1
|
Son J, Park J, Jeong JW, Lee SH, Kim JE. SIRT2 inhibition attenuates myofibroblast transition through autophagy-mediated ciliogenesis in renal epithelial cells. Int J Biochem Cell Biol 2025; 181:106754. [PMID: 39988243 DOI: 10.1016/j.biocel.2025.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Myofibroblast transition plays a crucial role in both fibrotic diseases and wound healing. Although SIRT2 regulates fibrosis, its mechanisms of action remain poorly understood. This study aimed to investigate the effects of SIRT2 inhibition on myofibroblast transition in human renal cells under quiescent conditions. HK-2 kidney proximal tubular epithelial cells were starved of serum, resulting in the formation of primary cilia. Transforming growth factor-β (TGF-β) stimulation reduced both the number of ciliated cells and ciliary length. The ciliary defects resulted from a failure in autophagy termination, leading to the accumulation of OFD1, a negative regulator of ciliogenesis, at centriolar satellites. This phenomenon was correlated with the upregulation of fibrosis-related proteins. To elucidate the role of SIRT2 in the autophagy-ciliogenesis-fibrosis axis, cells were treated with AGK2, a specific inhibitor of SIRT2. AGK2 treatment promoted the formation of both autophagosomes and autolysosomes and facilitated OFD1 degradation at the centriolar satellites, resulting in the lengthening of primary cilia. Restoration of primary cilia by AGK2 was associated with the suppression of myofibroblast transition. In conclusion, SIRT2 inhibition attenuates TGF-β-induced fibrosis by promoting autophagy-mediated ciliogenesis. This study highlights SIRT2 as a potential therapeutic target for fibrotic diseases.
Collapse
Affiliation(s)
- Juyoung Son
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaejung Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Hyeun Lee
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Laporte D, Sagot I. Microtubule Reorganization and Quiescence: an Intertwined Relationship. Physiology (Bethesda) 2025; 40:0. [PMID: 39378102 DOI: 10.1152/physiol.00036.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Quiescence is operationally defined as a reversible proliferation arrest. This cellular state is central to both organism development and homeostasis, and its dysregulation causes many pathologies. The quiescent state encompasses very diverse cellular situations depending on the cell type and its environment. Further, quiescent cell properties evolve with time, a process that is thought to be the origin of aging in multicellular organisms. Microtubules are found in all eukaryotes and are essential for cell proliferation as they support chromosome segregation and intracellular trafficking. Upon proliferation cessation and quiescence establishment, the microtubule cytoskeleton was shown to undergo significant remodeling. The purpose of this review is to examine the literature in search of evidence to determine whether the observed microtubule reorganizations are merely a consequence of quiescence establishment or if they somehow participate in this cell fate decision.
Collapse
Affiliation(s)
- Damien Laporte
- Centre National de la Recherche ScientifiqueUniversité de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| | - Isabelle Sagot
- Centre National de la Recherche ScientifiqueUniversité de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| |
Collapse
|
3
|
Zhang Y, He M, Pan J. Axonemal microtubule dynamics in the assembly and disassembly of cilia. Biochem Soc Trans 2025; 53:BST20240688. [PMID: 39889304 DOI: 10.1042/bst20240688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Cilia and eukaryotic flagella (exchangeable terms) function in cell motility and signaling, which are pivotal for development and physiology. Cilia dysfunction can lead to ciliopathies. Cilia are usually assembled in quiescent and/or differentiated cells and undergo disassembly when cells enter cell cycle or in response to environmental stresses. Cilia contain a microtubule-based structure termed axoneme that comprises nine outer doublet microtubules with or without a pair of central microtubules, which is ensheathed by the ciliary membrane. Regulation of the axonemal microtubule dynamics is tightly associated with ciliary assembly and disassembly. In this short review, we discuss recent findings on the regulation of axonemal microtubules by microtubule-binding proteins and microtubule modulating kinesins during ciliary assembly and disassembly.
Collapse
Affiliation(s)
- Yi Zhang
- MOE Key Laboratory of Protein Sciences,State Key Laboratory of Complex, Severe, and Rare Diseases, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mu He
- School of Biomedical Sciences, The University of Hong Kong, Hongkong, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences,State Key Laboratory of Complex, Severe, and Rare Diseases, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
4
|
Woglar A, Busso C, Garcia-Rodriguez G, Douma F, Croisier M, Knott G, Gönczy P. Mechanisms of axoneme and centriole elimination in Naegleria gruberi. EMBO Rep 2025; 26:385-406. [PMID: 39623167 PMCID: PMC11772885 DOI: 10.1038/s44319-024-00329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 01/29/2025] Open
Abstract
The early branching eukaryote Naegleria gruberi can transform transiently from an amoeboid life form lacking centrioles and flagella to a flagellate life form where these elements are present, followed by reversion to the amoeboid state. The mechanisms imparting elimination of axonemes and centrioles during this reversion process are not known. Here, we uncover that flagella primarily fold onto the cell surface and fuse within milliseconds with the plasma membrane. Once internalized, axonemes are severed by Spastin into similarly-sized fragments that are then enclosed by membranes, before their contents are eliminated through the lysosomal pathway. Moreover, we discovered that centrioles undergo progressive K63 autophagy-linked poly-ubiquitination and K48 proteasome-promoting poly-ubiquitination, and that such ubiquitination occurs next to centriolar microtubules. Most centrioles are eliminated in either lysosomes or the cytoplasm in a lysosomal- and proteasome-dependent manner. Strikingly, we uncover in addition that centrioles can be shed in the extracellular milieu and taken up by other cells. Collectively, these findings reveal fundamental mechanisms governing the elimination of essential cellular constituents in Naegleria that may operate broadly in eukaryotic systems.
Collapse
Affiliation(s)
- Alexander Woglar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Gabriela Garcia-Rodriguez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Friso Douma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Croisier
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Graham Knott
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Hu G, Li L, Li Y, Shao S, Zhang R, Gao Y, Guo Y, Wang Y, Gu Z, Wang Y. Full-length transcriptome-referenced analysis reveals developmental and olfactory regulatory genes in Dermestes frischii. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39663879 DOI: 10.1111/imb.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Dermestes frischii Kugelann, 1792 is a storage pest worldwide, and is important for estimating the postmortem interval in forensic entomology. However, because of the lack of transcriptome and genome resources, population genetics and biological control studies on D. frischii have been hindered. Here, single-molecule real-time sequencing and next-generation sequencing were combined to generate the full-length transcriptome of the five developmental stages of D. frischii, namely egg, young larva, mature larva, pupa and adult. A total of 41,665 full-length non-chimeric sequences and 59,385 non-redundant transcripts were generated, of which 42,756 were annotated in public databases. Using the weighted gene co-expression network analysis, gene co-expression modules related to the five developmental stages were constructed and screened, and the genes in these modules were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The expression patterns of the differentially expressed genes (DEGs) related to olfaction and insect hormone biosynthesis were also explored. Transcription of most odorant binding proteins was up-regulated in the adult stage, suggesting they are important for foraging in adults. Many genes encoding for the ecdysone-inducible protein were up-regulated in the pupal stage, may be mainly responsible for the tissue remodelling of metamorphosis. The results of the quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with the RNA-seq results. This is the first full-length transcriptome sequencing of dermestids, and the data obtained here are vital for understanding the stage-specific development and olfactory system of D. frischii, providing valuable resources for storage pest and forensic research.
Collapse
Affiliation(s)
- Gengwang Hu
- Department of Forensic Medicine, Soochow University, Suzhou, China
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Liangliang Li
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yifei Li
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Shipeng Shao
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Ruonan Zhang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yundi Gao
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yi Guo
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yinghui Wang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Zhiya Gu
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Huang L, Chen J, Fu L, Yang B, Zhou C, Mei S, Zhang L, Mao Z, Lu C, Xue C. Integrated mRNA-seq and miRNA-seq analysis reveals key transcription factors of HNF4α and KLF4 in ADPKD. Biochem Biophys Res Commun 2024; 735:150848. [PMID: 39432926 DOI: 10.1016/j.bbrc.2024.150848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most prevalent genetic disorder affecting the kidneys. Understanding epigenetic regulatory mechanisms and the role of microRNAs (miRNAs) is crucial for developing therapeutic interventions. Two mRNA datasets (GSE7869 and GSE35831) and miRNA expression data (GSE133530) from ADPKD patients were used to find differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs), with a focus on genes regulated by hub transcription factors (TFs) and their target genes. The expression of hub TFs was validated in human kidneys and animal models through Western Blot (WB) and RT-PCR analysis. The location of the hub TF proteins in kidney cells was observed by a laser confocal microscope. A total of 2037 DEGs were identified. DEM analysis resulted in 59 up-regulated and 107 down-regulated miRNAs. Predicted target DEGs of DEMs indicated two top dysregulated TFs: hepatocyte nuclear factor 4 alpha (HNF4α) and Kruppel-like factor 4 (KLF4). RT-PCR, WB, and immunochemistry results showed that mRNA and protein levels of HNF4α were significantly decreased while KLF4 levels were significantly up-regulated in human ADPKD kidneys and Pkd1 conditional knockout mice compared with normal controls. Laser confocal microscopy revealed that KLF4 was mainly located in the cytoplasm while HNF4α was in the nucleus. Functional enrichment analysis indicated that genes regulated by HNF4α were mainly associated with metabolic pathways, while KLF4-regulated genes were linked to kidney development. Drug response prediction analysis revealed potential drug candidates for ADPKD treatment, including BI-2536, Sepantronium, and AZD5582. This integrated analysis provides new epigenetic insights into the complex miRNA-TF-mRNA network in ADPKD and identifies HNF4α and KLF4 as key TFs. These findings offer valuable resources for further research and potential drug development for ADPKD.
Collapse
Affiliation(s)
- Linxi Huang
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China; Department of Nephrology, 905th Hospital of PLA Navy, Shanghai, 200000, China
| | - Jiaxin Chen
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China
| | - Lili Fu
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China
| | - Bo Yang
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, 200000, China
| | - Chenchen Zhou
- Outpatient Department, Yangpu Third Military Retreat, Yangpu first retirement, Shanghai, 200000, China
| | - Shuqin Mei
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China
| | - Liming Zhang
- Department of Nephrology, Zhabei Central Hospital of JingAn District of Shanghai, Shanghai, 200000, China
| | - Zhiguo Mao
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China
| | - Chunlai Lu
- Department of Nephrology, 905th Hospital of PLA Navy, Shanghai, 200000, China
| | - Cheng Xue
- Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China.
| |
Collapse
|
7
|
Kobayashi Y, Hamamoto A, Saito Y. Ciliary length variations impact cilia-mediated signaling and biological responses. J Biochem 2024; 176:369-383. [PMID: 39115281 DOI: 10.1093/jb/mvae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 11/05/2024] Open
Abstract
Primary cilia are thin hair-like organelles that protrude from the surface of most mammalian cells. They act as specialized cell antennas that can vary widely in response to specific stimuli. However, the effect of changes in cilia length on cellular signaling and behavior remains unclear. Therefore, we aimed to characterize the elongated primary cilia induced by different chemical agents, lithium chloride (LiCl), cobalt chloride (CoCl2) and rotenone, using human retinal pigmented epithelial 1 (hRPE1) cells expressing ciliary G protein-coupled receptor (GPCR), melanin-concentrating hormone (MCH) receptor 1 (MCHR1). MCH induces cilia shortening mainly via MCHR1-mediated Akt phosphorylation. Therefore, we verified the proper functioning of the MCH-MCHR1 axis in elongated cilia. Although MCH shortened cilia that were elongated by LiCl and rotenone, it did not shorten CoCl2-induced elongated cilia, which exhibited lesser Akt phosphorylation. Furthermore, serum readdition was found to delay cilia shortening in CoCl2-induced elongated cilia. In contrast, rotenone-induced elongated cilia rapidly shortened via a chopping mechanism at the tip of the cilia. Conclusively, we found that each chemical exerted different effects on ciliary GPCR signaling and serum-mediated ciliary structure dynamics in cells with elongated cilia. These results provide a basis for understanding the functional consequences of changes in ciliary length.
Collapse
|
8
|
Chinbold B, Kwon HM, Park R. TonEBP inhibits ciliogenesis by controlling aurora kinase A and regulating centriolar satellite integrity. Cell Commun Signal 2024; 22:348. [PMID: 38961488 PMCID: PMC11221002 DOI: 10.1186/s12964-024-01721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Primary cilia on the surface of eukaryotic cells serve as sensory antennas for the reception and transmission in various cell signaling pathways. They are dynamic organelles that rapidly form during differentiation and cell cycle exit. Defects in these organelles cause a group of wide-ranging disorders called ciliopathies. Tonicity-responsive enhancer-binding protein (TonEBP) is a pleiotropic stress protein that mediates various physiological and pathological cellular responses. TonEBP is well-known for its role in adaptation to a hypertonic environment, to which primary cilia have been reported to contribute. Furthermore, TonEBP is involved in a wide variety of other signaling pathways, such as Sonic Hedgehog and WNT signaling, that promote primary ciliogenesis, suggesting a possible regulatory role. However, the functional relationship between TonEBP and primary ciliary formation remains unclear. METHODS TonEBP siRNAs and TonEBP-mCherry plasmids were used to examine their effects on cell ciliation rates, assembly and disassembly processes, and regulators. Serum starvation was used as a condition to induce ciliogenesis. RESULTS We identified a novel pericentriolar localization for TonEBP. The results showed that TonEBP depletion facilitates the formation of primary cilia, whereas its overexpression results in fewer ciliated cells. Moreover, TonEBP controlled the expression and activity of aurora kinase A, a major negative regulator of ciliogenesis. Additionally, TonEBP overexpression inhibited the loss of CP110 from the mother centrioles during the early stages of primary cilia assembly. Finally, TonEBP regulated the localization of PCM1 and AZI1, which are necessary for primary cilia formation. CONCLUSIONS This study proposes a novel role for TonEBP as a pericentriolar protein that regulates the integrity of centriolar satellite components. This regulation has shown to have a negative effect on ciliogenesis. Investigations into cilium assembly and disassembly processes suggest that TonEBP acts upstream of the aurora kinase A - histone deacetylase 6 signaling pathway and affects basal body formation to control ciliogenesis. Taken together, our data proposes previously uncharacterized regulation of primary cilia assembly by TonEBP.
Collapse
Affiliation(s)
- Batchingis Chinbold
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
9
|
Tian J, Mallinger JC, Shi P, Ling D, Deleyrolle LP, Lin M, Khoshbouei H, Sarkisian MR. Aurora kinase A inhibition plus Tumor Treating Fields suppress glioma cell proliferation in a cilium-independent manner. Transl Oncol 2024; 45:101956. [PMID: 38640786 PMCID: PMC11053227 DOI: 10.1016/j.tranon.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
Tumor Treating Fields (TTFields) extend the survival of glioblastoma (GBM) patients by interfering with a broad range of tumor cellular processes. Among these, TTFields disrupt primary cilia stability on GBM cells. Here we asked if concomitant treatment of TTFields with other agents that interfere with GBM ciliogenesis further suppress GBM cell proliferation in vitro. Aurora kinase A (AURKA) promotes both cilia disassembly and GBM growth. Inhibitors of AURKA, such as Alisertib, inhibit cilia disassembly and increase ciliary frequency in various cell types. However, we found that Alisertib treatment significantly reduced GBM cilia frequency in gliomaspheres across multiple patient derived cell lines, and in patient biopsies treated ex vivo. This effect appeared glioma cell-specific as it did not reduce normal neuronal or glial cilia frequencies. Alisertib-mediated depletion of glioma cilia appears specific to AURKA and not AURKB inhibition, and attributable in part to autophagy pathway activation. Treatment of two different GBM patient-derived cell lines with TTFields and Alisertib resulted in a significant reduction in cell proliferation compared to either treatment alone. However, this effect was not cilia-dependent as the combined treatment reduced proliferation in cilia-depleted cell lines lacking, ARL13B, or U87MG cells which are naturally devoid of ARL13B+ cilia. Thus, Alisertib-mediated effects on glioma cilia may be a useful biomarker of drug efficacy within tumor tissue. Considering Alisertib can cross the blood brain barrier and inhibit intracranial growth, our data warrant future studies to explore whether concomitant Alisertib and TTFields exposure prolongs survival of brain tumor-bearing animals in vivo.
Collapse
Affiliation(s)
- Jia Tian
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Julianne C Mallinger
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ping Shi
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Dahao Ling
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Loic P Deleyrolle
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Min Lin
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Matthew R Sarkisian
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
10
|
Kulkarni H, Dagar N, Gaikwad AB. Targeting polo-like kinase 1 to treat kidney diseases. Cell Biochem Funct 2024; 42:e4099. [PMID: 39016459 DOI: 10.1002/cbf.4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Globally, ∼850 million individuals suffer from some form of kidney disease. This staggering figure underscores the importance of continued research and innovation in the field of nephrology to develop effective treatments and improve overall global kidney health. In current research, the polo-like kinase (Plk) family has emerged as a group of highly conserved enzyme kinases vital for proper cell cycle regulation. Plks are defined by their N-terminal kinase domain and C-terminal polo-box domain, which regulate their catalytic activity, subcellular localization, and substrate recognition. Among the Plk family members, Plk1 has garnered significant attention due to its pivotal role in regulating multiple mitotic processes, particularly in the kidneys. It is a crucial serine-threonine (Ser-Thr) kinase involved in cell division and genomic stability. In this review, we delve into the types and functions of Plks, focusing on Plk1's significance in processes such as cell proliferation, spindle assembly, and DNA damage repair. The review also underscores Plk1's vital contributions to maintaining kidney homeostasis, elucidating its involvement in nuclear envelope breakdown, anaphase-promoting complex/cyclosome activation, and the regulation of mRNA translation machinery. Furthermore, the review discusses how Plk1 contributes to the development and progression of kidney diseases, emphasizing its overexpression in conditions such as acute kidney injury, chronic kidney disease, and so forth. It also highlights the importance of exploring Plk1 modulators as targeted therapies for kidney diseases in future. This review will help in understanding the role of Plk1 in kidney disease development, paving the way for the discovery and development of novel therapeutic approaches to manage kidney diseases effectively.
Collapse
Affiliation(s)
- Hrushikesh Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
11
|
Li T, Liu M, Yu F, Yang S, Bu W, Liu K, Yang J, Ni H, Yang M, Yin H, Hong R, Li D, Zhao H, Zhou J. Pathologically relevant aldoses and environmental aldehydes cause cilium disassembly via formyl group-mediated mechanisms. J Mol Cell Biol 2024; 16:mjad079. [PMID: 38059869 PMCID: PMC11245732 DOI: 10.1093/jmcb/mjad079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Carbohydrate metabolism disorders (CMDs), such as diabetes, galactosemia, and mannosidosis, cause ciliopathy-like multiorgan defects. However, the mechanistic link of cilia to CMD complications is still poorly understood. Herein, we describe significant cilium disassembly upon treatment of cells with pathologically relevant aldoses rather than the corresponding sugar alcohols. Moreover, environmental aldehydes are able to trigger cilium disassembly by the steric hindrance effect of their formyl groups. Mechanistic studies reveal that aldehydes stimulate extracellular calcium influx across the plasma membrane, which subsequently activates the calmodulin-Aurora A-histone deacetylase 6 pathway to deacetylate axonemal microtubules and triggers cilium disassembly. In vivo experiments further show that Hdac6 knockout mice are resistant to aldehyde-induced disassembly of tracheal cilia and sperm flagella. These findings reveal a previously unrecognized role for formyl group-mediated cilium disassembly in the complications of CMDs.
Collapse
Affiliation(s)
- Te Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin 300462, China
| | - Fan Yu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Song Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwen Bu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hua Ni
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mulin Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hanxiao Yin
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Renjie Hong
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dengwen Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
12
|
Ekka R, Gutierrez A, Johnson KA, Tan M, Sütterlin C. Chlamydia trachomatis induces disassembly of the primary cilium to promote the intracellular infection. PLoS Pathog 2024; 20:e1012303. [PMID: 38885287 PMCID: PMC11213297 DOI: 10.1371/journal.ppat.1012303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Chlamydia trachomatis is a clinically important bacterium that infects epithelial cells of the genitourinary and respiratory tracts and the eye. These differentiated cells are in a quiescent growth state and have a surface organelle called a primary cilium, but the standard Chlamydia cell culture infection model uses cycling cells that lack primary cilia. To investigate if these differences are relevant, we performed infections with host cells that have a primary cilium. We found that C. trachomatis caused progressive loss of the primary cilium that was prevented by disrupting Aurora A (AurA), HDAC6 or calmodulin, which are components of the cellular cilia disassembly pathway. Stabilization of the primary cilium by targeting this pathway caused a large reduction in infectious progeny although there were no changes in chlamydial inclusion growth, chlamydial replication or the ultrastructural appearance of dividing and infectious forms (RBs and EBs, respectively). Thus, the presence of a primary cilium interfered with the production of infectious EBs at a late step in the developmental cycle. C. trachomatis infection also induced quiescent cells to re-enter the cell cycle, as detected by EdU incorporation in S-phase, and Chlamydia-induced cilia disassembly was necessary for cell cycle re-entry. This study therefore describes a novel host-pathogen interaction in which the primary cilium limits a productive Chlamydia infection, and the bacterium counteracts this host cell defense by activating the cellular cilia disassembly pathway.
Collapse
Affiliation(s)
- Roseleen Ekka
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Abraham Gutierrez
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Kirsten A. Johnson
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, United States of America
- Department of Medicine, University of California, Irvine, California, United States of America
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
13
|
Xu S, Zhang X, Li Z, Liu C, Liu Q, Chai H, Yao H, Luo Y, Li S, Li C. Characteristics of quiescent adult neural stem cells induced by the bFGF/BMP4 combination or BMP4 alone in vitro. Front Cell Neurosci 2024; 18:1391556. [PMID: 38841203 PMCID: PMC11151745 DOI: 10.3389/fncel.2024.1391556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Bone morphogenetic protein-4 (BMP4) is involved in regulation of neural stem cells (NSCs) proliferation, differentiation, migration and survival. It was previously thought that the treatment of NSCs with BMP4 alone induces astrocytes, whereas the treatment of NSCs with the bFGF/BMP4 combination induces quiescent neural stem cells (qNSCs). In this study, we performed bulk RNA sequencing (RNA-Seq) to compare the transcriptome profiles of BMP4-treated NSCs and bFGF/BMP4-treated NSCs, and found that both NSCs treated by these two methods were Sox2 positive qNSCs which were able to generate neurospheres. However, NSCs treated by those two methods exhibited different characteristics in state and the potential for neuronal differentiation based on transcriptome analysis and experimental results. We found that BMP4-treated NSCs tended to be in a deeper quiescent state than bFGF/BMP4-treated NSCs as the percentage of ki67-positive cells were lower in BMP4-treated NSCs. And after exposure to differentiated environment, bFGF/BMP4-treated NSCs generated more DCX-positive immature neurons and MAP2-positive neurons than BMP4-treated NSCs. Our study characterized qNSCs treated with BMP4 alone and bFGF/BMP4 combination, providing a reference for the scientific use of BMP4 and bFGF/BMP4-induced qNSCs models.
Collapse
Affiliation(s)
- Sutong Xu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhuoqun Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenming Liu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiulu Liu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huazhen Chai
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongkai Yao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Turan FB, Ercan ME, Firat-Karalar EN. A Chemically Inducible Organelle Rerouting Assay to Probe Primary Cilium Assembly, Maintenance, and Disassembly in Cultured Cells. Methods Mol Biol 2024; 2725:55-78. [PMID: 37856017 DOI: 10.1007/978-1-0716-3507-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The primary cilium is a conserved, microtubule-based organelle that protrudes from the surface of most vertebrate cells as well as sensory cells of many organisms. It transduces extracellular chemical and mechanical cues to regulate diverse cellular processes during development and physiology. Loss-of-function studies via RNA interference and CRISPR/Cas9-mediated gene knockouts have been the main tool for elucidating the functions of proteins, protein complexes, and organelles implicated in cilium biology. However, these methods are limited in studying acute spatiotemporal functions of proteins as well as the connection between their cellular positioning and functions. A powerful approach based on inducible recruitment of plus or minus end-directed molecular motors to the protein of interest enables fast and precise control of protein activity in time and in space. In this chapter, we present a chemically inducible heterodimerization method for functional perturbation of centriolar satellites, an emerging membrane-less organelle involved in cilium biogenesis and function. The method we present is based on rerouting of centriolar satellites to the cell center or the periphery in mammalian epithelial cells. We also describe how this method can be applied to study the temporal functions of centriolar satellites during primary cilium assembly, maintenance, and disassembly.
Collapse
Affiliation(s)
- F Basak Turan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - M Erdem Ercan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.
- Koc University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
15
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
16
|
Sakaji K, Ebrahimiazar S, Harigae Y, Ishibashi K, Sato T, Yoshikawa T, Atsumi GI, Sung CH, Saito M. MAST4 promotes primary ciliary resorption through phosphorylation of Tctex-1. Life Sci Alliance 2023; 6:e202301947. [PMID: 37726137 PMCID: PMC10509483 DOI: 10.26508/lsa.202301947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
The primary cilium undergoes cell cycle-dependent assembly and disassembly. Dysregulated ciliary dynamics are associated with several pathological conditions called ciliopathies. Previous studies showed that the localization of phosphorylated Tctex-1 at Thr94 (T94) at the ciliary base critically regulates ciliary resorption by accelerating actin remodeling and ciliary pocket membrane endocytosis. Here, we show that microtubule-associated serine/threonine kinase family member 4 (MAST4) is localized at the primary cilium. Suppressing MAST4 blocks serum-induced ciliary resorption, and overexpressing MAST4 accelerates ciliary resorption. Tctex-1 binds to the kinase domain of MAST4, in which the R503 and D504 residues are key to MAST4-mediated ciliary resorption. The ciliary resorption and the ciliary base localization of phospho-(T94)Tctex-1 are blocked by the knockdown of MAST4 or the expression of the catalytic-inactive site-directed MAST4 mutants. Moreover, MAST4 is required for Cdc42 activation and Rab5-mediated periciliary membrane endocytosis during ciliary resorption. These results support that MAST4 is a novel kinase that regulates ciliary resorption by modulating the ciliary base localization of phospho-(T94)Tctex-1. MAST4 is a potential new target for treating ciliopathies causally by ciliary resorption defects.
Collapse
Affiliation(s)
- Kensuke Sakaji
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sara Ebrahimiazar
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Harigae
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichi Ishibashi
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Takeya Sato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gen-Ichi Atsumi
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
17
|
Saito M, Otsu W, Miyadera K, Nishimura Y. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front Mol Biosci 2023; 10:1232188. [PMID: 37780208 PMCID: PMC10538646 DOI: 10.3389/fmolb.2023.1232188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
The primary cilium is a single immotile microtubule-based organelle that protrudes into the extracellular space. Malformations and dysfunctions of the cilia have been associated with various forms of syndromic and non-syndromic diseases, termed ciliopathies. The primary cilium is therefore gaining attention due to its potential as a therapeutic target. In this review, we examine ciliary receptors, ciliogenesis, and ciliary trafficking as possible therapeutic targets. We first discuss the mechanisms of selective distribution, signal transduction, and physiological roles of ciliary receptors. Next, pathways that regulate ciliogenesis, specifically the Aurora A kinase, mammalian target of rapamycin, and ubiquitin-proteasome pathways are examined as therapeutic targets to regulate ciliogenesis. Then, in the photoreceptors, the mechanism of ciliary trafficking which takes place at the transition zone involving the ciliary membrane proteins is reviewed. Finally, some of the current therapeutic advancements highlighting the role of large animal models of photoreceptor ciliopathy are discussed.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Mie University Research Center for Cilia and Diseases, Tsu, Mie, Japan
| |
Collapse
|
18
|
Lu C, Wu X, Wang X, Xiao Z, Ma L, Dai J, Jian F. Single-cell transcriptomics reveals ependymal subtypes related to cytoskeleton dynamics as the core driver of syringomyelia pathological development. iScience 2023; 26:106850. [PMID: 37275526 PMCID: PMC10232665 DOI: 10.1016/j.isci.2023.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Syringomyelia is a common clinical lesion associated with cerebrospinal fluid flow abnormalities. By a reversible model with chronic extradural compression to mimic human canalicular syringomyelia, we explored the spatiotemporal pathological alterations during syrinx development. The most dynamic alterations were observed in ependymal cells (EPCs), oligodendrocyte lineage, and microglia, as a response to neuroinflammation. Among different cell types, EPC subtypes experienced obvious dynamic alterations, which were accompanied by ultrastructural changes involving the ependymal cytoskeleton, cilia, and dynamic injury in parenchyma primarily around the central canal, corresponding to the single-cell transcripts. After effective decompression, the syrinx resolved with the recovery of pathological damage and overall neurological function, implying that for syringomyelia in the early stage, there was still endogenous repair potential coexisting with immune microenvironment imbalance. Ependymal remodeling and cilia restoration might be important for better resolution of syringomyelia and parenchymal injury recovery.
Collapse
Affiliation(s)
- Chunli Lu
- Division of Spine, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University (CCMU), Beijing, China
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, CCMU, Beijing, China
- Lab of Spinal Cord Injury and Function Reconstruction, CHINA-INI, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Wang
- Division of Spine, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University (CCMU), Beijing, China
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, CCMU, Beijing, China
- Lab of Spinal Cord Injury and Function Reconstruction, CHINA-INI, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Longbing Ma
- Division of Spine, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University (CCMU), Beijing, China
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, CCMU, Beijing, China
- Lab of Spinal Cord Injury and Function Reconstruction, CHINA-INI, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengzeng Jian
- Division of Spine, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University (CCMU), Beijing, China
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, CCMU, Beijing, China
- Lab of Spinal Cord Injury and Function Reconstruction, CHINA-INI, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| |
Collapse
|
19
|
Dougherty LL, Dutta S, Avasthi P. The ERK activator, BCI, inhibits ciliogenesis and causes defects in motor behavior, ciliary gating, and cytoskeletal rearrangement. Life Sci Alliance 2023; 6:e202301899. [PMID: 36914265 PMCID: PMC10011610 DOI: 10.26508/lsa.202301899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
MAPK pathways are well-known regulators of the cell cycle, but they have also been found to control ciliary length in a wide variety of organisms and cell types from Caenorhabditis elegans neurons to mammalian photoreceptors through unknown mechanisms. ERK1/2 is a MAP kinase in human cells that is predominantly phosphorylated by MEK1/2 and dephosphorylated by the phosphatase DUSP6. We have found that the ERK1/2 activator/DUSP6 inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), inhibits ciliary maintenance in Chlamydomonas and hTERT-RPE1 cells and assembly in Chlamydomonas These effects involve inhibition of total protein synthesis, microtubule organization, membrane trafficking, and KAP-GFP motor dynamics. Our data provide evidence for various avenues for BCI-induced ciliary shortening and impaired ciliogenesis that gives mechanistic insight into how MAP kinases can regulate ciliary length.
Collapse
Affiliation(s)
- Larissa L Dougherty
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
| | - Soumita Dutta
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prachee Avasthi
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Leu T, Denda J, Wrobeln A, Fandrey J. Hypoxia-Inducible Factor-2alpha Affects the MEK/ERK Signaling Pathway via Primary Cilia in Connection with the Intraflagellar Transport Protein 88 Homolog. Mol Cell Biol 2023; 43:174-183. [PMID: 37074220 PMCID: PMC10153011 DOI: 10.1080/10985549.2023.2198931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/25/2023] [Indexed: 04/20/2023] Open
Abstract
The ability of cells to communicate with their surrounding is a prerequisite for essential processes such as proliferation, apoptosis, migration, and differentiation. To this purpose, primary cilia serve as antennae-like structures on the surface of most mammalian cell types. Cilia allow signaling via hedgehog, Wnt or TGF-beta pathways. Their length, in part controlled by the activity of intraflagellar transport (IFT), is a parameter for adequate function of primary cilia. Here we show, in murine neuronal cells, that intraflagellar transport protein 88 homolog (IFT88) directly interacts with the hypoxia-inducible factor-2α (HIF-2α), hitherto known as an oxygen-regulated transcription factor. Furthermore, HIF-2α accumulates in the ciliary axoneme and promotes ciliary elongation under hypoxia. Loss of HIF-2α affected ciliary signaling in neuronal cells by decreasing transcription of Mek1/2 and Erk1/2. Targets of the MEK/ERK signaling pathway, such as Fos and Jun, were significantly decreased. Our results suggest that HIF-2α influences ciliary signaling by interacting with IFT88 under hypoxic conditions. This implies an unexpected and far more extensive function of HIF-2α than described before.
Collapse
Affiliation(s)
- Tristan Leu
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Jannik Denda
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Anna Wrobeln
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Melluso A, Secondulfo F, Capolongo G, Capasso G, Zacchia M. Bardet-Biedl Syndrome: Current Perspectives and Clinical Outlook. Ther Clin Risk Manag 2023; 19:115-132. [PMID: 36741589 PMCID: PMC9896974 DOI: 10.2147/tcrm.s338653] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The Bardet Biedl syndrome (BBS) is a rare inherited disorder considered a model of non-motile ciliopathy. It is in fact caused by mutations of genes encoding for proteins mainly localized to the base of the cilium. Clinical features of BBS patients are widely shared with patients suffering from other ciliopathies, especially autosomal recessive syndromic disorders; moreover, mutations in cilia-related genes can cause different clinical ciliopathy entities. Besides the best-known clinical features, as retinal degeneration, learning disabilities, polydactyly, obesity and renal defects, several additional clinical signs have been reported in BBS, expanding our understanding of the complexity of its clinical spectrum. The present review aims to describe the current knowledge of BBS i) pathophysiology, ii) clinical manifestations, highlighting both the most common and the less described features, iii) current and future perspective for treatment.
Collapse
Affiliation(s)
- Andrea Melluso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Floriana Secondulfo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Biogem Scarl, Ariano Irpino, AV, 83031, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Correspondence: Miriam Zacchia, Via Pansini 5, Naples, 80131, Italy, Tel +39 081 566 6650, Fax +39 081 566 6671, Email
| |
Collapse
|
22
|
Amack JD. Structures and functions of cilia during vertebrate embryo development. Mol Reprod Dev 2022; 89:579-596. [PMID: 36367893 PMCID: PMC9805515 DOI: 10.1002/mrd.23650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Cilia are hair-like structures that project from the surface of cells. In vertebrates, most cells have an immotile primary cilium that mediates cell signaling, and some specialized cells assemble one or multiple cilia that are motile and beat synchronously to move fluids in one direction. Gene mutations that alter cilia structure or function cause a broad spectrum of disorders termed ciliopathies that impact virtually every system in the body. A wide range of birth defects associated with ciliopathies underscores critical functions for cilia during embryonic development. In many cases, the mechanisms underlying cilia functions during development and disease remain poorly understood. This review describes different types of cilia in vertebrate embryos and discusses recent research results from diverse model systems that provide novel insights into how cilia form and function during embryo development. The work discussed here not only expands our understanding of in vivo cilia biology, but also opens new questions about cilia and their roles in establishing healthy embryos.
Collapse
Affiliation(s)
- Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA,,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, New York, USA
| |
Collapse
|