1
|
Neitzel LR, Fuller DT, Cornell J, Rea S, de Aguiar Ferreira C, Williams CH, Hong CC. Inhibition of GPR68 induces ferroptosis and radiosensitivity in diverse cancer cell types. Sci Rep 2025; 15:4074. [PMID: 39900965 PMCID: PMC11791087 DOI: 10.1038/s41598-025-88357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Radioresistance is thought to be a major consequence of tumor milieu acidification resulting from the Warburg effect. Previously, using ogremorphin (OGM), a small molecule inhibitor of GPR68, an extracellular proton sensing receptor, we demonstrated that GPR68 is a key pro-survival pathway in glioblastoma cells. Here, we demonstrate that GPR68 inhibition also induces ferroptosis in lung cell carcinoma (A549) and pancreatic ductal adenocarcinoma (Panc02) cells. Moreover, OGM synergized with ionizing radiation to induce lipid peroxidation, a hallmark of ferroptosis, as well as reduce colony size in 2D and 3D cell culture. GPR68 inhibition is not acutely detrimental but increases intracellular free ferrous iron, which is known to trigger reactive oxygen species (ROS) generation. In summary, GPR68 inhibition induces lipid peroxidation in cancer cells and sensitizes them to ionizing radiation in part through the mobilization of intracellular free ferrous iron. Our results suggest that GPR68 is a key mediator of cancer cell radioresistance activated by acidic tumor microenvironment.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Daniela T Fuller
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
2
|
Chen SY, Wu J, Chen Y, Wang YE, Setayeshpour Y, Federico C, Mestre AA, Lin CC, Chi JT. NINJ1 regulates ferroptosis via xCT antiporter interaction and CoA modulation. Cell Death Dis 2024; 15:755. [PMID: 39424803 PMCID: PMC11489787 DOI: 10.1038/s41419-024-07135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Ninjurin-1 (NINJ1), initially identified as a stress-induced protein in neurons, recently emerged as a key mediator of plasma membrane rupture (PMR) during apoptosis, necrosis, and pyroptosis. However, its involvement in ferroptosis is less well elucidated. Here, we demonstrate that NINJ1 also plays a crucial role in ferroptosis, but through a distinct mechanism. NINJ1 knockdown significantly protected cancer cells against ferroptosis induced only by xCT inhibitors but no other classes of ferroptosis-inducing compounds (FINs). Glycine, known to inhibit canonical NINJ1-mediated membrane rupture in other cell deaths, had no impact on ferroptosis. A compound screen revealed that the ferroptosis protective effect caused by NINJ1 knockdown can be abolished by pantothenate kinase inhibitor (PANKi), buthionine sulfoximine (BSO), and diethylmaleate (DEM). These results suggest that this ferroptosis protection is mediated via Coenzyme A (CoA) and glutathione (GSH), both of which were found to be elevated upon NINJ1 knockdown. Furthermore, we discovered that NINJ1 interacts with the xCT antiporter, which is responsible for cystine uptake for the biosynthesis of CoA and GSH. The removal of NINJ1 increased xCT levels and stability, enhancing cystine uptake and thereby providing protection against ferroptosis. Conversely, NINJ1 overexpression reduced xCT levels and sensitized ferroptosis. These findings reveal that NINJ1 regulates ferroptosis via a non-canonical mechanism, distinct from other regulated cell deaths.
Collapse
Affiliation(s)
- Ssu-Yu Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yubin Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ya-En Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yasaman Setayeshpour
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chiara Federico
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alexander A Mestre
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Li Y, Bi Y, Li W, Piao Y, Piao J, Wang T, Ren X. Research progress on ferroptosis in colorectal cancer. Front Immunol 2024; 15:1462505. [PMID: 39359721 PMCID: PMC11444962 DOI: 10.3389/fimmu.2024.1462505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Ferroptosis is a new form of cell death that differs from traditional forms of death. It is ferroptosis-dependent lipid peroxidation death. Colorectal cancer(CRC) is the most common tumor in the gastrointestinal tract with a long occultation period and a poor five-year prognosis. Exploring effective systemic treatments for CRC remains a great challenge worldwide. Numerous studies have demonstrated that ferroptosis can participate in the biological malignant process of various tumor, including CRC, so understanding the role and regulatory mechanisms of ferroptosis in CRC plays a crucial role in the treatment of CRC. In this paper, we reviews the mechanisms of ferroptosis in CRC, the associated regulatory factors and their interactions with various immune cells in the immune microenvironment. In addition, targeting ferroptosis has emerged as an encouraging strategy for CRC treatment. Finally, to inform subsequent research and clinical diagnosis and treatment, we review therapeutic approaches to CRC radiotherapy, immunotherapy, and herbal therapy targeting ferroptosis.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Yao Bi
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Wenjing Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Anesthesia, Yanbian University Hospital, Yanji, China
| | - Yingshi Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Junjie Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Tong Wang
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| | - Xiangshan Ren
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
4
|
Faust D, Wenz C, Holm S, Harms G, Greffrath W, Dietrich C. Cell-cell contacts prevent t-BuOOH-triggered ferroptosis and cellular damage in vitro by regulation of intracellular calcium. Arch Toxicol 2024; 98:2953-2969. [PMID: 38814333 PMCID: PMC11324706 DOI: 10.1007/s00204-024-03792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Tert-butyl hydroperoxide (t-BuOOH) is an organic hydroperoxide widely used as a model compound to induce oxidative stress. It leads to a plethora of cellular damage, including lipid peroxidation, DNA double-strand breaks (DNA DSBs), and breakdown of the mitochondrial membrane potential (MMP). We could show in several cell lines that t-BuOOH induces ferroptosis, triggered by iron-dependent lipid peroxidation. We have further revealed that not only t-BuOOH-mediated ferroptosis, but also DNA DSBs and loss of MMP are prevented by cell-cell contacts. The underlying mechanisms are not known. Here, we show in murine fibroblasts and a human colon carcinoma cell line that t-BuOOH (50 or 100 µM, resp.) causes an increase in intracellular Ca2+, and that this increase is key to lipid peroxidation and ferroptosis, DNA DSB formation and dissipation of the MMP. We further demonstrate that cell-cell contacts prevent t-BuOOH-mediated raise in intracellular Ca2+. Hence, we provide novel insights into the mechanism of t-BuOOH-triggered cellular damage including ferroptosis and propose a model in which cell-cell contacts control intracellular Ca2+ levels to prevent lipid peroxidation, DNA DSB-formation and loss of MMP. Since Ca2+ is a central player of toxicity in response to oxidative stress and is involved in various cell death pathways, our observations suggest a broad protective function of cell-cell contacts against a variety of exogenous toxicants.
Collapse
Affiliation(s)
- Dagmar Faust
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Christine Wenz
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
- Department of General and Visceral Surgery, Albklinik Münsingen of the District Hospital Association Reutlingen, Lautertalstraße 47, 72525, Münsingen, Germany
| | - Stefanie Holm
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Gregory Harms
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167, Mannheim, Germany
| | - Cornelia Dietrich
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany.
| |
Collapse
|
5
|
Wu X, Sun Y, Wei S, Hu H, Yang B. Identification of Potential Ferroptosis Biomarkers and Analysis of Immune Cell Infiltration in Psoriasis Using Machine Learning. Clin Cosmet Investig Dermatol 2024; 17:1281-1295. [PMID: 38835517 PMCID: PMC11149635 DOI: 10.2147/ccid.s457958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Background Ferroptosis is a type of cell death characterized by the accumulation of iron-dependent lethal lipid peroxides, which is associated with various pathophysiological processes. Psoriasis is a chronic autoimmune skin disease accompanied by abnormal immune cell infiltration and excessive production of lipid reactive oxygen species (ROS). Currently, its pathogenesis remains elusive, especially the potential role of ferroptosis in its pathophysiological process. Methods The microarrays GSE13355 (58 psoriatic skin specimens versus 122 healthy skin specimens) and the ferroptosis database were employed to identify the common differentially expressed genes (DEGs) associated with psoriasis and ferroptosis. The functions of common DEGs were investigated through functional enrichment analysis and protein-protein interaction analysis. The potential diagnostic markers for psoriasis among the common DEGs were identified using four machine-learning algorithms. DGIdb was utilized to explore potential therapeutic agents for psoriasis. Additionally, CIBERSORT was employed to investigate immune infiltration in psoriasis. Results A total of 8 common DEGs associated with psoriasis and ferroptosis were identified, which are involved in intercellular signaling and affect pathways of cell response to stress and stimulation. Four machine-learning algorithms were employed to identify poly (ADP-ribose) polymerase 12 (PARP12), frizzled homolog 7 (FZD7), and arachidonate 15-lipoxygenase (ALOX15B) among the eight common DEGs as potential diagnostic markers for psoriasis. A total of 18 drugs targeting the five common DEGs were identified as potential candidates for treating psoriasis. Additionally, significant changes were observed in the immune microenvironment of patients with psoriasis. Conclusion This study has contributed to our enhanced comprehension of ferroptosis-related genes as potential biomarkers for psoriasis diagnosis, as well as the alterations in the immune microenvironment associated with psoriasis. Our findings offer valuable insights into the diagnosis and treatment of psoriasis.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People's Republic of China
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| | - Yuzhe Sun
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Shuyi Wei
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Huoyou Hu
- Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People's Republic of China
| | - Bin Yang
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| |
Collapse
|
6
|
Chen SY, Lin CC, Wu J, Chen Y, Wang YE, Setayeshpour Y, Mestre A, Chi JT. NINJ1 regulates ferroptosis via xCT antiporter interaction and CoA modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581432. [PMID: 38464226 PMCID: PMC10925083 DOI: 10.1101/2024.02.22.581432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Ninjurin-1 (NINJ1), initially identified as a stress-induced protein in neurons, recently emerged as a key mediator of plasma membrane rupture during apoptosis, necrosis, and pyroptosis. However, its involvement in ferroptosis remains unknown. Here, we demonstrate that NINJ1 also plays a crucial role in ferroptosis, but through a distinct mechanism. NINJ1 knockdown significantly protected cancer cells against ferroptosis induced by xCT inhibitors but no other classes of ferroptosis-inducing compounds (FINs). Glycine, known to inhibit canonical NINJ1-mediated membrane rupture in other cell deaths, had no impact on ferroptosis. A compound screen revealed that NINJ1-mediated ferroptosis protection can be abolished by pantothenate kinase inhibitor (PANKi), buthionine sulfoximine (BSO), and diethylmaleate (DEM). These results suggest that this ferroptosis protection is mediated via Coenzyme A (CoA) and glutathione (GSH), both of which were found to be elevated upon NINJ1 knockdown. Furthermore, we discovered that NINJ1 interacts with the xCT antiporter, which is responsible for cystine uptake for the biosynthesis of CoA and GSH. The removal of NINJ1 increased xCT levels and stability, enhanced cystine uptake, and contributed to elevated CoA and GSH levels, collectively contributing to ferroptosis protection. These findings reveal that NINJ1 regulates ferroptosis via a non-canonical mechanism, distinct from other regulated cell deaths.
Collapse
Affiliation(s)
- Ssu-Yu Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yubin Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ya-En Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yasaman Setayeshpour
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexander Mestre
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
7
|
Ma J, Hu J, Zhao L, Wu Z, Li R, Deng W. Identification of clinical prognostic factors and analysis of ferroptosis-related gene signatures in the bladder cancer immune microenvironment. BMC Urol 2024; 24:6. [PMID: 38172792 PMCID: PMC10765654 DOI: 10.1186/s12894-023-01354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is a prevalent malignancy affecting the urinary system and poses a significant burden in terms of both incidence and mortality rates on a global scale. Among all BLCA cases, non-muscle invasive bladder cancer constitutes approximately 75% of the total. In recent years, the concept of ferroptosis, an iron-dependent form of regulated cell death marked by the accumulation of lipid peroxides, has captured the attention of researchers worldwide. Nevertheless, the precise involvement of ferroptosis-related genes (FRGs) in the anti-BLCA response remains inadequately elucidated. METHODS The integration of BLCA samples from the TCGA and GEO datasets facilitated the quantitative evaluation of FRGs, offering potential insights into their predictive capabilities. Leveraging the wealth of information encompassing mRNAsi, gene mutations, CNV, TMB, and clinical features within these datasets further enriched the analysis, augmenting its robustness and reliability. Through the utilization of Lasso regression, a prediction model was developed, enabling accurate prognostic assessments within the context of BLCA. Additionally, co-expression analysis shed light on the complex relationship between gene expression patterns and FRGs, unraveling their functional relevance and potential implications in BLCA. RESULTS FRGs exhibited increased expression levels in the high-risk cohort of BLCA patients, even in the absence of other clinical indicators, suggesting their potential as prognostic markers. GSEA revealed enrichment of immunological and tumor-related pathways specifically in the high-risk group. Furthermore, notable differences were observed in immune function and m6a gene expression between the low- and high-risk groups. Several genes, including MYBPH, SOST, SPRR2A, and CRNN, were found to potentially participate in the oncogenic processes underlying BLCA. Additionally, CYP4F8, PDZD3, CRTAC1, and LRTM1 were identified as potential tumor suppressor genes. Significant discrepancies in immunological function and m6a gene expression were observed between the two risk groups, further highlighting the distinct molecular characteristics associated with different prognostic outcomes. Notably, strong correlations were observed among the prognostic model, CNVs, SNPs, and drug sensitivity profiles. CONCLUSIONS FRGs are associated with the onset and progression of BLCA. A FRGs signature offers a viable alternative to predict BLCA, and these FRGs show a prospective research area for BLCA targeted treatment in the future.
Collapse
Affiliation(s)
- Jiafu Ma
- Emergency Department, People's Hospital Affiliated to Shandong First Medical University, Jinan, 250011, Shandong Province, China
| | - Jianting Hu
- Department of Urology, Laiyang People's Hospital, Yantai City, 265202, Shandong Province, China
| | - Leizuo Zhao
- Dongying People's Hospital, Dongying, 257091, Shandong Province, China
| | - Zixuan Wu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Rongfen Li
- Dongying People's Hospital, Dongying, 257091, Shandong Province, China.
| | - Wentao Deng
- Dongying People's Hospital, Dongying, 257091, Shandong Province, China.
| |
Collapse
|
8
|
Steinberg E, Friedman R, Goldstein Y, Friedman N, Beharier O, Demma JA, Zamir G, Hubert A, Benny O. A fully 3D-printed versatile tumor-on-a-chip allows multi-drug screening and correlation with clinical outcomes for personalized medicine. Commun Biol 2023; 6:1157. [PMID: 37957280 PMCID: PMC10643569 DOI: 10.1038/s42003-023-05531-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Optimal clinical outcomes in cancer treatments could be achieved through the development of reliable, precise ex vivo tumor models that function as drug screening platforms for patient-targeted therapies. Microfluidic tumor-on-chip technology is emerging as a preferred tool since it enables the complex set-ups and recapitulation of the physiologically relevant physical microenvironment of tumors. In order to overcome the common hindrances encountered while using this technology, a fully 3D-printed device was developed that sustains patient-derived multicellular spheroids long enough to conduct multiple drug screening tests. This tool is both cost effective and possesses four necessary characteristics of effective microfluidic devices: transparency, biocompatibility, versatility, and sample accessibility. Compelling correlations which demonstrate a clinical proof of concept were found after testing and comparing different chemotherapies on tumor spheroids, derived from ten patients, to their clinical outcomes. This platform offers a potential solution for personalized medicine by functioning as a predictive drug-performance tool.
Collapse
Affiliation(s)
- Eliana Steinberg
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roy Friedman
- School of Computer Science and Engineering, Center for Interdisciplinary Data Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoel Goldstein
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nethanel Friedman
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofer Beharier
- Hadassah Medical Center and The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan Abraham Demma
- Department of General Surgery, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Zamir
- Department of General Surgery, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayala Hubert
- Oncology Department, Hadassah Medical Center, Jerusalem, Israel
| | - Ofra Benny
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Mu W, Zhou Z, Shao L, Wang Q, Feng W, Tang Y, He Y, Wang Y. Advances in the relationship between ferroptosis and epithelial-mesenchymal transition in cancer. Front Oncol 2023; 13:1257985. [PMID: 38023171 PMCID: PMC10661308 DOI: 10.3389/fonc.2023.1257985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular reprogramming process that converts epithelial cells into mesenchymal-like cells with migratory and invasive capabilities. The initiation and regulation of EMT is closely linked to a range of transcription factors, cell adhesion molecules and signaling pathways, which play a key role in cancer metastasis and drug resistance. The regulation of ferroptosis is intricately linked to various cell death pathways, intracellular iron homeostasis, and the protein network governing iron supply and storage. The ability of ferroptosis to disrupt cancer cells and overcome drug resistance lies in its control of intracellular iron ion levels. EMT process can promote the accumulation of iron ions, providing conditions for ferroptosis. Conversely, ferroptosis may impact the regulatory network of EMT by modulating transcription factors, signaling pathways, and cell adhesion molecules. Thus, ferroptosis related genes and signaling pathways and oxidative homeostasis play important roles in the regulation of EMT. In this paper, we review the role of ferroptosis related genes and their signaling pathways in regulating cancer EMT to better understand the crosstalk mechanism between ferroptosis and EMT, aiming to provide better therapeutic strategies for eradicating cancer cells and overcoming drug resistance.
Collapse
Affiliation(s)
- Wenrong Mu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Zubang Zhou
- Department of Ultrasound, Gansu Provincial Hospital, Gansu, China
| | - Liping Shao
- Department of Ultrasound, Gansu Provincial Hospital, Gansu, China
| | - Qi Wang
- Department of Ultrasound, Gansu Provincial Hospital, Gansu, China
| | - Wanxue Feng
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Yuling Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Yizong He
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Yuanlin Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| |
Collapse
|
10
|
Kaur H, Minchella P, Alvarez-Carbonell D, Purandare N, Nagampalli VK, Blankenberg D, Hulgan T, Gerschenson M, Karn J, Aras S, Kallianpur AR. Contemporary Antiretroviral Therapy Dysregulates Iron Transport and Augments Mitochondrial Dysfunction in HIV-Infected Human Microglia and Neural-Lineage Cells. Int J Mol Sci 2023; 24:12242. [PMID: 37569616 PMCID: PMC10419149 DOI: 10.3390/ijms241512242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
HIV-associated cognitive dysfunction during combination antiretroviral therapy (cART) involves mitochondrial dysfunction, but the impact of contemporary cART on chronic metabolic changes in the brain and in latent HIV infection is unclear. We interrogated mitochondrial function in a human microglia (hμglia) cell line harboring inducible HIV provirus and in SH-SY5Y cells after exposure to individual antiretroviral drugs or cART, using the MitoStress assay. cART-induced changes in protein expression, reactive oxygen species (ROS) production, mitochondrial DNA copy number, and cellular iron were also explored. Finally, we evaluated the ability of ROS scavengers or plasmid-mediated overexpression of the antioxidant iron-binding protein, Fth1, to reverse mitochondrial defects. Contemporary antiretroviral drugs, particularly bictegravir, depressed multiple facets of mitochondrial function by 20-30%, with the most pronounced effects in latently infected HIV+ hμglia and SH-SY5Y cells. Latently HIV-infected hμglia exhibited upregulated glycolysis. Increases in total and/or mitochondrial ROS, mitochondrial DNA copy number, and cellular iron accompanied mitochondrial defects in hμglia and SH-SY5Y cells. In SH-SY5Y cells, cART reduced mitochondrial iron-sulfur-cluster-containing supercomplex and subunit expression and increased Nox2 expression. Fth1 overexpression or pre-treatment with N-acetylcysteine prevented cART-induced mitochondrial dysfunction. Contemporary cART impairs mitochondrial bioenergetics in hμglia and SH-SY5Y cells, partly through cellular iron accumulation; some effects differ by HIV latency.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paige Minchella
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - David Alvarez-Carbonell
- Department of Microbiology and Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Neeraja Purandare
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Vijay K. Nagampalli
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Blankenberg
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Todd Hulgan
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96844, USA
| | - Jonathan Karn
- Department of Microbiology and Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Asha R. Kallianpur
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
11
|
Lee J, Roh JL. Epithelial-Mesenchymal Plasticity: Implications for Ferroptosis Vulnerability and Cancer Therapy. Crit Rev Oncol Hematol 2023; 185:103964. [PMID: 36931615 DOI: 10.1016/j.critrevonc.2023.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cancers polarized to a mesenchymal or poorly differentiated state can often evade cell death induced by conventional therapies. The epithelial-mesenchymal transition is involved in lipid metabolism and increases polyunsaturated fatty acid levels in cancer cells, contributing to chemo- and radio-resistance. Altered metabolism in cancer enables invasion and metastasis but is prone to lipid peroxidation under oxidative stress. Cancers with mesenchymal rather than epithelial signatures are highly vulnerable to ferroptosis. Therapy-resistant persister cancer cells show a high mesenchymal cell state and dependence on the lipid peroxidase pathway, which can respond more sensitively to ferroptosis inducers. Cancer cells may survive under specific metabolic and oxidative stress conditions, and targeting this unique defense system can selectively kill only cancer cells. Therefore, this article summarizes the core regulatory mechanisms of ferroptosis in cancer, the relationship between ferroptosis and epithelial-mesenchymal plasticity, and the implications of epithelial-mesenchymal transition for ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
12
|
Identification of Clinical Prognostic Regulators and Analysis of Ferroptosis-Related Signatures in the Tumor Immune Microenvironment in Lung Squamous Cell Carcinoma. DISEASE MARKERS 2023; 2023:9155944. [PMID: 36845013 PMCID: PMC9946749 DOI: 10.1155/2023/9155944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 02/17/2023]
Abstract
Objective Lung squamous cell carcinoma (LUSC) is a common respiratory malignancy and presents an increasing prevalence. Ferroptosis is a newly identified controlled cell death that has captured clinical attention worldwide. However, the ferroptosis-related lncRNA expression in LUSC and its relevance to prognosis remain elusive. Methods The research measured predictive ferroptosis-related lncRNAs in LUSC samples from the TCGA datasets. Data on the stemness indices (mRNAsi) and corresponding clinical characteristics were obtained from TCGA. A prognosis model was established using the LASSO regression. Changes within the neoplasm microenvironment (TME) and medicine association were examined to grasp higher immune cell infiltration in numerous risk teams. In line with coexpression studies, the expression of lncRNAs is closely associated with that of ferroptosis. They were overexpressed in unsound people in the absence of alternative clinical symptoms. Results The low-risk and speculative teams were considered to have substantial differences in CCR and inflammation-promoting genes. C10orf55, AC016924.1, AL161431.1, LUCAT1, AC104248.1, and MIR3945HG were highly expressed in the high-risk group, suggesting their involvement in the oncology process of LUSC. Moreover, AP006545.2 and AL122125.1 were considerably higher in the low-risk group, implying the potential of these genes as LUSC tumor suppressor genes. The biomarkers listed above may serve as therapeutic targets for LUSC. lncRNAs were also linked to patient outcomes in the LUSC trial. Conclusion lncRNAs of ferroptosis were overexpressed in the high-risk cohort without other clinical signs, implying their potential to predict BLCA prognosis. GSEA highlighted immunological and tumor-related pathways in the high-risk group. LUSC occurrence and progression are linked to lncRNAs of ferroptosis. Corresponding prognostic models help forecast the prognosis of LUSC patients. lncRNAs of ferroptosis and associated immune cell infiltration in the tumor microenvironment (TME) may serve as potential therapeutic targets in LUSC, which requires further trials. In addition, the lncRNAs of ferroptosis signature offer a viable alternative to predict LUSC, and these ferroptosis-lncRNAs show a prospective research area for LUSC-targeted treatment in the future.
Collapse
|
13
|
Development and validation of a novel model for predicting the survival of bladder cancer based on ferroptosis-related genes. Aging (Albany NY) 2022; 14:9037-9055. [PMID: 36399105 PMCID: PMC9740359 DOI: 10.18632/aging.204385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The role of ferroptosis, a new form of cell death, in bladder cancer (BC) has not been sufficiently studied. This study aimed to establish a prognostic prediction model for BC patients based on the expression profile of ferroptosis-related genes (FRG). The expression profiles of BC samples with clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). A total of 80 differentially expressed genes (DEGs) related to FRG were identified among which 37 DEGs were found to have a prognostic value. Eleven genetic markers including SLC2A12, CDO1, JDP2, MAFG, CAPG, RRM2, SLC2A3, SLC3A2, VDAC2, GCH1, and ANGPTL7 were identified through the LASSO regression analysis. The ROC curve analysis showed that the AUC was 0.702, 0.664, and 0.655 for the 1-year, 3-year, and 5-year survival outcomes, respectively. The prediction performance was verified in the TCGA-testing set and external set GSE13507. Multivariate Cox proportional hazards analysis showed that the risk score was an independent prognostic predictor. Moreover, we found differences in gene mutation, gene expression, and immune cell infiltration between the high and low-risk groups of BC patients. Finally, a nomogram was constructed by integrating clinical features and FRG signatures to predict the survival outcomes of BC patients. In addition, the differential expression of FRG mRNA and protein was verified through PCR and HPA online site. The characteristics of 11 FRG genes were examined and a prognostic nomogram for predicting the overall survival of BC was established.
Collapse
|
14
|
Liebl MC, Hofmann TG. Regulating the p53 Tumor Suppressor Network at PML Biomolecular Condensates. Cancers (Basel) 2022; 14:4549. [PMID: 36230470 PMCID: PMC9558958 DOI: 10.3390/cancers14194549] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
By forming specific functional entities, nuclear biomolecular condensates play an important function in guiding biological processes. PML biomolecular condensates, also known as PML nuclear bodies (NBs), are macro-molecular sub-nuclear organelles involved in central biological processes, including anti-viral response and cell fate control upon genotoxic stress. PML condensate formation is stimulated upon cellular stress, and relies on protein-protein interactions establishing a PML protein meshwork capable of recruiting the tumor suppressor p53, along with numerous modifiers of p53, thus balancing p53 posttranslational modifications and activity. This stress-regulated process appears to be controlled by liquid-liquid phase separation (LLPS), which may facilitate regulated protein-unmixing of p53 and its regulators into PML nuclear condensates. In this review, we summarize and discuss the molecular mechanisms underlying PML nuclear condensate formation, and how these impact the biological function of p53 in driving the cell death and senescence responses. In addition, by using an in silico approach, we identify 299 proteins which share PML and p53 as binding partners, thus representing novel candidate proteins controlling p53 function and cell fate decision-making at the level of PML nuclear biocondensates.
Collapse
Affiliation(s)
| | - Thomas G. Hofmann
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
15
|
Wang Y, Zhang Z, Sun W, Zhang J, Xu Q, Zhou X, Mao L. Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets. Biomed Pharmacother 2022; 153:113524. [PMID: 36076606 DOI: 10.1016/j.biopha.2022.113524] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
|
16
|
Sun Y, Xue Z, Huang T, Che X, Wu G. Lipid metabolism in ferroptosis and ferroptosis-based cancer therapy. Front Oncol 2022; 12:941618. [PMID: 35978815 PMCID: PMC9376317 DOI: 10.3389/fonc.2022.941618] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Ferroptosis refers to iron-dependent, specialized, and regulated-necrosis mediated by lipid peroxidation, which is closely related to a variety of diseases, including cancer. Tumor cells undergo extensive changes in lipid metabolism, including lipid peroxidation and ferroptosis. Changes in lipid metabolism are critical for the regulation of ferroptosis and thus have important roles in cancer therapy. In this review, we introduce the characteristics of ferroptosis and briefly analyze the links between several metabolic mechanisms and ferroptosis. The effects of lipid peroxides, several signaling pathways, and the molecules and pathways involved in lipid metabolism on ferroptosis were extensively analyzed. Finally, our review highlights some ferroptosis-based treatments and presents some methods and examples of how these treatments can be combined with other treatments.
Collapse
Affiliation(s)
- Yonghao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zuoxing Xue
- Department of Urology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Tao Huang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
Feng B, Wang K, Wang Z, Niu H, Wang G, Chen Y, Zhang H. Mitochondrial-Targeted Ratiometric Fluorescent Probe to Monitor ClO - Induced by Ferroptosis in Living Cells. Front Chem 2022; 10:909670. [PMID: 35755249 PMCID: PMC9218690 DOI: 10.3389/fchem.2022.909670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is a type of iron-dependent programmed cell death. Once such kind of death occurs, an individual cell would undergo a series of changes related to reactive oxygen species (ROS) in mitochondria. A mitochondrial-targeted ratiometric fluorescent probe (MBI-OMe) was developed to specifically detect ferroptosis-induced ClO−, whose recognition group is p-methoxyphenol, and the mitochondrial-targeted group is benzimidazole. The fluorescence of MBI-OMe was first quenched by 30 μM of Fe3+, and then MBI-OMe appeared as a ratiometric signal at 477 nm and 392 nm in response to ferroptosis-induced ClO− in living cells. MBI-OMe was successfully used to evaluate changes in ClO− induced by ferroptosis.
Collapse
Affiliation(s)
- Beidou Feng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Kui Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhe Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Huiyu Niu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuehua Chen
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
18
|
Charaschanya M, Maskrey TS, LaPorte MG, Janjic JM, Wipf P. Synthesis and Optimization of Nitroxide-Based Inhibitors of Ferroptotic Cell Death in Cancer Cells and Macrophages. ACS Med Chem Lett 2022; 13:403-408. [PMID: 35300093 PMCID: PMC8919392 DOI: 10.1021/acsmedchemlett.1c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
JP4-039 is an alkene peptide isostere that acts as a low-micromolar inhibitor of erastin- and RSL-3-induced ferroptotic cell death in the HT-1080 cell line. In this work, we have developed new synthetic strategies that allow access to analogues of this lead structure. Enantioselective vinylogous Mannich or cross-metathesis reactions were key to the preparation of a series of analogues that culminated in the preparation of the ca. 30-fold more potent analogue (S)-6c. Structure-activity relationship analyses used both HT-1080 cells and a luminescence-based ferroptosis assay in RAW 264.7 macrophages. In particular, α,α-disubstituted alkene peptide isosteres (Rα ≠ H) were found to exceed the potency of the corresponding glycine (Rα = H) derivatives.
Collapse
Affiliation(s)
- Manwika Charaschanya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Taber S Maskrey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew G LaPorte
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jelena M Janjic
- Pharmaceutical Sciences, Duquesne University School of Pharmacy, 415 Mellon Hall, Pittsburgh, Pennsylvania 15282, United States.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Nucera F, Mumby S, Paudel KR, Dharwal V, DI Stefano A, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of oxidative stress in the pathogenesis of COPD. Minerva Med 2022; 113:370-404. [PMID: 35142479 DOI: 10.23736/s0026-4806.22.07972-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic inhalation of cigarette smoke is a prominent cause of chronic obstructive pulmonary disease (COPD) and provides an important source of exogenous oxidants. In addition, several inflammatory and structural cells are a source of endogenous oxidants in the lower airways of COPD patients, even in former smokers. This suggests that oxidants play a key role in the pathogenesis of COPD. This oxidative stress is counterbalanced by the protective effects of the various endogenous antioxidant defenses of the lower airways. A large amount of data from animal models and patients with COPD have shown that both the stable phase of the disease, and during exacerbations, have increased oxidative stress in the lower airways compared with age-matched smokers with normal lung function. Thus, counteracting the increased oxidative stress may produce clinical benefits in COPD patients. Smoking cessation is currently the most effective treatment of COPD patients and reduces oxidative stress in the lower airways. In addition, many drugs used to treat COPD have some antioxidant effects, however, it is still unclear if their clinical efficacy is related to pharmacological modulation of the oxidant/antioxidant balance. Several new antioxidant compounds are in development for the treatment of COPD.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy -
| | - Sharon Mumby
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Vivek Dharwal
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Antonino DI Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Novara, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Ian M Adcock
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
20
|
Nishizawa H, Yamanaka M, Igarashi K. Ferroptosis: regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS J 2022; 290:1688-1704. [PMID: 35107212 DOI: 10.1111/febs.16382] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Ferroptosis is triggered by a chain of intracellular labile iron-dependent peroxidation of cell membrane phospholipids. Ferroptosis is important not only as a cause of ischaemic and neurodegenerative diseases but also as a mechanism of cancer suppression, and a better understanding of its regulatory mechanism is required. It has become clear that ferroptosis is finely controlled by two oxidative stress-responsive transcription factors, NRF2 (NF-E2-related factor 2) and BACH1 (BTB and CNC homology 1). NRF2 and BACH1 inhibit and promote ferroptosis, respectively, by activating or suppressing the expression of genes in the major regulatory pathways of ferroptosis: intracellular labile iron metabolism, the GSH (glutathione) -GPX4 (glutathione peroxidase 4) pathway and the FSP1 (ferroptosis suppressor protein 1)-CoQ (coenzyme Q) pathway. In addition to this, NRF2 and BACH1 control ferroptosis through the regulation of lipid metabolism and cell differentiation. This multifaceted regulation of ferroptosis by NRF2 and BACH1 is considered to have been acquired during the evolution of multicellular organisms, allowing the utilization of ferroptosis for maintaining homeostasis, including cancer suppression. In terms of cell-cell interaction, it has been revealed that ferroptosis has the property of propagating to surrounding cells along with lipid peroxidation. The regulation of ferroptosis by NRF2 and BACH1 and the propagation phenomenon could be used to realize anticancer cell therapy in the future. In this review, these points will be summarized and discussed.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mie Yamanaka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Chen K, Zhang S, Jiao J, Zhao S. Ferroptosis and Its Potential Role in Lung Cancer: Updated Evidence from Pathogenesis to Therapy. J Inflamm Res 2022; 14:7079-7090. [PMID: 34992407 PMCID: PMC8709579 DOI: 10.2147/jir.s347955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is characterized by high morbidity and mortality rates, and its occurrence is associated with many types of cell death. As a new form of regulated cell death, ferroptosis is an iron- dependent pattern of cell death and characterized by lethal accumulation of lipid-based reactive oxygen species (ROS), which is different from apoptosis, necrosis and autophagy at both the morphological and biochemical levels. It plays an important role in the development of lung cancer and induction of ferroptosis in lung cancer cells has become a new strategy for anti- lung cancer treatment. However, a few reviews summarized ferroptosis and its role in lung cancer has not been elucidated, and the precise mechanism of ferroptosis modeling lung cancer has not yet been revealed till date. Herein, we review the latest literature on the process of ferroptosis regarding lung cancer, including basic molecular or biology mechanistic studies both in vivo and in vitro, as well as human studies with a more translational or clinical approach. This review provides a practical, concise and updated outline on the mechanisms and therapeutic strategies in lung cancer with ferroptosis alterations. Looking ahead, further studies are required to uncover the possible modulatory relationship between ferroptosis and lung cancer.
Collapse
Affiliation(s)
- Kang Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Song Zhang
- China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jinghua Jiao
- Department of Anesthesiology, Central Hospital, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Shan Zhao
- Department of Rheumatic Immunology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|