1
|
Leo IR, Kunold E, Audrey A, Tampere M, Eirich J, Lehtiö J, Jafari R. Functional proteoform group deconvolution reveals a broader spectrum of ibrutinib off-targets. Nat Commun 2025; 16:1948. [PMID: 40000607 PMCID: PMC11862126 DOI: 10.1038/s41467-024-54654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/13/2024] [Indexed: 02/27/2025] Open
Abstract
Proteome-wide profiling has revealed that targeted drugs can have complex protein interaction landscapes. However, it's a challenge to profile drug targets while systematically accounting for the dynamic protein variations that produce populations of multiple proteoforms. We address this problem by combining thermal proteome profiling (TPP) with functional proteoform group detection to refine the target landscape of ibrutinib. In addition to known targets, we implicate additional specific functional proteoform groups linking ibrutinib to mechanisms in immunomodulation and cellular processes like Golgi trafficking, endosomal trafficking, and glycosylation. Further, we identify variability in functional proteoform group profiles in a CLL cohort, linked to treatment status and ex vivo response and resistance. This offers deeper insights into the impacts of functional proteoform groups in a clinical treatment setting and suggests complex biological effects linked to off-target engagement. These results provide a framework for interpreting clinically observed off-target processes and adverse events, highlighting the importance of functional proteoform group-level deconvolution in understanding drug interactions and their functional impacts with potential applications in precision medicine.
Collapse
Affiliation(s)
- Isabelle Rose Leo
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Elena Kunold
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
- Evotec International GmbH, München, Germany
| | - Anastasia Audrey
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Marianna Tampere
- Precision Cancer Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Rozbeh Jafari
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
2
|
Bhardwaj S, Sanjay, Yadav AK. Higher isoform of hnRNPA1 confer Temozolomide resistance in U87MG & LN229 glioma cells. J Neurooncol 2025; 171:47-63. [PMID: 39585598 DOI: 10.1007/s11060-024-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Gliblastoma is a malignant brain tumor; despite available treatment modalities, the tumor reoccurrence rate persist in the currently prescribed Temozolomide chemotherapy. Study aimed to study the inquisitive role of RNA binding splice factor protein hnRNPA1 in promoting glioma resistance against Temozolomide drug and therapeutic insights. METHODS In this study two non-expressing O6-methylguanine-DNA methyltransferase (MGMT) glioma cell lines U87MG & LN229. U87MG cells were grown in Temozolomide from 50μM upto 400μM & LN229 cells grown upto 200μM, till then both these cells acquired Temozolomide resistance. Both of these cells were grown & maintained continously in its highest dose of Temozolomide (TMZ). Splice factor protein SF2/ASF1 was functionally correlated with abundance of hnRNPA1 protein in Temozolomide (TMZ) resistant cells using its specific siRNA transfection approach, in detrmining SF2/ASF1 mediated hnRNPA1 splicing and Temozolomide resistant reversal. RESULTS U87MG TMZ resistance, results an increase in the expression of pre mRNA-splicing factor SF2/ASF1, Heterogeneous Ribonucleoprotein A1 (hnRNPA1) and O6-methylguanine-DNA methyltransferase (MGMT) protein. MGMT expression was not observed in LN229 TMZ resistant cells. Further, mRNA sequencing of hnRNPA1 confirmed the exclusive abundance of its higher isoform in TMZ- resistant cells along with increase in SF2/ASF1 expression. Knocking down of SF2/ASF1 using its specific siRNA reverted the higher isoform of hnRNPA1 isoform Var2 to its lower isoform hnRNPA1 Var1 in U87 TMZ resistant cells, reveals hnRNPA1 alternative higher isoform abundance is SF2/ASF1 splice factor dependent. Additionally, selective knock down of hnRNPA1 higher isoform Var2 in TMZ resistant U87MG & LN229 promotes apoptosis, was further specfically enhanced on Wortmannin (PI3Kinase inhibitor) treatment. CONCLUSION Targeting higher isoform Var2 of hnRNPA1 specifically induces chemosensitization in MGMT expressed Temozolomide resistant U87MG as well as in MGMT non-expressed LN229 TMZ resistant cells.
Collapse
Affiliation(s)
- Sachin Bhardwaj
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India
| | - Sanjay
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India
| | - Ajay Kumar Yadav
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India.
| |
Collapse
|
3
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. Alternative Splicing: A Potential Therapeutic Target in Hematological Malignancies. Hematol Rep 2024; 16:682-697. [PMID: 39584923 PMCID: PMC11587037 DOI: 10.3390/hematolrep16040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Leukemia represents the most prevalent malignancy in children, constituting 30% of childhood cancer cases, with acute lymphoblastic leukemia (ALL) being particularly heterogeneous. This paper explores the role of alternative splicing in leukemia, highlighting its significance in cancer development and progression. Aberrant splicing is often driven by mutations in splicing-factor genes, which can lead to the production of variant proteins that contribute to oncogenesis. The spliceosome, a complex of small nuclear RNAs and proteins, facilitates RNA splicing, a process critical for generating diverse mRNA and protein products from single genes. Mutations in splicing factors, such as U2AF1, SF3B1, SRSF2, ZRSR2, and HNRNPH1, are frequently observed across various hematological malignancies and are associated with poor prognosis and treatment resistance. This research underscores the necessity of understanding the mechanisms of RNA splicing dysregulation in order to develop targeted therapies to correct these aberrant processes, thereby improving outcomes for patients with leukemia and related disorders.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo;
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, North Macedonia;
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
4
|
Xu HX, Li XF, Zhao GL. Comparative Proteomic Analysis Reveals the Effect Mechanisms of Glucose on the Biomass and Phenolic Glycoside Esters Synthesis Activity of Candida Parapsilosis ACCC 20221 Whole-Cell Catalyst. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20140-20152. [PMID: 39198143 DOI: 10.1021/acs.jafc.4c03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
A new Candida parapsilosis ACCC 20221 (C. parapsilosis ACCC 20221) whole-cell catalyst with a high phenolic glycoside esters synthesis activity and large biomass was obtained after culture with glucose. The possible mechanisms were revealed by using comparative proteomics. It found the expression of proteins involved in post-translational modification, protein turnover, and chaperone, and RNA processing and modification was upregulated, which ensured the metabolic balance and accurate translation, correct folding, and post-translational modification of proteins, thus enhancing the production of lipases in C. parapsilosis ACCC 20221 cultured with glucose. Moreover, the glycolysis pathway, tricarboxylic acid cycle, and fatty acids synthesis were enhanced, while the β-oxidation of fatty acids was weakened in C. parapsilosis ACCC 20221 cells cultured with glucose, which led to an increase in energy generation and cell membrane synthesis; thus, large biomass was obtained. In addition, CCE40476.1 and CAC86400.1, which were likely to exert arbutin esters synthesis activity in C. parapsilosis ACCC 20221, were screened, and it was found that vinyl propionate could easily enter the catalytic pocket of CCE40476.1 and form hydrogen bonding interactions with Leu191 and Ser266.
Collapse
Affiliation(s)
- Hai-Xia Xu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiao-Feng Li
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Guang-Lei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Chen Y, Yang L, Wang C, Wang C. Exploring the mechanism of resistance to vincristine in breast cancer cells using transcriptome sequencing technology. Oncol Lett 2023; 26:502. [PMID: 37920438 PMCID: PMC10618930 DOI: 10.3892/ol.2023.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Breast cancer has replaced lung cancer as the leading cancer globally, but various chemotherapy drugs for breast cancer are prone to resistance, especially in patients with distant metastases who are susceptible to multiple chemotherapy drug resistance often leading to treatment failure. Vincristine (VCR) is an alkaloid extracted from Catharanthus roseus, and is often used in combination with other chemotherapy drugs to treat various types of cancer, including breast cancer. Research on the development of resistance to VCR has been carried out using transcriptome sequencing technology. Firstly, gradient increase of VCR concentration was used to produce a VCR-resistant breast cancer cell line. Mechanistically, RNA was extracted from the VCR-resistant breast cancer cell line, and the transcriptome was sequenced. Further analysis showed changes in the expression levels of various genes in the aforementioned VCR-resistant breast cancer cell line. Meanwhile, the analysis of splicing events also indicated a change in variable splicing events. Further validation showed that the expression levels of multiple genes, including interleukin-1β, were altered in the VCR-resistant breast cancer cell line, and these gene expression changes were related to VCR resistance. The results of the present study provide a theoretical basis for exploring the mechanism of VCR resistance clinically.
Collapse
Affiliation(s)
- Yao Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lili Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Changmiao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
6
|
Alaseem AM. Advancements in MDM2 inhibition: Clinical and pre-clinical investigations of combination therapeutic regimens. Saudi Pharm J 2023; 31:101790. [PMID: 37818252 PMCID: PMC10561124 DOI: 10.1016/j.jsps.2023.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Cancer cells often depend on multiple pathways for their growth and survival, resulting in therapeutic resistance and the limited effectiveness of treatments. Combination therapy has emerged as a favorable approach to enhance treatment efficacy and minimize acquired resistance and harmful side effects. The murine double minute 2 (MDM2) protein regulates cellular proliferation and promotes cancer-related activities by negatively regulating the tumor suppressor protein p53. MDM2 aberrations have been reported in a variety of human cancers, making it an appealing target for cancer therapy. As a result, several small-molecule MDM2 inhibitors have been developed and are currently being investigated in clinical studies. Nevertheless, it has been shown that the inhibition of MDM2 alone is inadequate to achieve long-term suppression of tumor growth, thus prompting the need for further investigation into combination therapeutic strategies. In this review, possible clinical and preclinical MDM2 combination inhibitor regimens are thoroughly analyzed and discussed. It provides a rationale for combining MDM2 inhibitors with other therapeutic approaches in the management of cancer, taking into consideration ongoing clinical trials that evaluate the combination of MDM2 inhibitors. The review explores the current status of MDM2 inhibitors in combination with chemotherapy or targeted therapy, as well as promising approach of combining MDM2 inhibitors with immunotherapy. In addition, it investigates the function of PROTACs as MDM2 degraders in cancer treatment. A comprehensive examination of these combination regimens highlights the potential for advancing MDM2-inhibitor therapy and improving clinical outcomes for cancer patients and establishes the foundation for future research and development in this promising area of study.
Collapse
Affiliation(s)
- Ali M. Alaseem
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Maebele LT, Mulaudzi TV, Yasasve M, Dlamini Z, Damane BP. Immunomodulatory Gene-Splicing Dysregulation in Tumorigenesis: Unmasking the Complexity. Molecules 2023; 28:5984. [PMID: 37630236 PMCID: PMC10458946 DOI: 10.3390/molecules28165984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with diverse functionality from a single mRNA transcript. Splicing factors are pivotal in modulating alternative splicing processes but are also subject to regulation. The dysregulation of alternative splicing may result from splicing factor (SF) abnormal expression levels and mutations in the cis and trans-acting elements and small nuclear RNA (snRNA) molecules. Aberrant splicing may generate abnormal mRNA transcripts encoding isoforms with altered functions that contribute to tumorigenesis or cancer progression. This review uncovers the complexity of immunomodulatory genes splicing dysregulation in oncogenesis. Identifying specific immunomodulatory splicing isoforms that contribute to cancer could be utilized to improve current immunotherapeutic drugs or develop novel therapeutic interventions for cancer.
Collapse
Affiliation(s)
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
8
|
Berta D, Girma M, Melku M, Adane T, Birke B, Yalew A. Role of RNA Splicing Mutations in Diffuse Large B Cell Lymphoma. Int J Gen Med 2023; 16:2469-2480. [PMID: 37342407 PMCID: PMC10278864 DOI: 10.2147/ijgm.s414106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Ribonucleic acid splicing is a crucial process to create a mature mRNA molecule by removing introns and ligating exons. This is a highly regulated process, but any alteration in splicing factors, splicing sites, or auxiliary components affects the final products of the gene. In diffuse large B-cell lymphoma, splicing mutations such as mutant splice sites, aberrant alternative splicing, exon skipping, and intron retention are detected. The alteration affects tumor suppression, DNA repair, cell cycle, cell differentiation, cell proliferation, and apoptosis. As a result, malignant transformation, cancer progression, and metastasis occurred in B cells at the germinal center. B-cell lymphoma 7 protein family member A (BCL7A), cluster of differentiation 79B (CD79B), myeloid differentiation primary response gene 88 (MYD88), tumor protein P53 (TP53), signal transducer and activator of transcription (STAT), serum- and glucose-regulated kinase 1 (SGK1), Pou class 2 associating factor 1 (POU2AF1), and neurogenic locus notch homolog protein 1 (NOTCH) are the most common genes affected by splicing mutations in diffuse large B cell lymphoma.
Collapse
Affiliation(s)
- Dereje Berta
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mekonnen Girma
- Department of Quality Assurance and Laboratory Management, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulugeta Melku
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tiruneh Adane
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bisrat Birke
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Aregawi Yalew
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Wang J, Su W, Zhang T, Zhang S, Lei H, Ma F, Shi M, Shi W, Xie X, Di C. Aberrant Cyclin D1 splicing in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2023; 14:244. [PMID: 37024471 PMCID: PMC10079974 DOI: 10.1038/s41419-023-05763-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Cyclin D1 (CCND1), a crucial mediator of cell cycle progression, possesses many mutation types with different mutation frequencies in human cancers. The G870A mutation is the most common mutation in CCND1, which produces two isoforms: full-length CCND1a and divergent C-terminal CCND1b. The dysregulation of the CCND1 isoforms is associated with multiple human cancers. Exploring the molecular mechanism of CCND1 isoforms has offer new insight for cancer treatment. On this basis, the alterations of CCND1 gene are described, including amplification, overexpression, and mutation, especially the G870A mutation. Subsequently, we review the characteristics of CCND1 isoforms caused by G870A mutation. Additionally, we summarize cis-regulatory elements, trans-acting factors, and the splice mutation involved in splicing regulation of CCND1. Furthermore, we highlight the function of CCND1 isoforms in cell cycle, invasion, and metastasis in cancers. Importantly, the clinical role of CCND1 isoforms is also discussed, particularly concerning prognosis, chemotherapy, and radiotherapy. Last, emphasis is given to the corrective strategies that modulate the cancerous CCND1 isoforms. Thus, it is highlighting significance of aberrant isoforms of CCND1 as targets for cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
10
|
Mechanisms of Long Non-Coding RNA in Breast Cancer. Int J Mol Sci 2023; 24:ijms24054538. [PMID: 36901971 PMCID: PMC10002950 DOI: 10.3390/ijms24054538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The landscape of pervasive transcription in eukaryotic genomes has made space for the identification of thousands of transcripts that are difficult to frame in a specific functional category. A new class has been broadly named as long non-coding RNAs (lncRNAs) and shortly defined as transcripts that are longer than 200 nucleotides with no or limited coding potential. So far, about 19,000 lncRNAs genes have been annotated in the human genome (Gencode 41), nearly matching the number of protein-coding genes. A key scientific priority is the functional characterization of lncRNAs, a major challenge in molecular biology that has encouraged many high-throughput efforts. LncRNA studies have been stimulated by the enormous clinical potential that these molecules promise and have been based on the characterization of their expression and functional mechanisms. In this review, we illustrate some of these mechanisms as they have been pictured in the context of breast cancer.
Collapse
|
11
|
Ghazimoradi MH, Karimpour-Fard N, Babashah S. The Promising Role of Non-Coding RNAs as Biomarkers and Therapeutic Targets for Leukemia. Genes (Basel) 2023; 14:131. [PMID: 36672872 PMCID: PMC9859176 DOI: 10.3390/genes14010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Early-stage leukemia identification is crucial for effective disease management and leads to an improvement in the survival of leukemia patients. Approaches based on cutting-edge biomarkers with excellent accuracy in body liquids provide patients with the possibility of early diagnosis with high sensitivity and specificity. Non-coding RNAs have recently received a great deal of interest as possible biomarkers in leukemia due to their participation in crucial oncogenic processes such as proliferation, differentiation, invasion, apoptosis, and their availability in body fluids. Recent studies have revealed a strong correlation between leukemia and the deregulated non-coding RNAs. On this basis, these RNAs are also great therapeutic targets. Based on these advantages, we tried to review the role of non-coding RNAs in leukemia. Here, the significance of several non-coding RNA types in leukemia is highlighted, and their potential roles as diagnostic, prognostic, and therapeutic targets are covered.
Collapse
Affiliation(s)
- Mohammad H. Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Naeim Karimpour-Fard
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
12
|
Bai L, Sun S, Su W, Chen C, Lv Y, Zhang J, Zhao J, Li M, Qi Y, Zhang W, Wang Y. Melatonin inhibits HCC progression through regulating the alternative splicing of NEMO. Front Pharmacol 2022; 13:1007006. [PMID: 36225557 PMCID: PMC9548564 DOI: 10.3389/fphar.2022.1007006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary cancers with limited therapeutic options. Melatonin, a neuroendocrine hormone produced primarily by the pineal gland, demonstrates an anti-cancer effect on a myriad of cancers including HCC. However, whether melatonin could suppress tumor growth through regulating RNA alternative splicing remains largely unknown. Here we demonstrated that melatonin could inhibit the growth of HCC. Mechanistically, melatonin induced transcriptional alterations of genes, which are involved in DNA replication, DNA metabolic process, DNA repair, response to wounding, steroid metabolic process, and extracellular matrix functions. Importantly, melatonin controlled numerous cancer-related RNA alternative splicing events, regulating mitotic cell cycle, microtubule-based process, kinase activity, DNA metabolic process, GTPase regulator activity functions. The regulatory effect of melatonin on alternative splicing is partially mediated by melatonin receptor MT1. Specifically, melatonin regulates the splicing of IKBKG (NEMO), an essential modulator of NF-κB. In brief, melatonin increased the production of the long isoform of NEMO-L with exon 5 inclusion, thereby inhibiting the growth of HepG2 cells. Collectively, our study provides a novel mechanism of melatonin in regulating RNA alternative splicing, and offers a new perspective for melatonin in the inhibition of cancer progression.
Collapse
Affiliation(s)
- Lu Bai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Siwen Sun
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuesheng Lv
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Man Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| |
Collapse
|
13
|
Yang D, Yin J, Shan L, Yi X, Zhang W, Ding Y. Identification of lysine-lactylated substrates in gastric cancer cells. iScience 2022; 25:104630. [PMID: 35800753 PMCID: PMC9253728 DOI: 10.1016/j.isci.2022.104630] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Dawei Yang
- Department of Pharmacy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, China
| | - Jie Yin
- Department of General Surgery, Haian People’s Hospital, Haian, Jiangsu 226600, China
| | - Liuqun Shan
- Department of General Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, China
| | - Xingling Yi
- Micron Biotechnology Co., Ltd., Hangzhou 310051, China
| | - Wei Zhang
- Department of General Surgery, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Corresponding author
| | - Yongbin Ding
- Department of General Surgery, Pukou Branch Hospital of Jiangsu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, Jiangsu 211800, China
- Department of General Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, China
- Corresponding author
| |
Collapse
|
14
|
Kitamura K, Suzuki H, Abe R, Inohara H, Kaneda Y, Takahashi H, Nimura K. Dual function of SF3B2 on chromatin and RNA to regulate transcription in head and neck squamous cell carcinoma. Cell Biosci 2022; 12:92. [PMID: 35715826 PMCID: PMC9206271 DOI: 10.1186/s13578-022-00812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
RNA is spliced concomitantly with transcription and the process is organized by RNA splicing factors, transcriptional regulators, and chromatin regulators. RNA is spliced in close proximity to transcription machinery. Hence, some RNA splicing factors may play a role in transcription. Here, we show that the splicing factor SF3B2 binds to gene regulatory elements and mRNA to modulate transcription and RNA stability in head and neck squamous cell carcinoma cells. High SF3B2 expression leads to poor prognosis in patients with head and neck squamous cell carcinoma and to progression of tumor growth in mice. SF3B2 promotes tumor growth, owing to its involvement in activation of gene expression associated with mitochondrial electron transport and transcription regulatory region DNA binding. SF3B2 is enriched around the promoter element on chromatin and the transcription termination site on RNA. SF3B2 is involved in the regulation of RNA stability. According to the SF3B2-binding profile, SF3B2 regulates RNA polymerase II activity, in addition to regulating RNA splicing. Mechanistically, SF3B2 promotes the binding of structural maintenance of chromosomes 1A and CCCTC-binding factor (CTCF) to the SF3B2-binding genomic regions. SF3B2 also modulates CTCF transcriptional activity. Our findings indicate that SF3B2 has a dual function in both transcription and RNA stability, leading to head and neck squamous cell carcinoma progression.
Collapse
Affiliation(s)
- Koji Kitamura
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, 236-0004, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, 236-0004, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, 236-0004, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Anderson SL, Fasih-Ahmad F, Evans AJ, Rubin BY. Carnosol, a diterpene present in rosemary, increases ELP1 levels in familial Dysautonomia (FD) patient-derived cells and healthy adults: a possible therapy for FD. Hum Mol Genet 2022; 31:3521-3538. [PMID: 35708500 DOI: 10.1093/hmg/ddac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research on Familial Dysautonomia (FD) has focused on the development of therapeutics that facilitate the production of the correctly spliced, exon 20-containing, transcript in cells and individuals bearing the splice-altering, FD-causing, mutation in the ELP1 gene. We report here the ability of carnosol, a diterpene present in plant species of the Lamiaceae family, including rosemary, to enhance the cellular presence of the correctly spliced ELP1 transcript in FD patient-derived fibroblasts by upregulating transcription of the ELP1 gene and correcting the aberrant splicing of the ELP1 transcript. Carnosol treatment also elevates the level of the RBM24 and RBM38 proteins., two multifunctional RNA binding proteins. Transfection-mediated expression of either of these RBMs facilitates the inclusion of exon 20 sequence into the transcript generated from a minigene bearing ELP1 genomic sequence containing the FD-causing mutation. Suppression of the carnosol-mediated induction of either of these RBMs, using targeting siRNAs, limited the carnosol-mediated inclusion of the ELP1 exon 20 sequence. Carnosol treatment of FD patient PBMCs facilitates the inclusion of exon 20 into the ELP1 transcript. Increased levels of the ELP1 and RBM38 transcripts and the alternative splicing of the SIRT2 transcript, a sentinel for exon 20 inclusion in the FD-derived ELP1 transcript, are observed in RNA isolated from whole blood of healthy adults following the ingestion of carnosol-containing rosemary extract. These findings and the excellent safety profile of rosemary together justify an expedited clinical study of the impact of carnosol on the FD patient population.
Collapse
Affiliation(s)
- Sylvia L Anderson
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - Faaria Fasih-Ahmad
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - Anthony J Evans
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - Berish Y Rubin
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
16
|
Small non-coding RNA profiling in breast cancer: plasma U6 snRNA, miR-451a and miR-548b-5p as novel diagnostic and prognostic biomarkers. Mol Biol Rep 2022; 49:1955-1971. [PMID: 34993725 DOI: 10.1007/s11033-021-07010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Breast cancer is a leading cause of cancer-related death in women. Most cases are invasive ductal carcinomas of no special type (NST breast carcinomas). METHODS AND RESULTS In this prospective, multicentric biomarker discovery study, we analyzed the expression of small non-coding RNAs (mainly microRNAs) in plasma by qPCR and evaluated their association with NST breast cancer. Large-scale expression profiling and subsequent validations have been performed in patient and control groups and compared with clinicopathological data. Small nuclear U6 snRNA, miR-548b-5p and miR-451a have been identified as candidate biomarkers. U6 snRNA was remarkably overexpressed in all the validations, miR-548b-5p levels were generally elevated and miR-451a expression was mostly downregulated in breast cancer groups. Combined U6 snRNA/miR-548b-5p signature demonstrated the best diagnostic performance based on the ROC curve analysis with AUC of 0.813, sensitivity 73.1% and specificity 82.6%. There was a trend towards increased expression of both miR-548b-5p and U6 snRNA in more advanced stages. Further, increased miR-548b-5p levels have been partially associated with higher grades, multifocality, Ki-67 positivity, and luminal B rather than luminal A samples. On the other hand, an association has been observed between high miR-451a expression and progesterone receptor positivity, lower grade, unifocal samples, Ki-67-negativity, luminal A rather than luminal B samples as well as improved progression-free survival and overall survival. CONCLUSIONS Our results indicated that U6 snRNA and miR-548b-5p may have pro-oncogenic functions, while miR-451a may act as tumor suppressor in breast cancer.
Collapse
|
17
|
Alternative Splicing, Epigenetic Modifications and Cancer: A Dangerous Triangle, or a Hopeful One? Cancers (Basel) 2022; 14:cancers14030560. [PMID: 35158828 PMCID: PMC8833605 DOI: 10.3390/cancers14030560] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Epigenetics studies the alteration of gene expression without changing DNA sequence and very often, epigenetic dysregulation causes cancer. Alternative splicing is a mechanism that results in the production of several mRNA isoforms from a single gene and aberrant splicing is also a frequent cause of cancer. The present review is built on the interrelations of epigenetics and alternative splicing. In an intuitive way, we say that epigenetic modifications and alternative splicing are at two vertices of a triangle, the third vertex being occupied by cancer. Interconnection between alternative splicing and epigenetic modifications occurs backward and forward and the mechanisms involved are widely reviewed. These connections also provide novel diagnostic or prognostic tools, which are listed. Finally, as epigenetic alterations are reversible and aberrant alternative splicing may be corrected, the therapeutic possibilities to break the triangle are discussed. Abstract The alteration of epigenetic modifications often causes cancer onset and development. In a similar way, aberrant alternative splicing may result in oncogenic products. These issues have often been individually reviewed, but there is a growing body of evidence for the interconnection of both causes of cancer. Actually, aberrant splicing may result from abnormal epigenetic signalization and epigenetic factors may be altered by alternative splicing. In this way, the interrelation between epigenetic marks and alternative splicing form the base of a triangle, while cancer may be placed at the vertex. The present review centers on the interconnections at the triangle base, i.e., between alternative splicing and epigenetic modifications, which may result in neoplastic transformations. The effects of different epigenetic factors, including DNA and histone modifications, the binding of non-coding RNAs and the alterations of chromatin organization on alternative splicing resulting in cancer are first considered. Other less-frequently considered questions, such as the epigenetic regulation of the splicing machinery, the aberrant splicing of epigenetic writers, readers and erasers, etc., are next reviewed in their connection with cancer. The knowledge of the above-mentioned relationships has allowed increasing the collection of biomarkers potentially useful as cancer diagnostic and/or prognostic tools. Finally, taking into account on one hand that epigenetic changes are reversible, and some epigenetic drugs already exist and, on the other hand, that drugs intended for reversing aberrations in alternative splicing, therapeutic possibilities for breaking the mentioned cancer-related triangle are discussed.
Collapse
|
18
|
Chen Z, Chen C, Li L, Zhang T, Wang X. The spliceosome pathway activity correlates with reduced anti-tumor immunity and immunotherapy response, and unfavorable clinical outcomes in pan-cancer. Comput Struct Biotechnol J 2021; 19:5428-5442. [PMID: 34667536 PMCID: PMC8501672 DOI: 10.1016/j.csbj.2021.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations in the spliceosome pathway (SP) have been associated with diverse human cancers. In this study, we explored associations of the SP activity with various clinical features, anti-tumor immune signatures, tumor immunity-related genomic and molecular features, and the response to immunotherapies and targeted therapies in 29 cancer types from The Cancer Genome Atlas (TCGA) database. We showed that the SP activity was an oncogenic signature, as evidenced by its hyperactivation in cancer and invasive cancer subtypes and correlations with unfavorable clinical outcomes and anti-tumor immunosuppression in various cancers. The SP activity showed positive correlations with tumor mutation burden (TMB) and aneuploidy in diverse cancers, suggesting its association with genomic instability. However, the negative association between the SP activity and anti-tumor immune response was independent of its associations with aneuploidy and TMB. Furthermore, we supported that the SP activity had a negative correlation with immunotherapy response in four cancer cohorts treated by immune checkpoint inhibitors. Moreover, elevated SP activity is correlated with increased drug sensitivity for a broad spectrum of anti-tumor targeted therapies. In conclusion, the SP activity is a negative biomarker for anti-tumor immune response, prognosis, and the response to immunotherapeutic and targeted drugs in pan-cancer.
Collapse
Affiliation(s)
- Zuobing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Canping Chen
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Lin Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
19
|
Towards Splicing Therapy for Lysosomal Storage Disorders: Methylxanthines and Luteolin Ameliorate Splicing Defects in Aspartylglucosaminuria and Classic Late Infantile Neuronal Ceroid Lipofuscinosis. Cells 2021; 10:cells10112813. [PMID: 34831035 PMCID: PMC8616534 DOI: 10.3390/cells10112813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Splicing defects caused by mutations in the consensus sequences at the borders of introns and exons are common in human diseases. Such defects frequently result in a complete loss of function of the protein in question. Therapy approaches based on antisense oligonucleotides for specific gene mutations have been developed in the past, but they are very expensive and require invasive, life-long administration. Thus, modulation of splicing by means of small molecules is of great interest for the therapy of genetic diseases resulting from splice-site mutations. Using minigene approaches and patient cells, we here show that methylxanthine derivatives and the food-derived flavonoid luteolin are able to enhance the correct splicing of the AGA mRNA with a splice-site mutation c.128-2A>G in aspartylglucosaminuria, and result in increased AGA enzyme activity in patient cells. Furthermore, we also show that one of the most common disease causing TPP1 gene variants in classic late infantile neuronal ceroid lipofuscinosis may also be amenable to splicing modulation using similar substances. Therefore, our data suggest that splice-modulation with small molecules may be a valid therapy option for lysosomal storage disorders.
Collapse
|
20
|
Kao SY, Nikonova E, Chaabane S, Sabani A, Martitz A, Wittner A, Heemken J, Straub T, Spletter ML. A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle. Cells 2021; 10:2505. [PMID: 34685485 PMCID: PMC8534295 DOI: 10.3390/cells10102505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022] Open
Abstract
The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.
Collapse
Affiliation(s)
- Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Sabrina Chaabane
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Albiona Sabani
- Department of Biology, University of Wisconsin at Madison, 1117 W. Johnson St., Madison, WI 53706, USA;
| | - Alexandra Martitz
- Molecular Nutrition Medicine, Else Kröner-Fresenius Center, Technical University of Munich, 85354 Freising, Germany;
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Jakob Heemken
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Facility, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany;
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| |
Collapse
|
21
|
From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9:biomedicines9050550. [PMID: 34068948 PMCID: PMC8156014 DOI: 10.3390/biomedicines9050550] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Collapse
|