1
|
Han NR, Park HJ, Ko SG, Moon PD. Naringenin, a Food Bioactive Compound, Reduces Oncostatin M Through Blockade of PI3K/Akt/NF-κB Signal Pathway in Neutrophil-like Differentiated HL-60 Cells. Foods 2025; 14:102. [PMID: 39796391 PMCID: PMC11719654 DOI: 10.3390/foods14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Oncostatin M (OSM) plays a crucial role in diverse inflammatory reactions. Although the food bioactive compound naringenin (NAR) exerts various useful effects, including antitussive, anti-inflammatory, hepatoprotective, renoprotective, antiarthritic, antitumor, antioxidant, neuroprotective, antidepressant, antinociceptive, antiatherosclerotic, and antidiabetic effects, the modulatory mechanism of NAR on OSM expression in neutrophils has not been specifically reported. In the current work, we studied whether NAR modulates OSM release in neutrophil-like differentiated (d)HL-60 cells. To assess the modulatory effect of NAR, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence assay were employed. While exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF) induced elevated OSM release and mRNA expression, the elevated OSM release and mRNA expression were diminished by the addition of NAR in dHL-60 cells. While the phosphorylation of phosphatidylinositol 3-kinase, protein kinase B (Akt), and nuclear factor (NF)-κB was upregulated by exposure to GM-CSF, the upregulated phosphorylation was inhibited by the addition of NAR in dHL-60 cells. Consequently, the results indicate that the food bioactive compound NAR may have a positive effect on health (in health promotion and improvement) or may play a role in the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Wang G, Liu Z, Zheng Y, Sheng C, Hou X, Yao M, Zong Q, Tang D, Zhou Z, Zhang T, Yang Y. Transcriptomic Analysis of THP-1 Cells Exposed by Monosodium Urate Reveals Key Genes Involved in Gout. Comb Chem High Throughput Screen 2024; 27:2741-2752. [PMID: 37855355 DOI: 10.2174/0113862073262471231011043339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Gout is a common inflammatory arthritis, which is mainly caused by the deposition of monosodium urate (MSU) in tissues. Transcriptomics was used to explore the pathogenesis and treatment of gout in our work. OBJECTIVE The objective of the study was to analyze and validate potential therapeutic targets and biomarkers in THP-1 cells that were exposed to MSU. METHODS THP-1 cells were exposed to MSU. The inflammatory effect was characterized, and RNA-Seq analysis was then carried out. The differential genes obtained by RNA-Seq were analyzed with gene expression omnibus (GEO) series 160170 (GSE160170) gout-related clinical samples in the GEO database and gout-related genes in the GeneCards database. From the three analysis approaches, the genes with significant differences were verified by the differential genes' transcription levels. The interaction relationship of long non-coding RNA (lncRNA) was proposed by ceRNA network analysis. RESULTS MSU significantly promoted the release of IL-1β and IL-18 in THP-1 cells, which aggravated their inflammatory effect. Through RNA-Seq, 698 differential genes were obtained, including 606 differential mRNA and 92 differential `LncRNA. Cross-analysis of the RNA-Seq differential genes, the GSE160170 differential genes, and the gout-related genes in GeneCards revealed a total of 17 genes coexisting in the tripartite data. Furthermore, seven differential genes-C-X-C motif chemokine ligand 8 (CXCL8), C-X-C motif chemokine ligand 2 (CXCL2), tumor necrosis factor (TNF), C-C motif chemokine ligand 3 (CCL3), suppressor of cytokine signaling 3 (SOCS3), oncostatin M (OSM), and MIR22 host gene (MIR22HG)-were verified as key genes that analyzed the weight of genes in pathways, the enrichment of inflammationrelated pathways, and protein-protein interaction (PPI) nodes combined with the expression of genes in RNA-Seq and GSE160170. It is suggested that MIR22HG may regulate OSM and SOCS3 through microRNA 4271 (miR-4271), OSM, and SOCS3m; CCL3 through microRNA 149-3p (miR-149-3p); and CXCL2 through microRNA 4652-3p (miR-4652-3p). CONCLUSION The potential of CXCL8, CXCL2, TNF, CCL3, SOCS3, and OSM as gout biomarkers and MIR22HG as a therapeutic target for gout are proposed, which provide new insights into the mechanisms of gout biomarkers and therapeutic methods.
Collapse
Affiliation(s)
- Guozhen Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Zijia Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuchen Zheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Chao Sheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xiaonan Hou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Mengfei Yao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Qi Zong
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Duo Tang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhixiang Zhou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Tie Zhang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yishu Yang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
3
|
Han L, Yan J, Li T, Lin W, Huang Y, Shen P, Ba X, Huang Y, Qin K, Geng Y, Wang H, Zheng K, Liu Y, Wang Y, Chen Z, Tu S. Multifaceted oncostatin M: novel roles and therapeutic potential of the oncostatin M signaling in rheumatoid arthritis. Front Immunol 2023; 14:1258765. [PMID: 38022540 PMCID: PMC10654622 DOI: 10.3389/fimmu.2023.1258765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a self-immune inflammatory disease characterized by joint damage. A series of cytokines are involved in the development of RA. Oncostatin M (OSM) is a pleiotropic cytokine that primarily activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and other physiological processes such as cell proliferation, inflammatory response, immune response, and hematopoiesis through its receptor complex. In this review, we first describe the characteristics of OSM and its receptor, and the biological functions of OSM signaling. Subsequently, we discuss the possible roles of OSM in the development of RA from clinical and basic research perspectives. Finally, we summarize the progress of clinical studies targeting OSM for the treatment of RA. This review provides researchers with a systematic understanding of the role of OSM signaling in RA, which can guide the development of drugs targeting OSM for the treatment of RA.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinhong Geng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaifeng Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Winstanley-Zarach P, Rot G, Kuba S, Smagul A, Peffers MJ, Tew SR. Analysis of RNA Polyadenylation in Healthy and Osteoarthritic Human Articular Cartilage. Int J Mol Sci 2023; 24:6611. [PMID: 37047586 PMCID: PMC10094766 DOI: 10.3390/ijms24076611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Polyadenylation (polyA) defines the 3' boundary of a transcript's genetic information. Its position can vary and alternative polyadenylation (APA) transcripts can exist for a gene. This causes variance in 3' regulatory domains and can affect coding sequence if intronic events occur. The distribution of polyA sites on articular chondrocyte transcripts has not been studied so we aimed to define their transcriptome-wide location in age-matched healthy and osteoarthritic knee articular cartilage. Total RNA was isolated from frozen tissue samples and analysed using the QuantSeq-Reverse 3' RNA sequencing approach, where each read runs 3' to 5' from within the polyA tail into the transcript and contains a distinct polyA site. Differential expression of transcripts was significant altered between healthy and osteoarthritic samples with enrichment for functionalities that were strongly associated with joint pathology. Subsequent examination of polyA site data allowed us to define the extent of site usage across all the samples. When comparing healthy and osteoarthritic samples, we found that differential use of polyadenylation sites was modest. However, in the genes affected, there was potential for the APA to have functional relevance. We have characterised the polyadenylation landscape of human knee articular chondrocytes and conclude that osteoarthritis does not elicit a widespread change in their polyadenylation site usage. This finding differentiates knee osteoarthritis from pathologies such as cancer where APA is more commonly observed.
Collapse
Affiliation(s)
- Phaedra Winstanley-Zarach
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Gregor Rot
- Institute of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Shweta Kuba
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- School of Health and Life Sciences, National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Aibek Smagul
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Mandy J. Peffers
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Simon R. Tew
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
5
|
Hydrogen Sulfide Downregulates Oncostatin M Expression via PI3K/Akt/NF-κB Signaling Processes in Neutrophil-like Differentiated HL-60 Cells. Antioxidants (Basel) 2023; 12:antiox12020417. [PMID: 36829975 PMCID: PMC9952767 DOI: 10.3390/antiox12020417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The cytokine oncostatin M (OSM) is regarded as a critical mediator in various inflammatory responses. While the gaseous signaling molecule hydrogen sulfide (H2S) plays a role in a variety of pathophysiological conditions, such as hypertension, inflammatory pain, osteoarthritis, ischemic stroke, oxidative stress, retinal degeneration, and inflammatory responses, the underlying mechanism of H2S action on OSM expression in neutrophils needs to be clarified. In this work, we studied how H2S reduces OSM expression in neutrophil-like differentiated (d)HL-60 cells. To evaluate the effects of H2S, sodium hydrosulfide (NaHS, a donor that produces H2S), ELISA, real-time PCR (qPCR), immunoblotting, and immunofluorescence staining were utilized. Although exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF) resulted in upregulated levels of production and mRNA expression of OSM, these upregulated levels were reduced by pretreatment with NaHS in dHL-60 cells. Similarly, the same pretreatment lowered phosphorylated levels of phosphatidylinositol 3-kinase, Akt, and nuclear factor-kB that had been elevated by stimulation with GM-CSF. Overall, our results indicated that H2S could be a therapeutic agent for inflammatory disorders via suppression of OSM.
Collapse
|
6
|
Dynamic compression inhibits cytokine-mediated type II collagen degradation. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100292. [DOI: 10.1016/j.ocarto.2022.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
|
7
|
Advances in Musculoskeletal Cell Therapy: Basic Science and Translational Approaches. Cells 2022; 11:cells11233858. [PMID: 36497116 PMCID: PMC9740932 DOI: 10.3390/cells11233858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Nowadays, the real need in orthopedic research is to strictly validate advanced regenerative medicine approaches in preclinical models, with the hope that this unique and straightforward approach can facilitate a safe and effective translation into everyday clinical practice [...].
Collapse
|
8
|
Bassyouni IH, Elessawi DF, Tawfik MS, Nosseir NM. “Comparative study of serum and synovial fluid Oncostatin M level in rheumatoid arthritis and osteoarthritis patients”. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Henrotin Y. Osteoarthritis in year 2021: biochemical markers. Osteoarthritis Cartilage 2022; 30:237-248. [PMID: 34798278 DOI: 10.1016/j.joca.2021.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To summarize recent scientific advances in protein-derived soluble biomarkers of osteoarthritis. DESIGN A systematic search on the PubMed electronic database of clinical studies on protein-derived soluble biochemical markers of osteoarthritis in humans that were published between January 1st 2020 and March 31th 2021. The studies were selected on the basis of objective criteria and summarized in a table. Then they were described in a narrative review. RESULTS Out of 1971 publications, 48 fulfilled all selection criteria and 16 were selected by the author for the narrative review. The papers were classified according their clinical significance as defined in the BIPEDS classification. Two papers investigated the "burden of disease", two were dedicated to "investigative biomarkers", four papers question the "prognosis", three the "efficacy of treatment" and five the "diagnosis and phenotyping" value of protein-derived biomarkers. CONCLUSIONS Currently, biomarkers research is focused on their use as tools to identify molecular endotypes and clinical phenotypes and to facilitate patient screening and monitoring in clinical trials. This approach should allow a more targeted management of patients suffering from osteoarthritis.
Collapse
Affiliation(s)
- Y Henrotin
- musculoSKeletal Innovative research Lab (mSKIL), Institute of Pathology, Level 5, CHU Sart-Tilman, Center for Interdisciplinary Research on Medicines (CIRM), Department of Motricity Sciences, University of Liège, Belgium; Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium.
| |
Collapse
|
10
|
Ursolic Acid Suppresses Oncostatin M Expression through Blockade of PI3K/Akt/NF-κB Signaling Processes in Neutrophil-like Differentiated HL-60 Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cytokine oncostatin M (OSM) plays an important role in a variety of inflammatory reactions and is mainly produced in neutrophils in inflammatory diseases. While natural pentacyclic triterpenoid ursolic acid (UA) possesses a wide range of beneficial effects, such as anti-oxidant, anti-tumor, and anti-inflammatory, the regulatory processes of OSM suppression by UA in neutrophils are still poorly understood. This study was aimed at examining how UA regulates OSM expression in neutrophil-like differentiated (d)HL-60 cells. Enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and immunoblotting were employed to analyze the effects of UA. Whereas stimulation with granulocyte-macrophage colony-stimulating factor (GM-CSF) led to elevations of OSM production and mRNA expression, these elevations were lowered by treatment with UA in neutrophil-like dHL-60 cells. When the cells were exposed to GM-CSF, phosphorylated levels of phosphatidylinositol 3-kinase, Akt, and nuclear factor-kB were upregulated. However, the upregulations were diminished by treatment with UA in neutrophil-like dHL-60 cells. The results of this study proposed that UA might relieve inflammatory diseases via inhibition of OSM.
Collapse
|
11
|
Han NR, Park HJ, Moon PD. Resveratrol Downregulates Granulocyte-Macrophage Colony-Stimulating Factor-Induced Oncostatin M Production through Blocking of PI3K/Akt/NF-κB Signal Cascade in Neutrophil-like Differentiated HL-60 Cells. Curr Issues Mol Biol 2022; 44:541-549. [PMID: 35723323 PMCID: PMC8928961 DOI: 10.3390/cimb44020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Oncostatin M (OSM) is essential in a wide range of inflammatory responses, and most OSM is produced by neutrophils in respiratory diseases. While resveratrol (RES) is regarded as an anti-inflammatory agent in a variety of conditions, the mechanism of OSM inhibition by RES in neutrophils remains to be elucidated. In this study, we investigated whether RES could inhibit OSM production in neutrophil-like differentiated (d)HL-60 cells. The effects of RES were measured by means of an enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blotting. Increases in production and mRNA expression of OSM resulted from the addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) in neutrophil-like dHL-60 cells; however, these increases were downregulated by RES treatment. Exposure to GM-CSF led to elevations of phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor (NF)-kB. Treatment with RES induced downregulation of the phosphorylated levels of PI3K, Akt, and NF-κB in neutrophil-like dHL-60 cells. These results suggest that RES could be applicable to prevent and/or treat inflammatory disorders through blockade of OSM.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0897
| |
Collapse
|
12
|
Kolluri A, Gopalkrishna P, Josyula VR, Gatta AK, Chakravarthy KP. Comparison of Oncostatin M in Patients with Chronic Periodontitis with and without Diabetes. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2022. [DOI: 10.1590/pboci.2022.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Han NR, Ko SG, Park HJ, Moon PD. Dexamethasone Attenuates Oncostatin M Production via Suppressing of PI3K/Akt/NF-κB Signaling in Neutrophil-like Differentiated HL-60 Cells. Molecules 2021; 27:molecules27010129. [PMID: 35011361 PMCID: PMC8746434 DOI: 10.3390/molecules27010129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Oncostatin M (OSM) plays a role in various inflammatory reactions, and neutrophils are the main source of OSM in pulmonary diseases. However, there is no evidence showing the mechanism of OSM production in neutrophils. While dexamethasone (Dex) has been known to exert anti-inflammatory activity in various fields, the precise mechanisms of OSM downregulation by Dex in neutrophils remain to be determined. Here, we examined how OSM is produced in neutrophil-like differentiated HL-60 cells. Enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot analysis were utilized to assess the potential of Dex. Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation resulted in OSM elevation in neutrophil-like dHL-60 cells. OSM elevation induced by GM-CSF is regulated by phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor (NF)-kB signal cascades. GM-CSF stimulation upregulated phosphorylated levels of PI3K or Akt or NF-κB in neutrophil-like dHL-60 cells. Treatment with Dex decreased OSM levels as well as the phosphorylated levels of PI3K or Akt or NF-κB in neutrophil-like dHL-60 cells. Our findings show the potential of Dex in the treatment of inflammatory diseases via blocking of OSM.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0897
| |
Collapse
|
14
|
Ohwada K, Konno T, Kohno T, Nakano M, Ohkuni T, Miyata R, Kakuki T, Kondoh M, Takano K, Kojima T. Effects of HMGB1 on Tricellular Tight Junctions via TGF-β Signaling in Human Nasal Epithelial Cells. Int J Mol Sci 2021; 22:ijms22168390. [PMID: 34445093 PMCID: PMC8395041 DOI: 10.3390/ijms22168390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/29/2022] Open
Abstract
The airway epithelium of the human nasal mucosa acts as a physical barrier that protects against inhaled substances and pathogens via bicellular and tricellular tight junctions (bTJs and tTJs) including claudins, angulin-1/LSR and tricellulin. High mobility group box-1 (HMGB1) increased by TGF-β1 is involved in the induction of nasal inflammation and injury in patients with allergic rhinitis, chronic rhinosinusitis, and eosinophilic chronic rhinosinusitis. However, the detailed mechanisms by which this occurs remain unknown. In the present study, to investigate how HMGB1 affects the barrier of normal human nasal epithelial cells, 2D and 2.5D Matrigel culture of primary cultured human nasal epithelial cells were pretreated with TGF-β type I receptor kinase inhibitor EW-7197 before treatment with HMGB1. Knockdown of angulin-1/LSR downregulated the epithelial barrier. Treatment with EW-7197 decreased angulin-1/LSR and concentrated the expression at tTJs from bTJs and increased the epithelial barrier. Treatment with a binder to angulin-1/LSR angubindin-1 decreased angulin-1/LSR and the epithelial barrier. Treatment with HMGB1 decreased angulin-1/LSR and the epithelial barrier. In 2.5D Matrigel culture, treatment with HMGB1 induced permeability of FITC-dextran (FD-4) into the lumen. Pretreatment with EW-7197 prevented the effects of HMGB1. HMGB1 disrupted the angulin-1/LSR-dependent epithelial permeability barriers of HNECs via TGF-β signaling in HNECs.
Collapse
Affiliation(s)
- Kizuku Ohwada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (K.O.); (T.K.); (T.K.); (M.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (K.O.); (T.K.); (T.K.); (M.N.)
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (K.O.); (T.K.); (T.K.); (M.N.)
| | - Masaya Nakano
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (K.O.); (T.K.); (T.K.); (M.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Tsuyoshi Ohkuni
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Ryo Miyata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Masuo Kondoh
- Drug Discovery Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan;
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (K.O.); (T.K.); (T.K.); (M.N.)
- Correspondence:
| |
Collapse
|