan
- Yan'an University Affiliated Hospital, Yan'an, China
| | - Tingting Li
- Yan'an University Affiliated Hospital, Yan'an, China
| | - Haiwang Sha
- Yan'an University Affiliated Hospital, Yan'an, China
| | - Zhiyan Hui
- Yan'an University Affiliated Hospital, Yan'an, China
| |
Collapse
|
3
|
Fang L, Song Y, Chen J, Ding Y. The dual role of neutrophils in sepsis-associated liver injury. Front Immunol 2025; 16:1538282. [PMID: 40092997 PMCID: PMC11906405 DOI: 10.3389/fimmu.2025.1538282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Sepsis is often accompanied by liver injury and is associated with an increase in the number of circulating and hepatic neutrophils. In sepsis-associated liver injury, neutrophils exhibit phenotypic heterogeneity and perform both pro- and anti-inflammatory functions. Moreover, neutrophil dysfunction and neutrophil-associated immunosuppression are also involved in the pathogenesis of sepsis. Given the complex functionality of this cell type, the aim of this review was to describe the possible mechanistic role of neutrophils in sepsis-associated liver injury, with a brief introduction to neutrophil recruitment and subsequent discussion of the potential contributions of neutrophils to different subtypes of sepsis-associated liver injury.
Collapse
Affiliation(s)
- Lexin Fang
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yu Song
- Department of Hepatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiangtao Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yueping Ding
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Feješ A, Šebeková K, Borbélyová V. Pathophysiological Role of Neutrophil Extracellular Traps in Diet-Induced Obesity and Metabolic Syndrome in Animal Models. Nutrients 2025; 17:241. [PMID: 39861371 PMCID: PMC11768048 DOI: 10.3390/nu17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation. Neutrophils are first to be recruited to sites of inflammation, where they contribute to host defense via phagocytosis, degranulation, and extrusion of neutrophil extracellular traps (NETs). NETs are web-like DNA structures of nuclear or mitochondrial DNA associated with cytosolic antimicrobial proteins. The primary function of NETosis is preventing the dissemination of pathogens. However, neutrophils may occasionally misidentify host molecules as danger-associated molecular patterns, triggering NET formation. This can lead to further recruitment of neutrophils, resulting in propagation and a vicious cycle of persistent systemic inflammation. This scenario may occur when neutrophils infiltrate expanded obese adipose tissue. Thus, NETosis is implicated in the pathophysiology of autoimmune and metabolic disorders, including obesity. This review explores the role of NETosis in obesity and two obesity-associated conditions-hypertension and liver steatosis. With the rising prevalence of obesity driving research into its pathophysiology, particularly through diet-induced obesity models in rodents, we discuss insights gained from both human and animal studies. Additionally, we highlight the potential offered by rodent models and the opportunities presented by genetically modified mouse strains for advancing our understanding of obesity-related inflammation.
Collapse
Affiliation(s)
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 83303 Bratislava, Slovakia; (A.F.); (V.B.)
| | | |
Collapse
|
5
|
Liu CY, Yang YS, Pei MQ, He HF. Mendelian randomization analysis reveals causal association of anthropometric measures on sepsis risk and mortality. PLoS One 2024; 19:e0310898. [PMID: 39348397 PMCID: PMC11441680 DOI: 10.1371/journal.pone.0310898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/04/2024] [Indexed: 10/02/2024] Open
Abstract
The objective of this study was to explore the potential causalities of fat mass, nonfat mass and height (henceforth, 'anthropometric measures') with sepsis risk and mortality. We conducted the Mendelian randomization (MR) investigation using genome-wide association study (GWAS) summary statistics of anthropometric measures, sepsis, and sepsis mortality. The GWAS summary data from the UK Biobank was used. Firstly, MR analysis was performed to estimate the causal effect of anthropometric measures on the risk of sepsis. The inverse-variance weighted (IVW) method was utilized as the primary analytical approach, together with weighted median-based method. Cochrane's Q test and MR-Egger intercept test were performed to assess heterogeneity and pleiotropy, respectively. Finally, we performed a series of sensitivity analyses to enhance the precision and veracity of our findings. The IVW method showed that genetically predicted weight-related measures were suggestively linked to an increased risk of sepsis. However, height displayed no causal association with sepsis risk and mortality. Furthermore, weight-related measures also displayed significant MR association with the sepsis mortality, except body nonfat mass and right leg nonfat mass. However, MVMR analysis indicated the observed effects for weight-related measures in the univariable MR analyses are more likely a bias caused by the interrelationship between anthropometric measures. According to the MR-Egger intercept assessment, our MR examination was not influenced by horizontal pleiotropy (all p>0.05). Moreover, the reliability of the estimated causal association was confirmed by the sensitivity analyses. In conclusion, these findings provided vital new knowledge on the role of anthropometric-related measures in the sepsis etiology.
Collapse
Affiliation(s)
- Chu-Yun Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yu-Shen Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Meng-Qin Pei
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
6
|
Jalilvand A, Ireland M, Collins C, Kellett W, Strassel S, Tamer R, Wahl W, Wisler J. Obesity is associated with improved early survival but increased late mortality in surgical patients with Sepsis: A propensity matched analysis. J Trauma Acute Care Surg 2024; 97:233-241. [PMID: 38480496 PMCID: PMC11531704 DOI: 10.1097/ta.0000000000004316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
BACKGROUND While obesity is a risk factor for postoperative complications, its impact following sepsis is unclear. The primary objective of this study was to evaluate the association between obesity and mortality following admission to the surgical intensive care unit (SICU) with sepsis. METHODS We conducted a single center retrospective review of SICU patients grouped into obese (n = 766, body mass index ≥30 kg/m 2 ) and nonobese (n = 574; body mass index, 18-29.9 kg/m 2 ) cohorts. Applying 1:1 propensity matching for age, sex, comorbidities, sequential organ failure assessment, and transfer status, demographic data, comorbidities, and sepsis presentation were compared between groups. Primary outcomes included in-hospital and 90-day mortality, ICU length of stay, need for mechanical ventilation (IMV) and renal replacement therapy (RRT). p < 0.05 was considered significant. RESULTS Obesity associates with higher median ICU length of stay (8.2 vs. 5.6, p < 0.001), need for IMV (76% vs. 67%, p = 0.001), ventilator days (5 vs. 4, p < 0.004), and RRT (23% vs. 12%, p < 0.001). In-hospital (29% vs. 18%, p < 0.0001) and 90-day mortality (34% vs. 24%, p = 0.0006) was higher for obese compared with nonobese groups. Obesity independently predicted need for IMV (odds ratio [OR], 1.6; 95% confidence interval [CI], 1.2-2.1), RRT (OR, 2.2; 95% CI, 1.5-3.1), in-hospital (OR, 2.1; 95% CI, 1.5-2.8), and 90-day mortality (HR, 1.4; 95% CI, 1.1-1.8), after adjusting for sequential organ failure assessment, age, sex, and comorbidities. Comparative survival analyses demonstrate a paradoxical early survival benefit for obese patients followed by a rapid decline after 7 days (logrank p = 0.0009). CONCLUSION Obesity is an independent risk factor for 90-day mortality for surgical patients with sepsis, but its impact appeared later in hospitalization. Understanding differences in systemic responses between these cohorts may be important for optimizing critical care management. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level III.
Collapse
Affiliation(s)
- Anahita Jalilvand
- From the Division of Trauma, Critical Care, and Burn (A.J., C.C., W.K., R.T., W.W., J.W.), Ohio State University, Columbus, Ohio; University Kentucky College of Medicine (M.I.), Lexington, Kentucky; and Atrium Health (S.S.), Charlotte, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ortmann W, Such A, Kolaczkowska E. Impact of microparticles released during murine systemic inflammation on macrophage activity and reactive nitrogen species regulation. Immunol Res 2024; 72:299-319. [PMID: 38008825 PMCID: PMC11031483 DOI: 10.1007/s12026-023-09436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Microparticles (MPs) packaged with numerous bioactive molecules are essential vehicles in cellular communication in various pathological conditions, including systemic inflammation, Whereas MPs are studied mostly upon isolation, their detection in vivo is limited. Impact of MPs might depend on target cell type and cargo they carry; thus herein, we aimed at verifying MPs' impact on macrophages. Unlike neutrophils, monocytes/macrophages are rather inactive during sepsis, and we hypothesized this might be at least partially controlled by MPs. For the above reasons, we focused on the detection of MPs with intravital microscopy (IVM) and report the presence of putative neutrophil-derived MPs in the vasculature of cremaster muscle of endotoxemic mice. Subsequently, we characterized MPs isolated not only from their blood but also from the peritoneal cavity and observed differences in their size, concentration, and cargo. Such MPs were then used to study their impact on RAW 264.7 macrophage cell line performance (cell viability/activity, cytokines, oxygen, and nitrogen reactive species). Addition of MPs to macrophages with or without co-stimulation with lipopolysaccharide did not affect respiratory burst, somewhat decreased mitochondrial activity but increased inducible nitric oxide synthase (iNOS) expression, and NO production especially in case of plasma-derived MPs. The latter MPs carried more iNOS-controlling ceruloplasmin than those discharged into the peritoneal cavity. We conclude that MPs can be detected in vivo with IVM and their cellular origin identified. They are heterogeneous in nature depending on the site of their release. Consequently, microparticles released during systemic inflammation to various body compartments differentially affect macrophages.
Collapse
Affiliation(s)
- Weronika Ortmann
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Krakow, Poland
| | - Anna Such
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Krakow, Poland.
| |
Collapse
|
8
|
Ortmann W, Such A, Cichon I, Baj-Krzyworzeka M, Weglarczyk K, Kolaczkowska E. Large extracellular vesicle (EV) and neutrophil extracellular trap (NET) interaction captured in vivo during systemic inflammation. Sci Rep 2024; 14:4680. [PMID: 38409254 PMCID: PMC10897202 DOI: 10.1038/s41598-024-55081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
Extracellular vesicles (EVs) and neutrophil extracellular traps (NETs) are pivotal bioactive structures involved in various processes including inflammation. Herein we report the interactions between EVs and NETs during murine endotoxemia studied in situ directly in the vasculature (cremaster muscle, liver sinusoids) using intravital microscopy (IVM). We captured NETs and EV release in real time by both non- and polarized neutrophils in liver but not in cremaster vasculature. When comparing numbers of circulating EVs of various origin (nanoparticle tracking analysis-NTA, flow cytometry) with those interacting with endothelium and NETs (IVM) we observed that whereas platelet and monocyte/macrophage-derived EVs dominate in blood and peritoneal lavage, respectively, mostly neutrophil-derived EVs interact with the vascular lining, NETs and leukocytes. Despite the interaction, NETs do not affect EV formation as NET release inhibition did not alter EV release. However, EVs inhibit NETs formation and in particular, erythrocyte-derived EVs downregulate NET release and this effect is mediated via Siglec-E-dependent interactions with neutrophils. Overall, we report that EVs are present in NETs in vivo and they do modulate their release but the process in not bidirectional. Moreover, EVs isolated from body fluids might not reflect their importance in direct endothelial- and leukocyte-related interactions.
Collapse
Affiliation(s)
- Weronika Ortmann
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
| | - Anna Such
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Iwona Cichon
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265 Str, 30-663, Krakow, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265 Str, 30-663, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str, 30-387, Krakow, Poland.
| |
Collapse
|
9
|
Costa SO, Chaves WF, Lopes PKF, Silva IM, Burguer B, Ignácio-Souza LM, Torsoni AS, Milanski M, Rodrigues HG, Desai M, Ross MG, Torsoni MA. Maternal consumption of a high-fat diet modulates the inflammatory response in their offspring, mediated by the M1 muscarinic receptor. Front Immunol 2023; 14:1273556. [PMID: 38193079 PMCID: PMC10773672 DOI: 10.3389/fimmu.2023.1273556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction High-fat diet (HFD) consumption is associated with various metabolic disorders and diseases. Both pre-pregnancy and maternal obesity can have long-term consequences on offspring health. Furthermore, consuming an HFD in adulthood significantly increases the risk of obesity and metabolic disorders. However, an intriguing phenomenon known as the obesity paradox suggests that obesity may confer a protective effect on mortality outcomes in sepsis. In sepsis, activation of the cholinergic anti-inflammatory pathway (CAP) can help mitigate systemic inflammation. We employed a metabolic programming model to explore the relationship between maternal HFD consumption and offspring response to sepsis. Methods We fed female mice either a standard diet (SC) or an HFD during the pre-pregnancy, pregnancy, and lactation periods. Subsequently, we evaluated 28-day-old male offspring. Results Notably, we discovered that offspring from HFD-fed dams (HFD-O) exhibited a higher survival rate compared with offspring from SC-fed dams (SC-O). Importantly, inhibition of the m1 muscarinic acetylcholine receptor (m1mAChR), involved in the CAP, in the hypothalamus abolished this protection. The expression of m1mAChR in the hypothalamus was higher in HFD-O at different ages, peaking on day 28. Treatment with an m1mAChR agonist could modulate the inflammatory response in peripheral tissues. Specifically, CAP activation was greater in the liver of HFD-O following agonist treatment. Interestingly, lipopolysaccharide (LPS) challenge failed to induce a more inflammatory state in HFD-O, in contrast to SC-O, and agonist treatment had no additional effect. Analysis of spleen immune cells revealed a distinct phenotype in HFD-O, characterized by elevated levels of CD4+ lymphocytes rather than CD8+ lymphocytes. Moreover, basal Il17 messenger RNA (mRNA) levels were lower while Il22 mRNA levels were higher in HFD-O, and we observed the same pattern after LPS challenge. Discussion Further examination of myeloid cells isolated from bone marrow and allowed to differentiate showed that HFD-O macrophages displayed an anti-inflammatory phenotype. Additionally, treatment with the m1mAChR agonist contributed to reducing inflammatory marker levels in both groups. In summary, our findings demonstrate that HFD-O are protected against LPS-induced sepsis, and this protection is mediated by the central m1mAChR. Moreover, the inflammatory response in the liver, spleen, and bone marrow-differentiated macrophages is diminished. However, more extensive analysis is necessary to elucidate the specific mechanisms by which m1mAChR modulates the immune response during sepsis.
Collapse
Affiliation(s)
- Suleyma Oliveira Costa
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Wenicios Ferreira Chaves
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Iracema M. Silva
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Beatriz Burguer
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Leticia M. Ignácio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mina Desai
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA, United States
| | - Michael Glenn Ross
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA, United States
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
10
|
Li J, Yin L, Chen S, Li Z, Ding J, Wu J, Yang K, Xu J. The perspectives of NETosis on the progression of obesity and obesity-related diseases: mechanisms and applications. Front Cell Dev Biol 2023; 11:1221361. [PMID: 37649550 PMCID: PMC10465184 DOI: 10.3389/fcell.2023.1221361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a disease commonly associated with urbanization and can also be characterized as a systemic, chronic metabolic condition resulting from an imbalance between energy intake and expenditure. The World Health Organization (WHO) has identified obesity as the most serious chronic disease that is increasingly prevalent in the world population. If left untreated, it can lead to dangerous health issues such as hypertension, hyperglycemia, hyperlipidemia, hyperuricemia, nonalcoholic steatohepatitis, atherosclerosis, and vulnerability to cardiovascular and cerebrovascular events. The specific mechanisms by which obesity affects the development of these diseases can be refined to the effect on immune cells. Existing studies have shown that the development of obesity and its associated diseases is closely related to the balance or lack thereof in the number and function of various immune cells, of which neutrophils are the most abundant immune cells in humans, infiltrating and accumulating in the adipose tissues of obese individuals, whereas NETosis, as a newly discovered type of neutrophil-related cell death, its role in the development of obesity and related diseases is increasingly emphasized. The article reviews the significant role that NETosis plays in the development of obesity and related diseases, such as diabetes and its complications. It discusses the epidemiology and negative impacts of obesity, explains the mechanisms of NETosis, and examines its potential as a targeted drug to treat obesity and associated ailments.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijia Yin
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siyi Chen
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Byun DJ, Lee J, Yu JW, Hyun YM. NLRP3 Exacerbate NETosis-Associated Neuroinflammation in an LPS-Induced Inflamed Brain. Immune Netw 2023; 23:e27. [PMID: 37416934 PMCID: PMC10320420 DOI: 10.4110/in.2023.23.e27] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 07/08/2023] Open
Abstract
Neutrophil extracellular traps (NETs) exert a novel function of trapping pathogens. Released NETs can accumulate in inflamed tissues, be recognized by other immune cells for clearance, and lead to tissue toxicity. Therefore, the deleterious effect of NET is an etiological factor, causing several diseases directly or indirectly. NLR family pyrin domain containing 3 (NLRP3) in neutrophils is pivotal in signaling the innate immune response and is associated with several NET-related diseases. Despite these observations, the role of NLRP3 in NET formation in neuroinflammation remains elusive. Therefore, we aimed to explore NET formation promoted by NLRP3 in an LPS-induced inflamed brain. Wild-type and NLRP3 knockout mice were used to investigate the role of NLRP3 in NET formation. Brain inflammation was systemically induced by administering LPS. In such an environment, the NET formation was evaluated based on the expression of its characteristic indicators. DNA leakage and NET formation were analyzed in both mice through Western blot, flow cytometry, and in vitro live cell imaging as well as two-photon imaging. Our data revealed that NLRP3 promotes DNA leakage and facilitates NET formation accompanied by neutrophil death. Moreover, NLRP3 is not involved in neutrophil infiltration but is predisposed to boost NET formation, which is accompanied by neutrophil death in the LPS-induced inflamed brain. Furthermore, either NLRP3 deficiency or neutrophil depletion diminished pro-inflammatory cytokine, IL-1β, and alleviated blood-brain barrier damage. Overall, the results suggest that NLRP3 exacerbates NETosis in vitro and in the inflamed brain, aggravating neuroinflammation. These findings provide a clue that NLRP3 would be a potential therapeutic target to alleviate neuroinflammation.
Collapse
Affiliation(s)
- Da Jeong Byun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jaeho Lee
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
12
|
The complicated role of neutrophil gasdermin D in sepsis. Blood 2023; 141:449-451. [PMID: 36729549 DOI: 10.1182/blood.2022018875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
13
|
Wang J, Hu Y, Zeng J, Li Q, He L, Hao W, Song X, Yan S, Lv C. Exploring the Causality Between Body Mass Index and Sepsis: A Two-Sample Mendelian Randomization Study. Int J Public Health 2023; 68:1605548. [PMID: 37205044 PMCID: PMC10186272 DOI: 10.3389/ijph.2023.1605548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Objective: Observational epidemiological studies have shown a link between obesity and sepsis, but any causal relationship is not clear. Our study aimed to explore the correlation and causal relationship between body mass index and sepsis by a two-sample Mendelian randomization (MR). Methods: In large sample genome-wide association studies, single-nucleotide polymorphisms related to body mass index were screened as instrumental variables. Three MR methods, MR-Egger regression, weighted median estimator, and inverse variance-weighted, were used to evaluate the causal relationship between body mass index and sepsis. Odds ratio (OR) and 95% confidence interval (CI) were used as the evaluation index of causality, and sensitivity analyses were conducted to assess pleiotropy and instrument validity. Results: By two-sample MR, the inverse variance weighting method results suggested that increased body mass index was associated with an increased risk of sepsis (odds ratio 1.32; 95% CI 1.21-1.44; p = 1.37 × 10-9) and streptococcal septicemia (OR 1.46; 95% CI 1.11-1.91; p = 0.007), but there was no causal relationship with puerperal sepsis (OR, 1.06; 95% CI, 0.87-1.28; p = 0.577). Sensitivity analysis was consistent with the results, and there was no heterogeneity and level of pleiotropy. Conclusion: Our study supports a causal relationship between body mass index and sepsis. Proper control of body mass index may prevent sepsis.
Collapse
Affiliation(s)
- Juntao Wang
- International School of Public Health and One Health, Hainan Medical University, Haikou, Hainan, China
| | - Yanlan Hu
- International School of Public Health and One Health, Hainan Medical University, Haikou, Hainan, China
| | - Jun Zeng
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lanfen He
- International School of Public Health and One Health, Hainan Medical University, Haikou, Hainan, China
| | - Wenjie Hao
- International School of Public Health and One Health, Hainan Medical University, Haikou, Hainan, China
| | - Xingyue Song
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shijiao Yan
- International School of Public Health and One Health, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- *Correspondence: Shijiao Yan, ; Chuanzhu Lv,
| | - Chuanzhu Lv
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
- *Correspondence: Shijiao Yan, ; Chuanzhu Lv,
| |
Collapse
|
14
|
Methods for the Assessment of NET Formation: From Neutrophil Biology to Translational Research. Int J Mol Sci 2022; 23:ijms232415823. [PMID: 36555464 PMCID: PMC9781911 DOI: 10.3390/ijms232415823] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Several studies have indicated that a neutrophil extracellular trap (NET) formation, apart from its role in host defense, can contribute to or drive pathogenesis in a wide range of inflammatory and thrombotic disorders. Therefore, NETs may serve as a therapeutic target or/and a diagnostic tool. Here, we compare the most commonly used techniques for the assessment of NET formation. Furthermore, we review recent data from the literature on the application of basic laboratory tools for detecting NET release and discuss the challenges and the advantages of these strategies in NET evaluation. Taken together, we provide some important insights into the qualitative and quantitative molecular analysis of NETs in translational medicine today.
Collapse
|
15
|
Burczyk G, Cichon I, Kolaczkowska E. Itaconate Suppresses Formation of Neutrophil Extracellular Traps (NETs): Involvement of Hypoxia-Inducible Factor 1α (Hif-1α) and Heme Oxygenase (HO-1). Front Immunol 2022; 13:864638. [PMID: 35837403 PMCID: PMC9273966 DOI: 10.3389/fimmu.2022.864638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/01/2022] [Indexed: 01/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) immobilize pathogens during early stages of systemic inflammation but as the reaction progresses they become detrimental to endothelial cells and the organ-specific cells. For this reason it would be of importance to control their formation by either physiological or pharmacological means. Endogenously, formation of NETs is under control of cellular and whole organism metabolism as shown previously in the course of bacterial systemic inflammation, obesity or the combination of the two. Numerous leukocytes are subjected to immunometabolic regulation and in macrophages exposure to lipopolysaccharide (LPS) leads to two breaks in the Krebs cycle that impact this cell functioning. As a consequence of the first break, anti-microbial itaconic acid (itaconate) is produced whereas the second break activates hypoxia-inducible factor-1α (Hif-1α). In turn, itaconate activates transcription of the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2) which upregulates cyto-protective heme oxygenase (HO-1). Here we report that exogenously added derivative of the itaconic acid, 4-octyl itaconate (4-OI), diminishes formation of NETs by neutrophils of either normal (lean) or obese mice, and independently of the age of the animals or immunoaging. Elucidating the mechanism of this inhibition we unravel that although Nrf2/HO-1 expression itself is not altered by 4-OI, it is up-regulated when compared against the NET formation while Hif-1α is downregulated in 4-OI-pre-treated LPS-stimulated neutrophils in either way. We further show that blockage of Hif-1α by its specific inhibitor diminishes NET release as does inhibition by 4-OI. Also inhibition of HO-1 activity correlates with diminished LPS-induced NET release upon pre-treatment with 4-OI albeit LPS alone induced NETs are not HO-1-dependent. In summary, we unravel that 4-OI inhibits NET formation by murine neutrophils independently of their origin (health vs. metabolically challenged animals) and the age of individuals/immunosenescence via inhibition of Hif-1α and induction of HO-1.
Collapse
|
16
|
Byun DJ, Kim YM, Hyun YM. Real-time observation of neutrophil extracellular trap formation in the inflamed mouse brain via two-photon intravital imaging. Lab Anim Res 2022; 38:16. [PMID: 35698178 PMCID: PMC9190083 DOI: 10.1186/s42826-022-00126-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Intravital imaging via two-photon microscopy (TPM) is a useful tool for observing and delineating biological events at the cellular and molecular levels in live animals in a time-lapse manner. This imaging method provides spatiotemporal information with minimal phototoxicity while penetrating a considerable depth of intact organs in live animals. Although various organs can be visualized using intravital imaging, in the field of neuroscience, the brain is the main organ whose cell-to-cell interactions are imaged using this technique. Intravital imaging of brain disease in mouse models acts as an abundant source of novel findings for studying cerebral etiology. Neutrophil infiltration is a well-known hallmark of inflammation; in particular, the crucial impact of neutrophils on the inflamed brain has frequently been reported in literature. Neutrophil extracellular traps (NETs) have drawn attention as an intriguing feature over the last couple of decades, opening a new era of research on their underlying mechanisms and biological effects. However, the actual role of NETs in the body is still controversial and is in parallel with a poor understanding of NETs in vivo. Although several experimental methods have been used to determine NET generation in vitro, some research groups have applied intravital imaging to detect NET formation in the inflamed organs of live mice. In this review, we summarize the advantages of intravital imaging via TPM that can also be used to characterize NET formation, especially in inflamed brains triggered by systemic inflammation. To study the function and migratory pattern of neutrophils, which is critical in triggering the innate immune response in the brain, intravital imaging via TPM can provide new perspectives to understand inflammation and the resolution process.
Collapse
Affiliation(s)
- Da Jeong Byun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Min Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea. .,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Uribe-Querol E, Rosales C. Neutrophils Actively Contribute to Obesity-Associated Inflammation and Pathological Complications. Cells 2022; 11:1883. [PMID: 35741012 PMCID: PMC9221045 DOI: 10.3390/cells11121883] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is characterized by an increase in body weight associated with an exaggerated enlargement of the adipose tissue. Obesity has serious negative effects because it is associated with multiple pathological complications such as type 2 diabetes mellitus, cardiovascular diseases, cancer, and COVID-19. Nowadays, 39% of the world population is obese or overweight, making obesity the 21st century epidemic. Obesity is also characterized by a mild, chronic, systemic inflammation. Accumulation of fat in adipose tissue causes stress and malfunction of adipocytes, which then initiate inflammation. Next, adipose tissue is infiltrated by cells of the innate immune system. Recently, it has become evident that neutrophils, the most abundant leukocytes in blood, are the first immune cells infiltrating the adipose tissue. Neutrophils then get activated and release inflammatory factors that recruit macrophages and other immune cells. These immune cells, in turn, perpetuate the inflammation state by producing cytokines and chemokines that can reach other parts of the body, creating a systemic inflammatory condition. In this review, we described the recent findings on the role of neutrophils during obesity and the initiation of inflammation. In addition, we discuss the involvement of neutrophils in the generation of obesity-related complications using diabetes as a prime example.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
18
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, Al-Harcan NAH, Alexiou A, Batiha GES. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int Immunopharmacol 2022; 104:108516. [PMID: 35032828 PMCID: PMC8733219 DOI: 10.1016/j.intimp.2021.108516] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is a worldwide infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). In severe SARS-CoV-2 infection, there is severe inflammatory reactions due to neutrophil recruitments and infiltration in the different organs with the formation of neutrophil extracellular traps (NETs), which involved various complications of SARS-CoV-2 infection. Therefore, the objective of the present review was to explore the potential role of NETs in the pathogenesis of SARS-CoV-2 infection and to identify the targeting drugs against NETs in Covid-19 patients. Different enzyme types are involved in the formation of NETs, such as neutrophil elastase (NE), which degrades nuclear protein and release histones, peptidyl arginine deiminase type 4 (PADA4), which releases chromosomal DNA and gasdermin D, which creates pores in the NTs cell membrane that facilitating expulsion of NT contents. Despite of the beneficial effects of NETs in controlling of invading pathogens, sustained formations of NETs during respiratory viral infections are associated with collateral tissue injury. Excessive development of NETs in SARS-CoV-2 infection is linked with the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) due to creation of the NETs-IL-1β loop. Also, aberrant NTs activation alone or through NETs formation may augment SARS-CoV-2-induced cytokine storm (CS) and macrophage activation syndrome (MAS) in patients with severe Covid-19. Furthermore, NETs formation in SARS-CoV-2 infection is associated with immuno-thrombosis and the development of ALI/ARDS. Therefore, anti-NETs therapy of natural or synthetic sources may mitigate SARS-CoV-2 infection-induced exaggerated immune response, hyperinflammation, immuno-thrombosis, and other complications.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad, Iraq
| | | | - Nasser A Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Bagdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia; AFNP Med Austria, Wien, Austria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Al Beheira, Egypt.
| |
Collapse
|
19
|
Pérez-Olivares L, Soehnlein O. Contemporary Lifestyle and Neutrophil Extracellular Traps: An Emerging Link in Atherosclerosis Disease. Cells 2021; 10:1985. [PMID: 34440753 PMCID: PMC8394440 DOI: 10.3390/cells10081985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are networks of extracellular genetic material decorated with proteins of nuclear, granular and cytosolic origin that activated neutrophils expel under pathogenic inflammatory conditions. NETs are part of the host's innate immune defense system against invading pathogens. Interestingly, these extracellular structures can also be released in response to sterile inflammatory stimuli (e.g., shear stress, lipidic molecules, pro-thrombotic factors, aggregated platelets, or pro-inflammatory cytokines), as in atherosclerosis disease. Indeed, NETs have been identified in the intimal surface of diseased arteries under cardiovascular disease conditions, where they sustain inflammation via NET-mediated cell-adhesion mechanisms and promote cellular dysfunction and tissue damage via NET-associated cytotoxicity. This review will focus on (1) the active role of neutrophils and NETs as underestimated players of the inflammatory process during atherogenesis and lesion progression; (2) how these extracellular structures communicate with the main cell types present in the atherosclerotic lesion in the arterial wall; and (3) how these neutrophil effector functions interplay with lifestyle-derived risk factors such as an unbalanced diet, physical inactivity, smoking or lack of sleep quality, which represent major elements in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Laura Pérez-Olivares
- Center for Molecular Biology of Inflammation (ZMBE), Institute for Experimental Pathology (ExPat), Westfälische Wilhelms-Universität (WWU), 48149 Münster, Germany;
| | - Oliver Soehnlein
- Center for Molecular Biology of Inflammation (ZMBE), Institute for Experimental Pathology (ExPat), Westfälische Wilhelms-Universität (WWU), 48149 Münster, Germany;
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, 17165 Stockholm, Sweden
| |
Collapse
|
20
|
Cichon I, Ortmann W, Kolaczkowska E. Metabolic Pathways Involved in Formation of Spontaneous and Lipopolysaccharide-Induced Neutrophil Extracellular Traps (NETs) Differ in Obesity and Systemic Inflammation. Int J Mol Sci 2021; 22:ijms22147718. [PMID: 34299338 PMCID: PMC8303382 DOI: 10.3390/ijms22147718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity manifests itself with low-grade chronic inflammation that shapes immune responses during infection. Albeit obese individuals are at risk of higher mortality due to comorbidities, they are better protected from systemic inflammation. Recently, we showed that in the vasculature of obese mice kept on high-fat diet (HFD), neutrophils produce less neutrophil extracellular traps (NETs) than in lean controls (normal diet, ND). NETs are used by neutrophils to counteract severe infection, but they also cause collateral damage. Hardly anything is known about metabolic requirements for their formation, especially in the context of obesity and/or sepsis. Thus, we aimed to study the immunometabolism of NET formation by application of ex vivo neutrophil analyses (Seahorse analyzer, selective inhibitors, confocal imaging) and intravital microscopy. The obtained data show that glycolysis and/or pentose phosphate pathway are involved in NETs release by ND neutrophils in both physiological and inflammatory conditions. In contrast, such cells of septic HFD mice utilize these routes only to spontaneously cast NETs, while after secondary ex vivo activation they exhibit so called "exhausted phenotype", which manifests itself in diminished NET release despite high glycolytic potential and flexibility to oxidize fatty acids. Moreover, impact of ATP synthase inhibition on NET formation is revealed. Overall, the study shows that the neutrophil potential to cast NETs depends on both the metabolic and inflammatory state of the individual.
Collapse
|