1
|
Fernezelian D, Rondeau P, Gence L, Diotel N. Telencephalic stab wound injury induces regenerative angiogenesis and neurogenesis in zebrafish: unveiling the role of vascular endothelial growth factor signaling and microglia. Neural Regen Res 2025; 20:2938-2954. [PMID: 39248179 PMCID: PMC11826465 DOI: 10.4103/nrr.nrr-d-23-01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00025/figure1/v/2024-11-26T163120Z/r/image-tiff After brain damage, regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals, suggesting a close link between these processes. However, the mechanisms by which these processes interact are not well understood. In this work, we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury. To this end, we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms. First, using the Tg( fli1:EGFP × mpeg1.1:mCherry ) zebrafish line, which enables visualization of blood vessels and microglia respectively, we analyzed regenerative angiogenesis from 1 to 21 days post-lesion. In parallel, we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry. We found that after brain damage, the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor ( vegfaa and vegfbb ) were increased. At the same time, neural stem cell proliferation was also increased, peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis, along with the recruitment of microglia. Then, through pharmacological manipulation by injecting an anti-angiogenic drug (Tivozanib) or Vegf at the lesion site, we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes, as well as microglial recruitment. Finally, we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis, as previously described, as well as injury-induced angiogenesis. In conclusion, we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process. In addition, we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes. This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.
Collapse
Affiliation(s)
- Danielle Fernezelian
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint Pierre, La Réunion, France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint Pierre, La Réunion, France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint Pierre, La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint Pierre, La Réunion, France
| |
Collapse
|
2
|
Mizoguchi T, Maki A, Nakase Y, Okita M, Minami Y, Fukunaga M, Itoh M. Neurological function is restored post-ischemic stroke in zebrafish, with aging exerting a deleterious effect on its pathology. Brain Res Bull 2025; 221:111225. [PMID: 39864594 DOI: 10.1016/j.brainresbull.2025.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Ischemic stroke (IS) is a pathological condition characterized by the cessation of blood flow due to factors such as thrombosis, inflicting severe damage to the cranial nervous system and resulting in numerous disabilities including memory impairments and hemiplegia. Despite the critical nature of this condition, therapeutic options remain limited, with a pressing challenge being the development of treatments aimed at restoring neurological function. In this study, we leveraged zebrafish, renowned for their exceptional regenerative capabilities, to analyze the pathology of IS and the subsequent recovery process. We induced photothrombosis in the telencephalon utilizing rose bengal and conducted a temporal investigation of changes in cerebral vascular function and learning ability. Our findings revealed that blood flow in young zebrafish was restored approximately 7 days post-IS induction (dpi), with brain function recuperating by 14 dpi. Furthermore, we observed an escalation in the expression of the neural stem marker gene at 3dpi, followed by an upregulation of the differentiated neuron marker at 7 and 14dpi. In the aged IS model, symptoms were exacerbated. While cerebral blood flow was restored in 7 days, similar to young zebrafish, the recovery of learning ability was protracted in aged fish. Moreover, an upregulation of the differentiated neuron marker seen in young fish was not observed in the aged model. Collectively, our analysis of the zebrafish IS model and its comparison with existing rodent models may lay the groundwork for novel IS treatment strategies. Furthermore, the zebrafish IS model may prove beneficial for analyzing the impact of aging on the pathology of IS and the recovery process.
Collapse
Affiliation(s)
- Takamasa Mizoguchi
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayumi Maki
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuno Nakase
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mayu Okita
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuina Minami
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Misa Fukunaga
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Health and Disease Omics Center, Chiba University, Chiba, Japan.
| |
Collapse
|
3
|
Foley T, Thetiot M, Bally-Cuif L. Neural Stem Cell Regulation in Zebrafish. Annu Rev Genet 2024; 58:249-272. [PMID: 39121542 DOI: 10.1146/annurev-genet-111523-101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Neural stem cells (NSCs) are progenitor cell populations generating glial cells and neurons and endowed with long-lasting self-renewal and differentiation potential. While some neural progenitors (NPs) in the embryonic nervous system are also long-lived and match this definition, the term NSC classically refers to such progenitor types in the adult. With the discovery of extensive NSC populations in the adult brain of Danio rerio (zebrafish) and of their high neurogenic activity, including for neuronal regeneration, this model organism has become a powerful tool to characterize and mechanistically dissect NSC properties. On these bases, this article will consider NSCs in the adult zebrafish brain, with a focus on its most extensively characterized domain, the telencephalon (notably its dorsal part, the pallium). Whenever necessary, we will also refer to other brain subdivisions, embryonic processes, and the mouse adult brain, whether for comparative purposes or because more information is available in these other systems.
Collapse
Affiliation(s)
- Tanya Foley
- Zebrafish Neurogenetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Paris, France; , ,
| | - Melina Thetiot
- Zebrafish Neurogenetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Paris, France; , ,
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Paris, France; , ,
| |
Collapse
|
4
|
Chen J, Sanchez-Iranzo H, Diotel N, Rastegar S. Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration. FEBS J 2024; 291:4193-4205. [PMID: 39108082 DOI: 10.1111/febs.17231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024]
Abstract
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
Collapse
Affiliation(s)
- Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Hector Sanchez-Iranzo
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
5
|
Fernezelian D, Pfitsch S, Rastegar S, Diotel N. Mapping the cellular expression patterns of vascular endothelial growth factor aa and bb genes and their receptors in the adult zebrafish brain during constitutive and regenerative neurogenesis. Neural Dev 2024; 19:17. [PMID: 39267104 PMCID: PMC11396322 DOI: 10.1186/s13064-024-00195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024] Open
Abstract
The complex interplay between vascular signaling and neurogenesis in the adult brain remains a subject of intense research. By exploiting the unique advantages of the zebrafish model, in particular the persistent activity of neural stem cells (NSCs) and the remarkable ability to repair brain lesions, we investigated the links between NSCs and cerebral blood vessels. In this study, we first examined the gene expression profiles of vascular endothelial growth factors aa and bb (vegfaa and vegfbb), under physiological and regenerative conditions. Employing fluorescence in situ hybridization combined with immunostaining and histology techniques, we demonstrated the widespread expression of vegfaa and vegfbb across the brain, and showed their presence in neurons, microglia/immune cells, endothelial cells and NSCs. At 1 day post-lesion (dpl), both vegfaa and vegfbb were up-regulated in neurons and microglia/peripheral immune cells (macrophages). Analysis of vegf receptors (vegfr) revealed high expression throughout the brain under homeostatic conditions, with vegfr predominantly expressed in neurons and NSCs and to a lower extent in microglia/immune cells and endothelial cells. These findings were further validated by Vegfr3 and Vegfr4 immunostainings, which showed significant expression in neurogenic radial glial cells.Following brain lesion (1 dpl), while vegfr gene expression remained stable, vegfr transcripts were detected in proliferative cells within the injured parenchyma. Collectively, our results provide a first overview of Vegf/Vegfr signaling in the brain and suggest important roles for Vegf in neurogenesis and regenerative processes.
Collapse
Affiliation(s)
- Danielle Fernezelian
- UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Pierre, La Réunion, France
| | - Sabrina Pfitsch
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Nicolas Diotel
- UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Pierre, La Réunion, France.
| |
Collapse
|
6
|
Savuca A, Curpan AS, Hritcu LD, Buzenchi Proca TM, Balmus IM, Lungu PF, Jijie R, Nicoara MN, Ciobica AS, Solcan G, Solcan C. Do Microplastics Have Neurological Implications in Relation to Schizophrenia Zebrafish Models? A Brain Immunohistochemistry, Neurotoxicity Assessment, and Oxidative Stress Analysis. Int J Mol Sci 2024; 25:8331. [PMID: 39125900 PMCID: PMC11312823 DOI: 10.3390/ijms25158331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The effects of exposure to environmental pollutants on neurological processes are of increasing concern due to their potential to induce oxidative stress and neurotoxicity. Considering that many industries are currently using different types of plastics as raw materials, packaging, or distribution pipes, microplastics (MPs) have become one of the biggest threats to the environment and human health. These consequences have led to the need to raise the awareness regarding MPs negative neurological effects and implication in neuropsychiatric pathologies, such as schizophrenia. The study aims to use three zebrafish models of schizophrenia obtained by exposure to ketamine (Ket), methionine (Met), and their combination to investigate the effects of MP exposure on various nervous system structures and the possible interactions with oxidative stress. The results showed that MPs can interact with ketamine and methionine, increasing the severity and frequency of optic tectum lesions, while co-exposure (MP+Met+Ket) resulted in attenuated effects. Regarding oxidative status, we found that all exposure formulations led to oxidative stress, changes in antioxidant defense mechanisms, or compensatory responses to oxidative damage. Met exposure induced structural changes such as necrosis and edema, while paradoxically activating periventricular cell proliferation. Taken together, these findings highlight the complex interplay between environmental pollutants and neurotoxicants in modulating neurotoxicity.
Collapse
Affiliation(s)
- Alexandra Savuca
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Alexandrina-Stefania Curpan
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania;
| | - Teodora Maria Buzenchi Proca
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Petru Fabian Lungu
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Mircea Nicusor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Preclinical Department, Apollonia University, 700511 Iasi, Romania
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| | - Carmen Solcan
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| |
Collapse
|
7
|
Clain J, Couret D, Bringart M, Lecadieu A, Meilhac O, Lefebvre d'Hellencourt C, Diotel N. Metabolic disorders exacerbate the formation of glial scar after stroke. Eur J Neurosci 2024; 59:3009-3029. [PMID: 38576159 DOI: 10.1111/ejn.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Matthieu Bringart
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Arnaud Lecadieu
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Christian Lefebvre d'Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| |
Collapse
|
8
|
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT. Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain. Commun Biol 2024; 7:612. [PMID: 38773256 PMCID: PMC11109250 DOI: 10.1038/s42003-024-06315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking variations in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely "everted" telencephalon, which has confounded comparisons of their brain regions to other vertebrates. Here we combine spatial transcriptomics and single nucleus RNA-sequencing to generate a spatially-resolved transcriptional atlas of the Mchenga conophorus cichlid fish telencephalon. We then compare cell-types and anatomical regions in the cichlid telencephalon with those in amphibians, reptiles, birds, and mammals. We uncover striking transcriptional similarities between cell-types in the fish telencephalon and subpallial, hippocampal, and cortical cell-types in tetrapods, and find support for partial eversion of the teleost telencephalon. Ultimately, our work lends new insights into the organization and evolution of conserved cell-types and regions in the vertebrate forebrain.
Collapse
Affiliation(s)
- Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30329, USA
| | - Cristina M Baker
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
9
|
Pushchina EV, Kapustyanov IA, Kluka GG. Adult Neurogenesis of Teleost Fish Determines High Neuronal Plasticity and Regeneration. Int J Mol Sci 2024; 25:3658. [PMID: 38612470 PMCID: PMC11012045 DOI: 10.3390/ijms25073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
Studying the properties of neural stem progenitor cells (NSPCs) in a fish model will provide new information about the organization of neurogenic niches containing embryonic and adult neural stem cells, reflecting their development, origin cell lines and proliferative dynamics. Currently, the molecular signatures of these populations in homeostasis and repair in the vertebrate forebrain are being intensively studied. Outside the telencephalon, the regenerative plasticity of NSPCs and their biological significance have not yet been practically studied. The impressive capacity of juvenile salmon to regenerate brain suggests that most NSPCs are likely multipotent, as they are capable of replacing virtually all cell lineages lost during injury, including neuroepithelial cells, radial glia, oligodendrocytes, and neurons. However, the unique regenerative profile of individual cell phenotypes in the diverse niches of brain stem cells remains unclear. Various types of neuronal precursors, as previously shown, are contained in sufficient numbers in different parts of the brain in juvenile Pacific salmon. This review article aims to provide an update on NSPCs in the brain of common models of zebrafish and other fish species, including Pacific salmon, and the involvement of these cells in homeostatic brain growth as well as reparative processes during the postraumatic period. Additionally, new data are presented on the participation of astrocytic glia in the functioning of neural circuits and animal behavior. Thus, from a molecular aspect, zebrafish radial glia cells are seen to be similar to mammalian astrocytes, and can therefore also be referred to as astroglia. However, a question exists as to if zebrafish astroglia cells interact functionally with neurons, in a similar way to their mammalian counterparts. Future studies of this fish will complement those on rodents and provide important information about the cellular and physiological processes underlying astroglial function that modulate neural activity and behavior in animals.
Collapse
Affiliation(s)
- Evgeniya Vladislavovna Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (I.A.K.); (G.G.K.)
| | | | | |
Collapse
|
10
|
Napoli AJ, Laderwager S, Zoodsma JD, Biju B, Mucollari O, Schubel SK, Aprea C, Sayed A, Morgan K, Napoli A, Flanagan S, Wollmuth LP, Sirotkin HI. Developmental loss of NMDA receptors results in supernumerary forebrain neurons through delayed maturation of transit-amplifying neuroblasts. Sci Rep 2024; 14:3395. [PMID: 38336823 PMCID: PMC10858180 DOI: 10.1038/s41598-024-53910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Developmental neurogenesis is a tightly regulated spatiotemporal process with its dysregulation implicated in neurodevelopmental disorders. NMDA receptors are glutamate-gated ion channels that are widely expressed in the early nervous system, yet their contribution to neurogenesis is poorly understood. Notably, a variety of mutations in genes encoding NMDA receptor subunits are associated with neurodevelopmental disorders. To rigorously define the role of NMDA receptors in developmental neurogenesis, we used a mutant zebrafish line (grin1-/-) that lacks all NMDA receptors yet survives to 10 days post-fertilization, offering the opportunity to study post-embryonic neurodevelopment in the absence of NMDA receptors. Focusing on the forebrain, we find that these fish have a progressive supernumerary neuron phenotype confined to the telencephalon at the end of embryonic neurogenesis, but which extends to all forebrain regions during postembryonic neurogenesis. This enhanced neuron population does not arise directly from increased numbers or mitotic activity of radial glia cells, the principal neural stem cells. Rather, it stems from a lack of timely maturation of transit-amplifying neuroblasts into post-mitotic neurons, as indicated by a decrease in expression of the ontogenetically-expressed chloride transporter, KCC2. Pharmacological blockade with MK-801 recapitulates the grin1-/- supernumerary neuron phenotype, indicating a requirement for ionotropic signaling. Thus, NMDA receptors are required for suppression of indirect, transit amplifying cell-driven neurogenesis by promoting maturational termination of mitosis. Loss of suppression results in neuronal overpopulation that can fundamentally change brain circuitry and may be a key factor in pathogenesis of neurodevelopmental disorders caused by NMDA receptor dysfunction.
Collapse
Affiliation(s)
- Amalia J Napoli
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Stephanie Laderwager
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Josiah D Zoodsma
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Bismi Biju
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Olgerta Mucollari
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Sarah K Schubel
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Christieann Aprea
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Aaliya Sayed
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Kiele Morgan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Annelysia Napoli
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Stephanie Flanagan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| |
Collapse
|
11
|
Pellegrini E, Fernezelian D, Malleret C, Gueguen MM, Patche-Firmin J, Rastegar S, Meilhac O, Diotel N. Estrogenic regulation of claudin 5 and tight junction protein 1 gene expression in zebrafish: A role on blood-brain barrier? J Comp Neurol 2023; 531:1828-1845. [PMID: 37814509 DOI: 10.1002/cne.25543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/04/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023]
Abstract
The blood-brain barrier (BBB) is a physical interface between the blood and the brain parenchyma, playing key roles in brain homeostasis. In mammals, the BBB is established thanks to tight junctions between cerebral endothelial cells, involving claudin, occludin, and zonula occludens proteins. Estrogens have been documented to modulate BBB permeability. Interestingly, in the brain of zebrafish, the estrogen-synthesizing activity is strong due to the high expression of Aromatase B protein, encoded by the cyp19a1b gene, in radial glial cells (neural stem cells). Given the roles of estrogens in BBB function, we investigated their impact on the expression of genes involved in BBB tight junctions. We treated zebrafish embryos and adult males with 17β-estradiol and observed an increased cerebral expression of tight junction and claudin 5 genes in adult males only. In females, treatment with the nuclear estrogen receptor antagonist (ICI182,780 ) had no impact. Interestingly, telencephalic injuries performed in males decreased tight junction gene expression that was partially reversed with 17β-estradiol. This was further confirmed by extravasation experiments of Evans blue showing that estrogenic treatment limits BBB leakage. We also highlighted the intimate links between endothelial cells and neural stem cells, suggesting that cholesterol and peripheral steroids could be taken up by endothelial cells and used as precursors for estrogen synthesis by neural stem cells. Together, our results show that zebrafish provides an alternative model to further investigate the role of steroids on the expression of genes involved in BBB integrity, both in constitutive and regenerative physiological conditions. The link we described between capillaries endothelial cells and steroidogenic neural cells encourages the use of this model in understanding the mechanisms by which peripheral steroids get into neural tissue and modulate neurogenic activity.
Collapse
Affiliation(s)
- Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, France
| | - Cassandra Malleret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Marie-Madeleine Gueguen
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Jessica Patche-Firmin
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, France
- CHU de La Réunion, Saint-Denis, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, France
| |
Collapse
|
12
|
Pérez-Montes C, Jiménez-Cubides JP, Velasco A, Arévalo R, Santos-Ledo A, García-Macia M. REDOX Balance in Oligodendrocytes Is Important for Zebrafish Visual System Regeneration. Antioxidants (Basel) 2023; 12:2026. [PMID: 38136146 PMCID: PMC10740785 DOI: 10.3390/antiox12122026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Zebrafish (Danio rerio) present continuous growth and regenerate many parts of their body after an injury. Fish oligodendrocytes, microglia and astrocytes support the formation of new connections producing effective regeneration of the central nervous system after a lesion. To understand the role of oligodendrocytes and the signals that mediate regeneration, we use the well-established optic nerve (ON) crush model. We also used sox10 fluorescent transgenic lines to label fully differentiated oligodendrocytes. To quench the effect of reactive oxygen species (ROS), we used the endogenous antioxidant melatonin. Using these tools, we measured ROS production by flow cytometry and explored the regeneration of the optic tectum (OT), the response of oligodendrocytes and their mitochondria by confocal microscopy and Western blot. ROS are produced by oligodendrocytes 3 h after injury and JNK activity is triggered. Concomitantly, there is a decrease in the number of fully differentiated oligodendrocytes in the OT and in their mitochondrial population. By 24 h, oligodendrocytes partially recover. Exposure to melatonin blocks the changes observed in these oligodendrocytes at 3 h and increases their number and their mitochondrial populations after 24 h. Melatonin also blocks JNK upregulation and induces aberrant neuronal differentiation in the OT. In conclusion, a proper balance of ROS is necessary during visual system regeneration and exposure to melatonin has a detrimental impact.
Collapse
Affiliation(s)
- Cristina Pérez-Montes
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Department of Human Anatomy and Histology, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jhoana Paola Jiménez-Cubides
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
| | - Almudena Velasco
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rosario Arévalo
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Adrián Santos-Ledo
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Department of Human Anatomy and Histology, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Salamanca, 37007 Salamanca, Spain
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), 28029 Madrid, Spain
| |
Collapse
|
13
|
Ying C, Zhang J, Zhang H, Gao S, Guo X, Lin J, Wu H, Hong Y. Stem cells in central nervous system diseases: Promising therapeutic strategies. Exp Neurol 2023; 369:114543. [PMID: 37743001 DOI: 10.1016/j.expneurol.2023.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Central nervous system (CNS) diseases are a leading cause of death and disability. Due to CNS neurons have no self-renewal and regenerative ability as they mature, their loss after injury or disease is irreversible and often leads to functional impairments. Unfortunately, therapeutic options for CNS diseases are still limited, and effective treatments for these notorious diseases are warranted to be explored. At present, stem cell therapy has emerged as a potential therapeutic strategy for improving the prognosis of CNS diseases. Accumulating preclinical and clinical evidences have demonstrated that multiple molecular mechanisms, such as cell replacement, immunoregulation and neurotrophic effect, underlie the use of stem cell therapy for CNS diseases. However, several issues have yet to be addressed to support its clinical application. Thus, this review article aims to summarize the role and underlying mechanisms of stem cell therapy in treating CNS diseases. And it is worthy of further evaluation for the potential therapeutic applications of stem cell treatment in CNS disease.
Collapse
Affiliation(s)
- Caidi Ying
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jiahao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haocheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoming Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jun Lin
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yuan Hong
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
14
|
Napoli AJ, Laderwager S, Zoodsma JD, Biju B, Mucollari O, Schubel SK, Aprea C, Sayed A, Morgan K, Napoli A, Flanagan S, Wollmuth LP, Sirotkin HI. Loss of NMDA receptor function during development results in decreased KCC2 expression and increased neurons in the zebrafish forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554812. [PMID: 37786708 PMCID: PMC10541604 DOI: 10.1101/2023.08.25.554812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Developmental neurogenesis is a tightly regulated spatiotemporal process with its dysregulation implicated in neurodevelopmental disorders. NMDA receptors are glutamate-gated ion channels that are widely expressed in the early nervous system, yet their contribution to neurogenesis is poorly understood. Notably, a variety of mutations in genes encoding NMDA receptor subunits are associated with neurodevelopmental disorders. To rigorously define the role of NMDA receptors in developmental neurogenesis, we used a mutant zebrafish line ( grin1 -/- ) that lacks all NMDA receptors yet survives to 10 days post-fertilization, offering the opportunity to study post-embryonic neurodevelopment in the absence of NMDA receptors. Focusing on the forebrain, we find that these fish have a progressive supernumerary neuron phenotype confined to the telencephalon at the end of embryonic neurogenesis, but which extends to all forebrain regions during postembryonic neurogenesis. This enhanced neuron population does not arise directly from increased numbers or mitotic activity of radial glia cells, the principal neural stem cells. Rather, it stems from a lack of timely maturation of transit-amplifying neuroblasts into post-mitotic neurons, as indicated by a decrease in expression of the ontogenetically-expressed chloride transporter, KCC2. Pharmacological blockade with MK-801 recapitulates the grin1 -/- supernumerary neuron phenotype, indicating a requirement for ionotropic signaling. Thus, NMDA receptors are required for suppression of indirect, transit amplifying cell-driven neurogenesis by promoting maturational termination of mitosis. Loss of suppression results in neuronal overpopulation that can fundamentally change brain circuitry and may be a key factor in pathogenesis of neurodevelopmental disorders caused by NMDA receptor dysfunction.
Collapse
|
15
|
Zeng CW, Tsai HJ. The Promising Role of a Zebrafish Model Employed in Neural Regeneration Following a Spinal Cord Injury. Int J Mol Sci 2023; 24:13938. [PMID: 37762240 PMCID: PMC10530783 DOI: 10.3390/ijms241813938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in a wide range of physical impairments and disabilities. Despite the advances in our understanding of the biological response to injured tissue, no effective treatments are available for SCIs at present. Some studies have addressed this issue by exploring the potential of cell transplantation therapy. However, because of the abnormal microenvironment in injured tissue, the survival rate of transplanted cells is often low, thus limiting the efficacy of such treatments. Many studies have attempted to overcome these obstacles using a variety of cell types and animal models. Recent studies have shown the utility of zebrafish as a model of neural regeneration following SCIs, including the proliferation and migration of various cell types and the involvement of various progenitor cells. In this review, we discuss some of the current challenges in SCI research, including the accurate identification of cell types involved in neural regeneration, the adverse microenvironment created by SCIs, attenuated immune responses that inhibit nerve regeneration, and glial scar formation that prevents axonal regeneration. More in-depth studies are needed to fully understand the neural regeneration mechanisms, proteins, and signaling pathways involved in the complex interactions between the SCI microenvironment and transplanted cells in non-mammals, particularly in the zebrafish model, which could, in turn, lead to new therapeutic approaches to treat SCIs in humans and other mammals.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
16
|
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT. Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549873. [PMID: 37503039 PMCID: PMC10370212 DOI: 10.1101/2023.07.20.549873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking differences in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely 'everted' telencephalon, which has made it challenging to compare brain regions in fish to those in other vertebrates. Here we combine spatial transcriptomics and single-nucleus RNA-sequencing to generate a spatially-resolved transcriptional atlas of the cichlid fish telencephalon. We then compare cell-types and anatomical regions in the cichlid telencephalon with those in amphibians, reptiles, birds, and mammals. We uncover striking transcriptional similarities between cell populations in the fish telencephalon and subpallial, hippocampal, and cortical cell populations in tetrapods. Ultimately, our work lends new insights into the organization and evolution of conserved cell-types and regions in the vertebrate forebrain.
Collapse
Affiliation(s)
- Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30329
| | - Cristina M Baker
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
17
|
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2023; 60:923-959. [PMID: 36383328 DOI: 10.1007/s12035-022-03102-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.
Collapse
|
18
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
19
|
Narra SS, Rondeau P, Fernezelian D, Gence L, Ghaddar B, Bourdon E, Lefebvre d'Hellencourt C, Rastegar S, Diotel N. Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair. J Comp Neurol 2022; 531:238-255. [PMID: 36282721 DOI: 10.1002/cne.25421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022]
Abstract
Microglia are macrophage-like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L-plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) or Tg(mpeg1.1:mCherry) fish, we analyzed the distribution of microglia/immune cells in the whole brain. Specific regional differences were evidenced in terms of microglia/immune cell density and morphology (elongated, branched, highly branched, and amoeboid). Taking advantage of Tg(fli:GFP) and Tg(GFAP::GFP) enabling the detection of endothelial cells and neural stem cells (NSCs), we highlighted the association of elongated microglia/immune cells with blood vessels and rounded/amoeboid microglia with NSCs. Second, after telencephalic injury, we showed that L-plastin cells were still abundantly present at 5 days post-lesion (dpl) and were associated with regenerative neurogenesis. Finally, RNA-sequencing analysis from injured telencephalon (5 dpl) confirmed the upregulation of microglia/immune cell markers and highlighted a significant increase of genes involved in oxidative stress (nox2, nrf2a, and gsr). The analysis of antioxidant activities at 5 dpl also revealed an upregulation of superoxide dismutase and persistent H2 O2 generation in the injured telencephalon. Also, microglia/immune cells were shown to be a source of oxidative stress at 5 dpl. Overall, our data provide a better characterization of microglia/immune cell distribution in the healthy zebrafish brain, highlighting some evolutionarily conserved features with mammals. They also emphasize that 5 days after injury, microglia/immune cells are still activated and are associated to a persistent redox imbalance. Together, these data raise the question of the role of oxidative stress in regenerative neurogenesis in zebrafish.
Collapse
Affiliation(s)
- Sai Sandhya Narra
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems‐Biological Information Processing (IBCS‐BIP), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| |
Collapse
|
20
|
Ilie OD, Duta R, Balmus IM, Savuca A, Petrovici A, Nita IB, Antoci LM, Jijie R, Mihai CT, Ciobica A, Nicoara M, Popescu R, Dobrin R, Solcan C, Trifan A, Stanciu C, Doroftei B. Assessing the Neurotoxicity of a Sub-Optimal Dose of Rotenone in Zebrafish ( Danio rerio) and the Possible Neuroactive Potential of Valproic Acid, Combination of Levodopa and Carbidopa, and Lactic Acid Bacteria Strains. Antioxidants (Basel) 2022; 11:2040. [PMID: 36290763 PMCID: PMC9598446 DOI: 10.3390/antiox11102040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is an enigmatic neurodegenerative disorder that is currently the subject of extensive research approaches aiming at deepening the understanding of its etiopathophysiology. Recent data suggest that distinct compounds used either as anticonvulsants or agents usually used as dopaminergic agonists or supplements consisting of live active lactic acid bacteria strains might alleviate and improve PD-related phenotypes. This is why we aimed to elucidate how the administration of rotenone (ROT) disrupts homeostasis and the possible neuroactive potential of valproic acid (VPA), antiparkinsonian agents (levodopa and carbidopa - LEV+CARB), and a mixture of six Lactobacillus and three Bifidobacterium species (PROBIO) might re-establish the optimal internal parameters. ROT causes significant changes in the central nervous system (CNS), notably reduced neurogenesis and angiogenesis, by triggering apoptosis, reflected by the increased expression of PARKIN and PINK1 gene(s), low brain dopamine (DA) levels, and as opposed to LRRK2 and SNCA compared with healthy zebrafish. VPA, LEV/CARB, and PROBIO sustain neurogenesis and angiogenesis, manifesting a neuroprotective role in diminishing the effect of ROT in zebrafish. Interestingly, none of the tested compounds influenced oxidative stress (OS), as reflected by the level of malondialdehyde (MDA) level and superoxide dismutase (SOD) enzymatic activity revealed in non-ROT-exposed zebrafish. Overall, the selected concentrations were enough to trigger particular behavioral patterns as reflected by our parameters of interest (swimming distance (mm), velocity (mm/s), and freezing episodes (s)), but sequential testing is mandatory to decipher whether they exert an inhibitory role following ROT exposure. In this way, we further offer data into how ROT may trigger a PD-related phenotype and the possible beneficial role of VPA, LEV+CARB, and PROBIO in re-establishing homeostasis in Danio rerio.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Raluca Duta
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University, Carol I Avenue, no 11, 700506 Iasi, Romania
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, 20A, 700506 Iasi, Romania
| | - Alexandra Savuca
- Doctoral School of Geosciences, Faculty of Geography-Geology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Adriana Petrovici
- Department of Molecular Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, no 3, 700490 Iasi, Romania
| | - Ilinca-Bianca Nita
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| | - Lucian-Mihai Antoci
- Department of Medical Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Inderdisciplinary Research, “Alexandru Ioan Cuza” University, Carol I Avenue, no 11, 700506 Iasi, Romania
| | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Doctoral School of Geosciences, Faculty of Geography-Geology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Roxana Popescu
- Department of Medical Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
- Department of Medical Genetics, “Saint Mary” Emergency Children’s Hospital, Vasile Lupu Street, no 62, 700309 Iasi, Romania
| | - Romeo Dobrin
- Department of Psychiatry, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| | - Carmen Solcan
- Department of Molecular Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, no 3, 700490 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Independence Avenue, no 1, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Independence Avenue, no 1, 700111 Iasi, Romania
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| |
Collapse
|
21
|
Shenoy A, Banerjee M, Upadhya A, Bagwe-Parab S, Kaur G. The Brilliance of the Zebrafish Model: Perception on Behavior and Alzheimer's Disease. Front Behav Neurosci 2022; 16:861155. [PMID: 35769627 PMCID: PMC9234549 DOI: 10.3389/fnbeh.2022.861155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) has become increasingly prevalent in the elderly population across the world. It's pathophysiological markers such as overproduction along with the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFT) are posing a serious challenge to novel drug development processes. A model which simulates the human neurodegenerative mechanism will be beneficial for rapid screening of potential drug candidates. Due to the comparable neurological network with humans, zebrafish has emerged as a promising AD model. This model has been thoroughly validated through research in aspects of neuronal pathways analogous to the human brain. The cholinergic, glutamatergic, and GABAergic pathways, which play a role in the manifested behavior of the zebrafish, are well defined. There are several behavioral models in both adult zebrafish and larvae to establish various aspects of cognitive impairment including spatial memory, associative memory, anxiety, and other such features that are manifested in AD. The zebrafish model eliminates the shortcomings of previously recognized mammalian models, in terms of expense, extensive assessment durations, and the complexity of imaging the brain to test the efficacy of therapeutic interventions. This review highlights the various models that analyze the changes in the normal behavioral patterns of the zebrafish when exposed to AD inducing agents. The mechanistic pathway adopted by drugs and novel therapeutic strategies can be explored via these behavioral models and their efficacy to slow the progression of AD can be evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
22
|
Ghaddar B, Diotel N. Zebrafish: A New Promise to Study the Impact of Metabolic Disorders on the Brain. Int J Mol Sci 2022; 23:ijms23105372. [PMID: 35628176 PMCID: PMC9141892 DOI: 10.3390/ijms23105372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Zebrafish has become a popular model to study many physiological and pathophysiological processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders, namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative diseases. In this review, we first aim to describe the main metabolic models established in zebrafish to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis with a particular focus on the blood-brain barrier, neuro-inflammation, oxidative stress, cognitive functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory mechanisms to be explored in order to better understand how metabolic disorders can negatively impact neural stem cell activity.
Collapse
|
23
|
mdka Expression Is Associated with Quiescent Neural Stem Cells during Constitutive and Reactive Neurogenesis in the Adult Zebrafish Telencephalon. Brain Sci 2022; 12:brainsci12020284. [PMID: 35204047 PMCID: PMC8870249 DOI: 10.3390/brainsci12020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
In contrast to mammals, adult zebrafish display an extraordinary capacity to heal injuries and repair damage in the central nervous system. Pivotal for the regenerative capacity of the zebrafish brain at adult stages is the precise control of neural stem cell (NSC) behavior and the maintenance of the stem cell pool. The gene mdka, a member of a small family of heparin binding growth factors, was previously shown to be involved in regeneration in the zebrafish retina, heart, and fin. Here, we investigated the expression pattern of the gene mdka and its paralogue mdkb in the zebrafish adult telencephalon under constitutive and regenerative conditions. Our findings show that only mdka expression is specifically restricted to the telencephalic ventricle, a stem cell niche of the zebrafish telencephalon. In this brain region, mdka is particularly expressed in the quiescent stem cells. Interestingly, after brain injury, mdka expression remains restricted to the resting stem cell, which might suggest a role of mdka in regulating stem cell quiescence.
Collapse
|
24
|
Zhang G, Lübke L, Chen F, Beil T, Takamiya M, Diotel N, Strähle U, Rastegar S. Neuron-Radial Glial Cell Communication via BMP/Id1 Signaling Is Key to Long-Term Maintenance of the Regenerative Capacity of the Adult Zebrafish Telencephalon. Cells 2021; 10:cells10102794. [PMID: 34685774 PMCID: PMC8534405 DOI: 10.3390/cells10102794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023] Open
Abstract
The central nervous system of adult zebrafish displays an extraordinary neurogenic and regenerative capacity. In the zebrafish adult brain, this regenerative capacity relies on neural stem cells (NSCs) and the careful management of the NSC pool. However, the mechanisms controlling NSC pool maintenance are not yet fully understood. Recently, Bone Morphogenetic Proteins (BMPs) and their downstream effector Id1 (Inhibitor of differentiation 1) were suggested to act as key players in NSC maintenance under constitutive and regenerative conditions. Here, we further investigated the role of BMP/Id1 signaling in these processes, using different genetic and pharmacological approaches. Our data show that BMPs are mainly expressed by neurons in the adult telencephalon, while id1 is expressed in NSCs, suggesting a neuron-NSC communication via the BMP/Id1 signaling axis. Furthermore, manipulation of BMP signaling by conditionally inducing or repressing BMP signaling via heat-shock, lead to an increase or a decrease of id1 expression in the NSCs, respectively. Induction of id1 was followed by an increase in the number of quiescent NSCs, while knocking down id1 expression caused an increase in NSC proliferation. In agreement, genetic ablation of id1 function lead to increased proliferation of NSCs, followed by depletion of the stem cell pool with concomitant failure to heal injuries in repeatedly injured mutant telencephala. Moreover, pharmacological inhibition of BMP and Notch signaling suggests that the two signaling systems cooperate and converge onto the transcriptional regulator her4.1. Interestingly, brain injury lead to a depletion of NSCs in animals lacking BMP/Id1 signaling despite an intact Notch pathway. Taken together, our data demonstrate how neurons feedback on NSC proliferation and that BMP1/Id1 signaling acts as a safeguard of the NSC pool under regenerative conditions.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Fushun Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Tanja Beil
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 97400 Saint-Denis de La Réunion, France;
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Centre of Organismal Studies, University Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Correspondence: (U.S.); (S.R.)
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Correspondence: (U.S.); (S.R.)
| |
Collapse
|
25
|
Van houcke J, Mariën V, Zandecki C, Vanhunsel S, Moons L, Ayana R, Seuntjens E, Arckens L. Aging impairs the essential contributions of non-glial progenitors to neurorepair in the dorsal telencephalon of the Killifish Nothobranchius furzeri. Aging Cell 2021; 20:e13464. [PMID: 34428340 PMCID: PMC8441397 DOI: 10.1111/acel.13464] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
The aging central nervous system (CNS) of mammals displays progressive limited regenerative abilities. Recovery after loss of neurons is extremely restricted in the aged brain. Many research models fall short in recapitulating mammalian aging hallmarks or have an impractically long lifespan. We established a traumatic brain injury model in the African turquoise killifish (Nothobranchius furzeri), a regeneration‐competent vertebrate that evolved to naturally age extremely fast. Stab‐wound injury of the aged killifish dorsal telencephalon unveils an impaired and incomplete regeneration response when compared to young individuals. In the young adult killifish, brain regeneration is mainly supported by atypical non‐glial progenitors, yet their proliferation capacity clearly declines with age. We identified a high inflammatory response and glial scarring to also underlie the hampered generation of new neurons in aged fish. These primary results will pave the way to unravel the factor age in relation to neurorepair, and to improve therapeutic strategies to restore the injured and/or diseased aged mammalian CNS.
Collapse
Affiliation(s)
- Jolien Van houcke
- Department of Biology Laboratory of Neuroplasticity and Neuroproteomics KU Leuven Leuven Belgium
| | - Valerie Mariën
- Department of Biology Laboratory of Neuroplasticity and Neuroproteomics KU Leuven Leuven Belgium
| | - Caroline Zandecki
- Department of Biology Laboratory of Neuroplasticity and Neuroproteomics KU Leuven Leuven Belgium
- Department of Biology Laboratory of Developmental Neurobiology KU Leuven Leuven Belgium
| | - Sophie Vanhunsel
- Department of Biology Laboratory of Neural Circuit Development and Regeneration KU Leuven Leuven Belgium
| | - Lieve Moons
- Department of Biology Laboratory of Neural Circuit Development and Regeneration KU Leuven Leuven Belgium
- KU Leuven Brain Institute Leuven Belgium
| | - Rajagopal Ayana
- Department of Biology Laboratory of Neuroplasticity and Neuroproteomics KU Leuven Leuven Belgium
- Department of Biology Laboratory of Developmental Neurobiology KU Leuven Leuven Belgium
| | - Eve Seuntjens
- Department of Biology Laboratory of Developmental Neurobiology KU Leuven Leuven Belgium
- KU Leuven Brain Institute Leuven Belgium
| | - Lutgarde Arckens
- Department of Biology Laboratory of Neuroplasticity and Neuroproteomics KU Leuven Leuven Belgium
- KU Leuven Brain Institute Leuven Belgium
| |
Collapse
|
26
|
Gonadotropin Releasing Hormone (Gnrh) Triggers Neurogenesis in the Hypothalamus of Adult Zebrafish. Int J Mol Sci 2021; 22:ijms22115926. [PMID: 34072957 PMCID: PMC8198740 DOI: 10.3390/ijms22115926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, it has been shown in adult mammals that the hypothalamus can generate new cells in response to metabolic changes, and tanycytes, putative descendants of radial glia, can give rise to neurons. Previously we have shown in vitro that neurospheres generated from the hypothalamus of adult zebrafish show increased neurogenesis in response to exogenously applied hormones. To determine whether adult zebrafish have a hormone-responsive tanycyte-like population in the hypothalamus, we characterized proliferative domains within this region. Here we show that the parvocellular nucleus of the preoptic region (POA) labels with neurogenic/tanycyte markers vimentin, GFAP/Zrf1, and Sox2, but these cells are generally non-proliferative. In contrast, Sox2+ proliferative cells in the ventral POA did not express vimentin and GFAP/Zrf1. A subset of the Sox2+ cells co-localized with Fezf2:GFP, a transcription factor important for neuroendocrine cell specification. Exogenous treatments of GnRH and testosterone were assayed in vivo. While the testosterone-treated animals showed no significant changes in proliferation, the GnRH-treated animals showed significant increases in the number of BrdU-labeled cells and Sox2+ cells. Thus, cells in the proliferative domains of the zebrafish POA do not express radial glia (tanycyte) markers vimentin and GFAP/Zrf1, and yet, are responsive to exogenously applied GnRH treatment.
Collapse
|
27
|
Ghaddar B, Bringart M, Lefebvre d'Hellencourt C, Meilhac O, Diotel N. Deleterious Effects of Overfeeding on Brain Homeostasis and Plasticity in Adult Zebrafish. Zebrafish 2021; 18:190-206. [PMID: 34028307 DOI: 10.1089/zeb.2020.1962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Overweight and obesity are worldwide epidemic health threats. They recently emerged as disruptors of brain homeostasis leading to a wide variety of neurologic disorders. This study aims at developing a fast and easy overfeeding model using zebrafish for investigating the impact of overweight on brain homeostasis. We established a 4-week overfeeding protocol using commercially available dry food in an ad libitum-like feeding. In the diet-induced obesity/overweight (DIO) fish model, weight, size, and body mass index were increased compared with controls. Also, DIO fish displayed hyperglycemia, and had higher levels of advanced glycation end products and oxidative stress (4-hydroxynonenal [4-HNE]) in a peripheral organ (tail). Although overfed fish did not display major blood-brain barrier leakage, they showed an increased cerebral oxidative stress, blunted brain cell proliferation as well as a striking decreased locomotor activity. Interestingly, switching from an overfeeding to a normal diet partially improved peripheral and central disruptions induced by overfeeding in solely 2 weeks. As a conclusion, this study provides a rapid and easy overfeeding model in zebrafish with relevant peripheral and central disruptions. This model could open the way for further investigations to better understand by which mechanisms overfeeding could disturb brain homeostasis. It also reinforces and contrasts with another zebrafish overweight model, showing that the type of the food provided could impair differently brain homeostasis.
Collapse
Affiliation(s)
- Batoul Ghaddar
- Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, Saint-Denis, France
| | - Matthieu Bringart
- Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, Saint-Denis, France
| | - Christian Lefebvre d'Hellencourt
- Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, Saint-Denis, France
| | - Olivier Meilhac
- Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, Saint-Denis, France.,CHU de La Réunion, Saint-Denis, France
| | - Nicolas Diotel
- Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, Saint-Denis, France
| |
Collapse
|
28
|
Gourain V, Armant O, Lübke L, Diotel N, Rastegar S, Strähle U. Multi-Dimensional Transcriptome Analysis Reveals Modulation of Cholesterol Metabolism as Highly Integrated Response to Brain Injury. Front Neurosci 2021; 15:671249. [PMID: 34054419 PMCID: PMC8162057 DOI: 10.3389/fnins.2021.671249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Zebrafish is an attractive model to investigate regeneration of the nervous system. Despite major progress in our understanding of the underlying processes, the transcriptomic changes are largely unknown. We carried out a computational analysis of the transcriptome of the regenerating telencephalon integrating changes in the expression of mRNAs, their splice variants and investigated the putative role of regulatory RNAs in the modulation of these transcriptional changes. Profound changes in the expression of genes and their splice variants engaged in many distinct processes were observed. Differential transcription and splicing are important processes in response to injury of the telencephalon. As exemplified by the coordinated regulation of the cholesterol synthesizing enzymes and transporters, the genome responded to injury of the telencephalon in a multi-tiered manner with distinct and interwoven changes in expression of enzymes, transporters and their regulatory molecules. This coordinated genomic response involved a decrease of the mRNA of the key transcription factor SREBF2, induction of microRNAs (miR-182, miR-155, miR-146, miR-31) targeting cholesterol genes, shifts in abundance of splice variants as well as regulation of long non-coding RNAs. Cholesterol metabolism appears to be switched from synthesis to relocation of cholesterol. Based on our in silico analyses, this switch involves complementary and synergistic inputs by different regulatory principles. Our studies suggest that adaptation of cholesterol metabolism is a key process involved in regeneration of the injured zebrafish brain.
Collapse
Affiliation(s)
- Victor Gourain
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,UMR 1064 Centre de Recherche en Transplantation en Immunologie, Nantes, France
| | - Olivier Armant
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, Saint-Paul-Lez-Durance, France
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nicolas Diotel
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien CYROI, Saint-Denis, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,COS, University Heidelberg, Heidelberg, Germany
| |
Collapse
|