1
|
Jhawar S, Jha A, Talvacchio S, Kamihara J, Del Rivero J, Pacak K. Case Series of Patients With FGFR1-Related Pheochromocytoma and Paraganglioma With a Focus on Biochemical, Imaging Signatures and Treatment Options. Clin Endocrinol (Oxf) 2025. [PMID: 40091522 DOI: 10.1111/cen.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 03/19/2025]
Abstract
Pheochromocytoma and paraganglioma (together PPGL) are tumours with a high degree of heritability. Genetic landscape is divided into three clusters, cluster 1 (Krebs/pseudohypoxia signalling pathway), cluster 2 (kinase signalling pathway) and cluster 3 (Wnt signalling pathway). With increasing knowledge in the field of genetics, cluster-specific tumour characteristics, biochemical phenotype and imaging signatures are established in commonly found genes. The association of FGFR1 pathogenic mutations with PPGL have been recently described although its features are not yet well established. Here, we present four patients with PPGL who were found to have somatic FGFR1 pathogenic mutations. We discuss their clinical presentations, biochemical phenotypes, imaging signatures and treatment options that will be relevant for practicing physicians in managing these patients effectively.
Collapse
Affiliation(s)
- Sakshi Jhawar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Abhishek Jha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Talvacchio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Junne Kamihara
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jaydira Del Rivero
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Song L, Kostas M, Laerdahl JK, Skálová M, Janská T, Juzeniene A, Ræstad S, Krivokapic A, Kalantzopoulos GN, Soltes J, Vlk M, Kozempel J, Hassfjell S, Wesche J. Preparation and Characterization of an Engineered FGF1 Conjugated to 161Tb for Targeting of FGFRs. ACS OMEGA 2025; 10:5730-5743. [PMID: 39989790 PMCID: PMC11840634 DOI: 10.1021/acsomega.4c09179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
The fibroblast growth factor receptor family members, FGFR1-4, are frequently overexpressed in various solid tumors, including breast cancer and sarcomas. This overexpression highlights the potential of the family of FGFRs as promising targets for cancer therapy. However, conventional FGFR kinase inhibitors often encounter challenges such as limited efficacy or drug resistance. In this study, we pursue an alternative strategy by designing a conjugate of the FGFR ligand FGF1 with the radioisotope 161Tb, for targeted therapy in FGFR-overexpressing cancer cells. FGF1 was engineered (eFGF1) to incorporate a single cysteine at the C terminus for site-specific labeling with a DOTA chelator. eFGF1-DOTA was mixed with the radioisotope 161Tb under mild conditions, resulting in a labeling efficiency above 90%. The nonradioactive ligands were characterized by mass spectrometry, while radioligands were characterized by thin-layer chromatography. The targeting function of the radioligands was assessed through confocal microscopy, flow cytometry, and Western blot analysis, focusing on binding to cancer cells and the activation of downstream signaling pathways related to FGFR. When compared to MCF-7 and RD cell lines with low FGFR expression, eFGF1-DOTA-Tb[161Tb] radioligands demonstrated significantly higher accumulation in FGFR-overexpressing cell lines (MCF-7 FGFR1 and RMS559), leading to enhanced cytotoxicity. Besides radionuclides, eFGF1 can also deliver doxorubicin (DOX) into cancer cells. Considering these characteristics, eFGF1-DOTA-Tb[161Tb] and eFGF1-DOX emerge as promising candidates for FGFR-targeted cancer therapy, and further evaluation in vivo is warranted.
Collapse
Affiliation(s)
- Linlin Song
- Department
of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo 0379, Norway
- Centre
for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty
of Medicine, University of Oslo, Montebello, Oslo 0379, Norway
| | - Michal Kostas
- Department
of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo 0379, Norway
- Centre
for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty
of Medicine, University of Oslo, Montebello, Oslo 0379, Norway
| | - Jon K. Laerdahl
- Department
of Microbiology, Oslo University Hospital,
Rikshospitalet, Oslo 0424, Norway
- ELIXIR
Norway, Department of Informatics, University
of Oslo, Oslo 0316, Norway
| | - Marie Skálová
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Prague 1 110 00, Czech Republic
| | - Tereza Janská
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Prague 1 110 00, Czech Republic
| | - Asta Juzeniene
- Department
of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, 0379 Norway
| | - Svein Ræstad
- Department
of Tracer Technology, Institute of Energy
Technology, Instituttveien
18, Kjeller 2007, Norway
| | - Alexander Krivokapic
- Department
of Tracer Technology, Institute of Energy
Technology, Instituttveien
18, Kjeller 2007, Norway
| | - Georgios N. Kalantzopoulos
- Department
of Tracer Technology, Institute of Energy
Technology, Instituttveien
18, Kjeller 2007, Norway
| | - Jaroslav Soltes
- Centrum
výzkumu Řež s.r.o., Hlavní 130, Řež, Husinec 250 68, Czech Republic
| | - Martin Vlk
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Prague 1 110 00, Czech Republic
| | - Jan Kozempel
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Prague 1 110 00, Czech Republic
| | | | - Jørgen Wesche
- Department
of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo 0379, Norway
- Centre
for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty
of Medicine, University of Oslo, Montebello, Oslo 0379, Norway
- Department
of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway
| |
Collapse
|
3
|
Lin H, Hassan Safdar M, Washburn S, S Akhand S, Dickerhoff J, Ayers M, Monteiro M, Solorio L, Yang D, Wendt MK. Fibroblast growth receptor 1 is regulated by G-quadruplex in metastatic breast cancer. Commun Biol 2024; 7:963. [PMID: 39122837 PMCID: PMC11316068 DOI: 10.1038/s42003-024-06602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Limiting cellular plasticity is of key importance for the therapeutic targeting of metastatic breast cancer (MBC). Fibroblast growth receptor (FGFR) is a critical molecule in cellular plasticity and potent inhibitors of FGFR enzymatic activity have been developed, but kinase independent functions for this receptor also contribute to MBC progression. Herein, we evaluated several FGFR inhibitors and find that while FGFR-targeted kinase inhibitors are effective at blocking ligand-induced cell growth, dormant cells persist eventually giving rise to MBC progression. To more broadly target FGFR and cellular plasticity, we examined the FGFR1 proximal promoter, and found several sequences with potential to form G-quadruplex secondary structures. Circular dichroism was used to verify formation of G-quadruplex in the FGFR1 proximal promoter. Importantly, use of the clinical G-quadruplex-stabilizing compound, CX-5461, stabilized the FGFR1 G-quadruplex structures, blocked the transcriptional activity of the FGFR1 proximal promoter, decreased FGFR1 expression, and resulted in potent inhibition of pulmonary tumor formation. Overall, our findings suggest G-quadruplex-targeted compounds could be a potential therapeutic strategy to limit the cellular plasticity of FGFR1 overexpressing MBC.
Collapse
Affiliation(s)
- Hang Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Muhammad Hassan Safdar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Sarah Washburn
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Saeed S Akhand
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jonathan Dickerhoff
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Mitchell Ayers
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Marvis Monteiro
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Luis Solorio
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Danzhou Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Michael K Wendt
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Michel ZD, Aitken SF, Glover OD, Alejandro LO, Randazzo D, Dambkowski C, Martin D, Collins MT, Somerman MJ, Chu EY. Infigratinib, a selective FGFR1-3 tyrosine kinase inhibitor, alters dentoalveolar development at high doses. Dev Dyn 2023; 252:1428-1448. [PMID: 37435833 PMCID: PMC10784415 DOI: 10.1002/dvdy.642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Fibroblast growth factor receptor-3 (FGFR3) gain-of-function mutations are linked to achondroplasia. Infigratinib, a FGFR1-3 tyrosine kinase inhibitor, improves skeletal growth in an achondroplasia mouse model. FGFs and their receptors have critical roles in developing teeth, yet effects of infigratinib on tooth development have not been assessed. Dentoalveolar and craniofacial phenotype of Wistar rats dosed with low (0.1 mg/kg) and high (1.0 mg/kg) dose infigratinib were evaluated using micro-computed tomography, histology, and immunohistochemistry. RESULTS Mandibular third molars were reduced in size and exhibited aberrant crown and root morphology in 100% of female rats and 80% of male rats at high doses. FGFR3 and FGF18 immunolocalization and extracellular matrix protein expression were unaffected, but cathepsin K (CTSK) was altered by infigratinib. Cranial vault bones exhibited alterations in dimension, volume, and density that were more pronounced in females. In both sexes, interfrontal sutures were significantly more patent with high dose vs vehicle. CONCLUSIONS High dose infigratinib administered to rats during early stages affects dental and craniofacial development. Changes in CTSK from infigratinib in female rats suggest FGFR roles in bone homeostasis. While dental and craniofacial disruptions are not expected at therapeutic doses, our findings confirm the importance of dental monitoring in clinical studies.
Collapse
Affiliation(s)
- Zachary D Michel
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sarah F Aitken
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - Omar D Glover
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - Lucy O Alejandro
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - Davide Randazzo
- Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - David Martin
- QED Therapeutics, San Francisco, California, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Martha J Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Y Chu
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
- Department of Comprehensive Dentistry, Division of Cariology and Operative Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Sadasivam K, Manoharan JP, Palanisamy H, Vidyalakshmi S. The genomic landscape associated with resistance to aromatase inhibitors in breast cancer. Genomics Inform 2023; 21:e20. [PMID: 37415453 PMCID: PMC10326531 DOI: 10.5808/gi.23012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Aromatase inhibitors (AI) are drugs that are widely used in treating estrogen receptor (ER)-positive breast cancer patients. Drug resistance is a major obstacle to aromatase inhibition therapy. There are diverse reasons behind acquired AI resistance. This study aims at identifying the plausible cause of acquired AI resistance in patients administered with non-steroidal AIs (anastrozole and letrozole). We used genomic, transcriptomic, epigenetic, and mutation data of breast invasive carcinoma from The Cancer Genomic Atlas database. The data was then separated into sensitive and resistant sets based on patients' responsiveness to the non-steroidal AIs. A sensitive set of 150 patients and a resistant set of 172 patients were included for the study. These data were collectively analyzed to probe into the factors that might be responsible for AI resistance. We identified 17 differentially regulated genes (DEGs) among the two groups. Then, methylation, mutation, miRNA, copy number variation, and pathway analyses were performed for these DEGs. The top mutated genes (FGFR3, CDKN2A, RNF208, MAPK4, MAPK15, HSD3B1, CRYBB2, CDC20B, TP53TG5, and MAPK8IP3) were predicted. We also identified a key miRNA - hsa-mir-1264 regulating the expression of CDC20B. Pathway analysis revealed HSD3B1 to be involved in estrogen biosynthesis. This study reveals the involvement of key genes that might be associated with the development of AI resistance in ER-positive breast cancers and hence may act as a potential prognostic and diagnostic biomarker for these patients.
Collapse
Affiliation(s)
- Kirithika Sadasivam
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, Tamil Nadu, India
| | | | - Hema Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, Tamil Nadu, India
| | | |
Collapse
|
6
|
Circular RNA circFGFR1 Functions as an Oncogene in Glioblastoma Cells through Sponging to hsa-miR-224-5p. J Immunol Res 2022; 2022:7990251. [PMID: 35059468 PMCID: PMC8764274 DOI: 10.1155/2022/7990251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, increased studies have shown the important regulatory role of circular RNA (circRNA) in cancer progression and development, including glioblastoma (GBM). However, the function of circRNAs in glioblastoma is still largely unclear. Here, we state that circFGFR1 is elevated in glioma cells, resulting in aggravated glioma aggravated malignancy. The upregulation of circFGFR1 also promotes glioma growth in mouse xenograft models. Furthermore, CXCR4 level in glioma cells is positively correlated with circFGFR1 level, and higher CXCR4 expression is found in circFGFR1 overexpression groups. The effect of circFGFR1 on glioma malignancy is abolished in CXCR4 knockout cells. Then, RIP, RNA pull-down, and luciferase reporter assay results showed that hsa-miR-224-5p directly binds to circFGFR1 and CXCR4 mRNA. The CXCR4 3′-untranslated region (UTR) activated luciferase activity was reduced with hsa-miR-224-5p transfection, while it is reversed when cotransfected with circFGFR1, indicating that circFGFR1 acts as a hsa-miR-244-5p sponge to increase CXCR4 expression. The hsa-miR-224-5p expression is negatively corrected with the glioma malignancy through inhibiting CXCR4 level. Besides, the circFGFR1-induced regulation in glioma malignancy is also abrogated in hsa-miR-224-5p knockout cells. Taken together, our findings suggest that circFGFR1 plays a critical role in the tumorigenic behaviors in glioma cells by upregulating CXCR4 expression via sponging to hsa-miR-224-5p. These findings provide a new perspective on circRNAs during GBM development.
Collapse
|
7
|
Song M, Finley SD. Mechanistic characterization of endothelial sprouting mediated by pro-angiogenic signaling. Microcirculation 2021; 29:e12744. [PMID: 34890488 PMCID: PMC9285777 DOI: 10.1111/micc.12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Objective We aim to quantitatively characterize the crosstalk between VEGF‐ and FGF‐mediated angiogenic signaling and endothelial sprouting, to gain mechanistic insights and identify novel therapeutic strategies. Methods We constructed an experimentally validated hybrid agent‐based mathematical model that characterizes endothelial sprouting driven by FGF‐ and VEGF‐mediated signaling. We predicted the total sprout length, number of sprouts, and average length by the mono‐ and co‐stimulation of FGF and VEGF. Results The experimentally fitted and validated model predicts that FGF induces stronger angiogenic responses in the long‐term compared with VEGF stimulation. Also, FGF plays a dominant role in the combination effects in endothelial sprouting. Moreover, the model suggests that ERK and Akt pathways and cellular responses contribute differently to the sprouting process. Last, the model predicts that the strategies to modulate endothelial sprouting are context‐dependent, and our model can identify potential effective pro‐ and anti‐angiogenic targets under different conditions and study their efficacy. Conclusions The model provides detailed mechanistic insight into VEGF and FGF interactions in sprouting angiogenesis. More broadly, this model can be utilized to identify targets that influence angiogenic signaling leading to endothelial sprouting and to study the effects of pro‐ and anti‐angiogenic therapies.
Collapse
Affiliation(s)
- Min Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA.,Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Qu H, Zhou M, Yan Z, Wang H, Rustgi VK, Zhang S, Gevaert O, Metaxas DN. Genetic mutation and biological pathway prediction based on whole slide images in breast carcinoma using deep learning. NPJ Precis Oncol 2021; 5:87. [PMID: 34556802 PMCID: PMC8460699 DOI: 10.1038/s41698-021-00225-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Breast carcinoma is the most common cancer among women worldwide that consists of a heterogeneous group of subtype diseases. The whole-slide images (WSIs) can capture the cell-level heterogeneity, and are routinely used for cancer diagnosis by pathologists. However, key driver genetic mutations related to targeted therapies are identified by genomic analysis like high-throughput molecular profiling. In this study, we develop a deep-learning model to predict the genetic mutations and biological pathway activities directly from WSIs. Our study offers unique insights into WSI visual interactions between mutation and its related pathway, enabling a head-to-head comparison to reinforce our major findings. Using the histopathology images from the Genomic Data Commons Database, our model can predict the point mutations of six important genes (AUC 0.68-0.85) and copy number alteration of another six genes (AUC 0.69-0.79). Additionally, the trained models can predict the activities of three out of ten canonical pathways (AUC 0.65-0.79). Next, we visualized the weight maps of tumor tiles in WSI to understand the decision-making process of deep-learning models via a self-attention mechanism. We further validated our models on liver and lung cancers that are related to metastatic breast cancer. Our results provide insights into the association between pathological image features, molecular outcomes, and targeted therapies for breast cancer patients.
Collapse
Affiliation(s)
- Hui Qu
- Department of Computer Science, Rutgers University, Piscataway, NJ, USA
| | - Mu Zhou
- Sensebrain Research, Princeton, NJ, USA
| | | | - He Wang
- School of Medicine, Yale University, New Haven, CT, USA
| | - Vinod K Rustgi
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Shaoting Zhang
- SenseTime Research and Shanghai AI Laboratory, Shanghai, China.
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Dimitris N Metaxas
- Department of Computer Science, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
9
|
Crosstalk between Tumor-Infiltrating Immune Cells and Cancer-Associated Fibroblasts in Tumor Growth and Immunosuppression of Breast Cancer. J Immunol Res 2021; 2021:8840066. [PMID: 34337083 PMCID: PMC8294979 DOI: 10.1155/2021/8840066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Signals from the tumor microenvironment (TME) have a profound influence on the maintenance and progression of cancers. Chronic inflammation and the infiltration of immune cells in breast cancer (BC) have been strongly associated with early carcinogenic events and a switch to a more immunosuppressive response. Cancer-associated fibroblasts (CAFs) are the most abundant stromal component and can modulate tumor progression according to their secretomes. The immune cells including tumor-infiltrating lymphocytes (TILs) (cytotoxic T cells (CTLs), regulatory T cells (Tregs), and helper T cell (Th)), monocyte-infiltrating cells (MICs), myeloid-derived suppressor cells (MDSCs), mast cells (MCs), and natural killer cells (NKs) play an important part in the immunological balance, fluctuating TME between protumoral and antitumoral responses. In this review article, we have summarized the impact of these immunological players together with CAF secreted substances in driving BC progression. We explain the crosstalk of CAFs and tumor-infiltrating immune cells suppressing antitumor response in BC, proposing these cellular entities as predictive markers of poor prognosis. CAF-tumor-infiltrating immune cell interaction is suggested as an alternative therapeutic strategy to regulate the immunosuppressive microenvironment in BC.
Collapse
|
10
|
Forouzanfar F, Sadeghnia HR. Fibroblast Growth Factors as Tools in the Management of Neuropathic Pain Disorders. Curr Drug Targets 2021; 21:1034-1043. [PMID: 32324511 DOI: 10.2174/1389450121666200423084205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Neuropathic pain is caused by a damage to or dysfunction of the somatosensory nervous system. The main mechanisms underlying neuropathic pain include ectopic activity in nociceptive nerves, peripheral and central sensitization, impaired inhibitory modulation, and microglial activation. Fibroblast growth factors (FGFs) make up a large family of growth factors that mediate neural development, metabolism, and function through three main key signaling pathways, including RAS/MAP kinase pathway, PI3 kinase/Akt pathway, and PLCγ. An association between the members of the FGF system and the improvement of neuropathic pain has become evident, recently. These signaling molecules may be expected to provide new drug targets for the treatment of neuropathic pain. To the best of our knowledge, it is the first study that reviews the relationship between some members of the FGF system and neuropathic pain.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Poźniak M, Porębska N, Krzyścik MA, Sokołowska-Wędzina A, Jastrzębski K, Sochacka M, Szymczyk J, Zakrzewska M, Otlewski J, Opaliński Ł. The cytotoxic conjugate of highly internalizing tetravalent antibody for targeting FGFR1-overproducing cancer cells. Mol Med 2021; 27:46. [PMID: 33962559 PMCID: PMC8103757 DOI: 10.1186/s10020-021-00306-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Antibody drug conjugates (ADCs) represent one of the most promising approaches in the current immuno-oncology research. The precise delivery of cytotoxic drugs to the cancer cells using ADCs specific for tumor-associated antigens enables sparing the healthy cells and thereby reduces unwanted side effects. Overexpression of fibroblast growth factor receptor 1 (FGFR1) has been demonstrated in numerous tumors and thereby constitutes a convenient molecular target for selective cancer treatment. We have recently engineered tetravalent anti-FGFR1 antibody, T-Fc, and have demonstrated that it displays extremely efficient internalization into FGFR1 producing cells, a feature highly desirable in the ADC approach. We have revealed that T-Fc mediates clustering of FGFR1, largely enhancing the uptake of FGFR1-T-Fc complexes by induction of clathrin-independent endocytic routes. The aim of this study was to obtain highly internalizing cytotoxic conjugate of the T-Fc for specific delivery of drugs into FGFR1-positive cancer cells. METHODS Conjugation of the T-Fc to a cytotoxic payload, vcMMAE, was carried out via maleimide chemistry, yielding the T-Fc-vcMMAE. The specific binding of the T-Fc-vcMMAE conjugate to FGFR1 was confirmed in vitro with BLI technique. Confocal microscopy and flow cytometry were applied to determine FGFR1-dependence of the T-Fc-vcMMAE internalization. Western blot analyses of FGFR1-dependent signaling were conducted to assess the impact of the T-Fc-vcMMAE on FGFR1 activation and initiation of downstream signaling cascades. Finally, using FGFR1-negative and FGFR1-possitive cell lines, the cytotoxic potential of the T-Fc-vcMMAE was evaluated. RESULTS We have performed the efficient conjugation of the tetravalent engineered antibody with a cytotoxic drug and generated FGFR1-specific ADC molecule, T-Fc-vcMMAE. We have demonstrated that T-Fc-vcMMAE conjugate exhibits high selectivity and affinity for FGFR1, similarly to T-Fc. Furthermore, we have shown that T-Fc constitutes an effective drug delivery vehicle as T-Fc-vcMMAE was efficiently and selectively internalized by FGFR1-producing cells leading to their death. Interestingly, we show that the efficiency of the uptake of T-Fc-vcMMAE corresponds well with the cytotoxicity of the conjugate, but doesn't correlate with the FGFR1expression level. CONCLUSION Our results show that T-Fc-vcMMAE fulfills the key criteria for the successful cytotoxic drug carrier in a targeted approach against FGFR1-positive cancer cells. Furthermore, our data implicate that not solely expression level of the receptor, but rather its cellular trafficking should be taken into account for selection of suitable molecular targets and cancer models for successful ADC approach.
Collapse
MESH Headings
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Fluorescent Antibody Technique
- Gene Expression
- Genetic Engineering
- Humans
- Immunoconjugates/chemistry
- Immunoconjugates/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
Collapse
Affiliation(s)
- Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Mateusz Adam Krzyścik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Sokołowska-Wędzina
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Martyna Sochacka
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jakub Szymczyk
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
12
|
Krook MA, Reeser JW, Ernst G, Barker H, Wilberding M, Li G, Chen HZ, Roychowdhury S. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br J Cancer 2021; 124:880-892. [PMID: 33268819 PMCID: PMC7921129 DOI: 10.1038/s41416-020-01157-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are aberrantly activated through single-nucleotide variants, gene fusions and copy number amplifications in 5-10% of all human cancers, although this frequency increases to 10-30% in urothelial carcinoma and intrahepatic cholangiocarcinoma. We begin this review by highlighting the diversity of FGFR genomic alterations identified in human cancers and the current challenges associated with the development of clinical-grade molecular diagnostic tests to accurately detect these alterations in the tissue and blood of patients. The past decade has seen significant advancements in the development of FGFR-targeted therapies, which include selective, non-selective and covalent small-molecule inhibitors, as well as monoclonal antibodies against the receptors. We describe the expanding landscape of anti-FGFR therapies that are being assessed in early phase and randomised controlled clinical trials, such as erdafitinib and pemigatinib, which are approved by the Food and Drug Administration for the treatment of FGFR3-mutated urothelial carcinoma and FGFR2-fusion cholangiocarcinoma, respectively. However, despite initial sensitivity to FGFR inhibition, acquired drug resistance leading to cancer progression develops in most patients. This phenomenon underscores the need to clearly delineate tumour-intrinsic and tumour-extrinsic mechanisms of resistance to facilitate the development of second-generation FGFR inhibitors and novel treatment strategies beyond progression on targeted therapy.
Collapse
Affiliation(s)
- Melanie A Krook
- Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Julie W Reeser
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gabrielle Ernst
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Hannah Barker
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Max Wilberding
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gary Li
- QED Therapeutics Inc., San Francisco, CA, USA
| | - Hui-Zi Chen
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sameek Roychowdhury
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
13
|
Mohammadipour HS, Forouzanfar F, Forouzanfar A. The Role of Type 2 Fibroblast Growth Factor in Periodontal Therapy. Curr Drug Targets 2021; 22:310-317. [PMID: 33153420 DOI: 10.2174/1389450121999201105152639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
The prevalence of periodontitis is around 20-50% in the global population. If it is not treated, it can cause tooth loss. Periodontal treatment aims at preserving the patient's teeth from various damages, including infection control and restoring lost periodontal tissue. The periodontium has great biological regenerative potential, and several biomaterials can be used to improve the outcome of periodontal treatment. To achieve the goal of periodontal tissue regeneration, numerous studies have used fibroblast growth factor 2 (FGF2) to stimulate the regeneration of both the soft tissue and bone. FGF2 induced a significant increment in the percentage of bone fill, bone mineral levels of the defect sites, length of the regenerated periodontal ligament, angiogenesis, connective tissue formation on the root surface, formation of dense fibers bound to the alveolar bone and newly synthesized cementum in teeth. This review will open further avenues to better understand the FGF2 therapy for periodontal regeneration.
Collapse
Affiliation(s)
| | - Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Forouzanfar
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Agrawal S, Maity S, AlRaawi Z, Al-Ameer M, Kumar TKS. Targeting Drugs Against Fibroblast Growth Factor(s)-Induced Cell Signaling. Curr Drug Targets 2021; 22:214-240. [PMID: 33045958 DOI: 10.2174/1389450121999201012201926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric proteins that regulate a plethora of developmental and pathophysiological processes, including tissue repair, wound healing, angiogenesis, and embryonic development. Binding of FGF to fibroblast growth factor receptor (FGFR), a tyrosine kinase receptor, is facilitated by a glycosaminoglycan, heparin. Activated FGFRs phosphorylate the tyrosine kinase residues that mediate induction of downstream signaling pathways, such as RAS-MAPK, PI3K-AKT, PLCγ, and STAT. Dysregulation of the FGF/FGFR signaling occurs frequently in cancer due to gene amplification, FGF activating mutations, chromosomal rearrangements, integration, and oncogenic fusions. Aberrant FGFR signaling also affects organogenesis, embryonic development, tissue homeostasis, and has been associated with cell proliferation, angiogenesis, cancer, and other pathophysiological changes. OBJECTIVE This comprehensive review will discuss the biology, chemistry, and functions of FGFs, and its current applications toward wound healing, diabetes, repair and regeneration of tissues, and fatty liver diseases. In addition, specific aberrations in FGFR signaling and drugs that target FGFR and aid in mitigating various disorders, such as cancer, are also discussed in detail. CONCLUSION Inhibitors of FGFR signaling are promising drugs in the treatment of several types of cancers. The clinical benefits of FGF/FGFR targeting therapies are impeded due to the activation of other RTK signaling mechanisms or due to the mutations that abolish the drug inhibitory activity on FGFR. Thus, the development of drugs with a different mechanism of action for FGF/FGFR targeting therapies is the recent focus of several preclinical and clinical studies.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Zeina AlRaawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Musaab Al-Ameer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | | |
Collapse
|
15
|
Sobhani N, Fassl A, Mondani G, Generali D, Otto T. Targeting Aberrant FGFR Signaling to Overcome CDK4/6 Inhibitor Resistance in Breast Cancer. Cells 2021; 10:293. [PMID: 33535617 PMCID: PMC7912842 DOI: 10.3390/cells10020293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) is the most common cause of cancer-related death in women worldwide. Therapies targeting molecular pathways altered in BC had significantly enhanced treatment options for BC over the last decades, which ultimately improved the lives of millions of women worldwide. Among various molecular pathways accruing substantial interest for the development of targeted therapies are cyclin-dependent kinases (CDKs)-in particular, the two closely related members CDK4 and CDK6. CDK4/6 inhibitors indirectly trigger the dephosphorylation of retinoblastoma tumor suppressor protein by blocking CDK4/6, thereby blocking the cell cycle transition from the G1 to S phase. Although the CDK4/6 inhibitors abemaciclib, palbociclib, and ribociclib gained FDA approval for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative BC as they significantly improved progression-free survival (PFS) in randomized clinical trials, regrettably, some patients showed resistance to these therapies. Though multiple molecular pathways could be mechanistically responsible for CDK4/6 inhibitor therapy resistance, one of the most predominant ones seems to be the fibroblast growth factor receptor (FGFR) pathway. FGFRs are involved in many aspects of cancer formation, such as cell proliferation, differentiation, and growth. Importantly, FGFRs are frequently mutated in BC, and their overexpression and/or hyperactivation correlates with CDK4/6 inhibitor resistance and shortened PFS in BC. Intriguingly, the inhibition of aberrant FGFR activity is capable of reversing the resistance to CDK4/6 inhibitors. This review summarizes the molecular background of FGFR signaling and discusses the role of aberrant FGFR signaling during cancer development in general and during the development of CDK4/6 inhibitor resistance in BC in particular, together with other possible mechanisms for resistance to CDK4/6 inhibitors. Subsequently, future directions on novel therapeutic strategies targeting FGFR signaling to overcome such resistance during BC treatment will be further debated.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Giuseppina Mondani
- Department Breast Oncoplastic Surgery Royal Cornwall Hospital, Treliske, Truro TR13LJ, UK;
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, 34149 Trieste, Italy;
| | - Tobias Otto
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
16
|
Noronha V, Panda G, Shetty O, Patil A, Patil V, Chandrani P, Chougule A, Prabhash K. FGFR alterations in head-and-neck cancer. CANCER RESEARCH, STATISTICS, AND TREATMENT 2021. [DOI: 10.4103/crst.crst_297_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Santolla MF, Maggiolini M. The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives. Cancers (Basel) 2020; 12:E3029. [PMID: 33081025 PMCID: PMC7603197 DOI: 10.3390/cancers12103029] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges in the treatment of breast cancer is the heterogeneous nature of the disease. With multiple subtypes of breast cancer identified, there is an unmet clinical need for the development of therapies particularly for the less tractable subtypes. Several transduction mechanisms are involved in the progression of breast cancer, therefore making the assessment of the molecular landscape that characterizes each patient intricate. Over the last decade, numerous studies have focused on the development of tyrosine kinase inhibitors (TKIs) to target the main pathways dysregulated in breast cancer, however their effectiveness is often limited either by resistance to treatments or the appearance of adverse effects. In this context, the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging transduction pathway and therapeutic target to be fully investigated among the diverse anti-cancer settings in breast cancer. Here, we have recapitulated previous studies dealing with FGFR molecular aberrations, such as the gene amplification, point mutations, and chromosomal translocations that occur in breast cancer. Furthermore, alterations in the FGF/FGFR signaling across the different subtypes of breast cancer have been described. Next, we discussed the functional interplay between the FGF/FGFR axis and important components of the breast tumor microenvironment. Lastly, we pointed out the therapeutic usefulness of FGF/FGFR inhibitors, as revealed by preclinical and clinical models of breast cancer.
Collapse
Affiliation(s)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
18
|
Actomyosin and the MRTF-SRF pathway downregulate FGFR1 in mesenchymal stromal cells. Commun Biol 2020; 3:576. [PMID: 33067523 PMCID: PMC7567845 DOI: 10.1038/s42003-020-01309-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Both biological and mechanical signals are known to influence cell proliferation. However, biological signals are mostly studied in two-dimensions (2D) and the interplay between these different pathways is largely unstudied. Here, we investigated the influence of the cell culture environment on the response to bFGF, a widely studied and important proliferation growth factor. We observed that human mesenchymal stromal cells (hMSCs), but not fibroblasts, lose the ability to respond to soluble or covalently bound bFGF when cultured on microfibrillar substrates. This behavior correlated with a downregulation of FGF receptor 1 (FGFR1) expression of hMSCs on microfibrillar substrates. Inhibition of actomyosin or the MRTF/SRF pathway decreased FGFR1 expression in hMSCs, fibroblasts and MG63 cells. To our knowledge, this is the first time FGFR1 expression is shown to be regulated through a mechanosensitive pathway in hMSCs. These results add to the sparse literature on FGFR1 regulation and potentially aid designing tissue engineering constructs that better control cell proliferation.
Collapse
|
19
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
20
|
D'Angelo A, Bagby S, Galli IC, Bortoletti C, Roviello G. Overview of the clinical use of erdafitinib as a treatment option for the metastatic urothelial carcinoma: where do we stand. Expert Rev Clin Pharmacol 2020; 13:1139-1146. [PMID: 32935605 DOI: 10.1080/17512433.2020.1823830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/11/2020] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Erdafitinib is the first orally administered pan-fibroblast growth factor receptor (FGFR) kinase inhibitor approved by the Food and Drug Administration (FDA). AREAS COVERED Specifically binding to FGFR family (FGFR-1 to FGFR-4), erdafitinib leads to reduced cell signaling and cellular apoptosis. Coupled with the ability to bind to vascular endothelial growth factor 2 (VEGFR-2), KIT, Fms-related tyrosine kinase 4 (FLT4), platelet-derived growth factor receptor α and β (PDGFR-α and PDGFR-β), RET and colony-stimulating factor 1 receptor (CSF-1 R), erdafitinib has further reported antitumor features causing cell killing. EXPERT OPINION In this review, we provide a comprehensive overview of erdafitinib chemical structure, pharmacologic properties, and current knowledge of clinical efficacy in the treatment of locally advanced or metastatic urothelial carcinoma. This treatment, recently approved in the U.S., is available for adult patients harboring FGFR2/FGFR3 genetic alterations who progressed within 12 months of an adjuvant or neoadjuvant chemotherapy regimen including platinum or progressed during or after prior a chemotherapy regimen including platinum.
Collapse
Affiliation(s)
- Alberto D'Angelo
- Department of Biology and Biochemistry, University of Bath , Bath, UK
| | - Stefan Bagby
- Department of Biology and Biochemistry, University of Bath , Bath, UK
| | - Ilaria Camilla Galli
- Department of Health Sciences, University of Florence, Section of Pathological Anatomy, University Hospital of Florence , Florence, Italy
| | | | | |
Collapse
|
21
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
22
|
Song M, Finley SD. ERK and Akt exhibit distinct signaling responses following stimulation by pro-angiogenic factors. Cell Commun Signal 2020; 18:114. [PMID: 32680529 PMCID: PMC7368799 DOI: 10.1186/s12964-020-00595-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Angiogenesis plays an important role in the survival of tissues, as blood vessels provide oxygen and nutrients required by the resident cells. Thus, targeting angiogenesis is a prominent strategy in many different settings, including both tissue engineering and cancer treatment. However, not all of the approaches that modulate angiogenesis lead to successful outcomes. Angiogenesis-based therapies primarily target pro-angiogenic factors such as vascular endothelial growth factor-A (VEGF) or fibroblast growth factor (FGF) in isolation, and there is a limited understanding of how these promoters combine together to stimulate angiogenesis. Targeting one pathway could be insufficient, as alternative pathways may compensate, diminishing the overall effect of the treatment strategy. Methods To gain mechanistic insight and identify novel therapeutic strategies, we have developed a detailed mathematical model to quantitatively characterize the crosstalk of FGF and VEGF intracellular signaling. The model focuses on FGF- and VEGF-induced mitogen-activated protein kinase (MAPK) signaling to promote cell proliferation and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, which promotes cell survival and migration. We fit the model to published experimental datasets that measure phosphorylated extracellular regulated kinase (pERK) and Akt (pAkt) upon FGF or VEGF stimulation. We validate the model with separate sets of data. Results We apply the trained and validated mathematical model to characterize the dynamics of pERK and pAkt in response to the mono- and co-stimulation by FGF and VEGF. The model predicts that for certain ranges of ligand concentrations, the maximum pERK level is more responsive to changes in ligand concentration compared to the maximum pAkt level. Also, the combination of FGF and VEGF indicates a greater effect in increasing the maximum pERK compared to the summation of individual effects, which is not seen for maximum pAkt levels. In addition, our model identifies the influential species and kinetic parameters that specifically modulate the pERK and pAkt responses, which represent potential targets for angiogenesis-based therapies. Conclusions Overall, the model predicts the combination effects of FGF and VEGF stimulation on ERK and Akt quantitatively and provides a framework to mechanistically explain experimental results and guide experimental design. Thus, this model can be utilized to study the effects of pro- and anti-angiogenic therapies that particularly target ERK and/or Akt activation upon stimulation with FGF and VEGF. Video Abstract
Collapse
Affiliation(s)
- Min Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA. .,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA. .,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Talaei A, Farkhondeh T, Forouzanfar F. Fibroblast Growth Factor: Promising Target for Schizophrenia. Curr Drug Targets 2020; 21:1344-1353. [PMID: 32598256 DOI: 10.2174/1389450121666200628114843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Schizophrenia is one of the most debilitating mental disorders around the world. It is characterized by neuroanatomical or biochemical changes. The role of the fibroblast growth factors (FGFs) system in schizophrenia has received considerable attention in recent years. Various changes in the gene expression and/or level of FGFs have been implicated in the etiology, symptoms and progression of schizophrenia. For example, studies have substantiated an interaction between FGFs and the signaling pathway of dopamine receptors. To understand the role of this system in schizophrenia, the databases of Open Access Journals, Web of Science, PubMed (NLM), LISTA (EBSCO), and Google Scholar with keywords including fibroblast growth factors, dopamine, schizophrenia, psychosis, along with neurotrophic were searched. In conclusion, the FGF family represent molecular candidates as new drug targets and treatment targets for schizophrenia.
Collapse
Affiliation(s)
- Ali Talaei
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Psychiatry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Li B, Lv L, Li W. 1,25-Dihydroxy vitamin D3 inhibits the Ras-MEK-ERK pathway and regulates proliferation and apoptosis of papillary thyroid carcinoma. Steroids 2020; 159:108585. [PMID: 31982425 DOI: 10.1016/j.steroids.2020.108585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To explore the effects of 1,25-dihydroxy vitamin D3 [1,25-(OH)2D3] on the proliferation and apoptosis of papillary thyroid carcinoma and to investigate its possible mechanism. MATERIALS AND METHODS The papillary thyroid carcinoma cell line TPC-1 was cultured, and the cells were divided into control group, the 1,25-(OH)2D3 group, and the 1,25-(OH)2D3 + ML-098 (Ras agonist) group. Cell proliferation was observed by MTT. The colony formation viability of cells was detected by the plate cloning assay. Cell migration was observed by the scratch assay. Apoptosis was detected by flow cytometry. The expression of Ki67 and Caspase-3, and the activity of Ras-MEK-ERK pathway were detected by western blot. RESULTS Compared with the Control group, the proliferation, colony formation and migration ability of cells in the drug group were significantly decreased. The number of apoptotic cells was significantly increased, the expression of Ki67 protein was decreased, and the expression of Caspase-3 protein was upregulated. The phosphorylation levels of Ras, p-ERK1/2, and p-MEK were decreased. Compared with the drug group, the cloning and migration biological activity of cells in the 1,25-(OH)2D3 + ML-098 group was significantly enhanced (p < 0.05). The number of apoptotic cells was decreased, while the Ki67 protein level was increased. In addition, the Caspase-3 protein level was decreased, and the Ras-MEK-ERK level was also enhanced. Furthermore, the antitumor activity of 1,25-(OH)2D3 was reversed by the Ras agonist ML-098. CONCLUSION 1,25-(OH)2D3 can inhibit the activity and promote apoptosis of the papillary thyroid carcinoma cell line TPC-1, and its mechanism may be related to the inhibition of the Ras-MEK-ERK pathway activity, thus affecting the proliferation and expression of apoptosis-related proteins.
Collapse
Affiliation(s)
- Baoyuan Li
- Department of Thyroid, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Liping Lv
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Weilong Li
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China.
| |
Collapse
|
25
|
Zhou Z, Wu B, Tang X, Ke R, Zou Q. Comprehensive Analysis of Fibroblast Growth Factor Receptor (FGFR) Family Genes in Breast Cancer by Integrating Online Databases and Bioinformatics. Med Sci Monit 2020; 26:e923517. [PMID: 32381997 PMCID: PMC7236589 DOI: 10.12659/msm.923517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Fibroblast growth factor receptors (FGFRs) play vital roles in the development and progression of human cancers. This study aimed to comprehensively understand the prognostic performances of FGFR1-4 expression in breast cancer (BC) by mining databases. MATERIAL AND METHODS The levels of FGFR1-4 expression in BC were analyzed by online databases, GEPIA (Gene Expression Profiling Interactive Analysis) and UALCAN. Survival analysis of FGFR1-4 was carried out by Kaplan-Meier plotter. GSE74146 was downloaded from Gene Expression Omnibus (GEO) and analyzed by GEO2R to screen the differentially expressed genes (DEGs) between FGFR2-silenced BC cells and control. Over-presentation for DEGs were done by Enrichr tool. Networks of DEGs were obtained by using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. Hub genes were identified by cytoHubba Cytoscape plugin. RESULTS The online databases showed that FGFR1 was significantly downregulated whereas FGFR3 was upregulated in BC. Kaplan-Meier plotter demonstrated the upregulation of both FGFR1 and FGFR3 indicated favorable relapse free survival (RFS) whereas FGFR4 overexpression predicted unfavorable overall survival (OS) in BC patients. Importantly, our results showed FGFR2 overexpression robustly predicted favorable OS and RFS in BC. Further bioinformatics analysis of GSE74146 suggested FGFR2 mainly participated in regulating degradation and organization of the extracellular matrix and signaling of retinoic acid. Moreover, CXCL8, CD44, MMP9, and BMP7 were identified as crucial FGFR2-related hub genes. CONCLUSIONS Our study comprehensively analyzed the prognostic values of FGFR1-4 expression in BC and proposed FGFR2 might serve as a promising biomarker. However, the underlying mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Zhaoping Zhou
- Department of Plastic and Reconstructive Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Xinjie Tang
- Department of Plastic and Reconstructive Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Ronghu Ke
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Qiang Zou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
26
|
Du J, Zhao Q, Liu K, Li Z, Fu F, Zhang K, Zhang H, Zheng M, Zhao Y, Zhang S. FGFR2/STAT3 Signaling Pathway Involves in the Development of MMTV-Related Spontaneous Breast Cancer in TA2 Mice. Front Oncol 2020; 10:652. [PMID: 32432040 PMCID: PMC7214838 DOI: 10.3389/fonc.2020.00652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
The Tientsin Albino 2 (TA2) mouse has a high incidence of spontaneous breast cancer (SBC) in the absence of external inducers or carcinogens. The initiation of SBC is related to mouse mammary tumor virus (MMTV) infection and pregnancy. Pathologic analysis showed that breast cancer cells in TA2 mice are triple negative. Our previous study confirmed that fibroblast growth factor receptor 2 (FGFR2) expression increased in SBC tissue compared to that in their corresponding normal breast tissues of TA2 mice. The present study focused on the function of the FGFR2/STAT3 signaling pathway in the initiation of SBC. In this study, the expression of FGF3, FGFR2, STAT3, p-STAT3Tyr705, and p-STAT3Ser727 was detected in serum and normal mammary gland tissues of TA2 mice with different number of pregnancies and SBC. The proliferation, invasiveness, and migration abilities of MA-891 cells from TA2 SBC were compared before and after cryptotanshinone and Stattic treatment. Transient siRNA transfection was used to detect the invasiveness, and migration abilities to avoid the off-targets effects. Downstream protein expression of STAT3 was also detected in MA-891 cells and TA2 xenografts from MA-891 inoculation. In addition, STAT3 expression was analyzed in 139 cases of human breast cancer including 117 cases of non-triple negative breast cancer (non-TNBC) (group I) and 22 cases of triple-negative breast cancer (TNBC) (group II). Results of our study confirmed that MMTV-LTR amplification, and FGFR2, p-STAT3Tyr705, p-STAT3Ser727 expression increased with the number of pregnancies in the breast tissue of TA2 mice and were the highest in SBC. Serum FGF3 expression of SBC was higher than it of TA2 mice with different number of pregnancies. After STAT3 was inhibited, the abilities of proliferation, invasiveness, and migration in MA-891 decreased and the expression levels of STAT3, p-STAT3Ser727, p-STAT3Tyr705, Bcl2, cyclin D1, and c-myc in MA-891 and animal xenografts were also down-regulated. In human breast cancer, STAT3 expression was significantly higher in TNBC than that in non-TNBC. Our results showed that the FGFR2/STAT3 signaling pathway may be related to SBC initiation in TA2 mice. Inhibition of STAT3 can decrease proliferation, invasiveness, and migration in MA-891 cells and the growth of TA2 xenografts.
Collapse
Affiliation(s)
- Jiaxing Du
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Kai Liu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Zugui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Fangmei Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Kexin Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Yongjie Zhao
- Departments of General Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
27
|
Kong S, Cao Y, Li X, Li Z, Xin Y, Meng Y. MiR-3116 sensitizes glioma cells to temozolomide by targeting FGFR1 and regulating the FGFR1/PI3K/AKT pathway. J Cell Mol Med 2020; 24:4677-4686. [PMID: 32181582 PMCID: PMC7176860 DOI: 10.1111/jcmm.15133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/11/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is a brain tumour that is often diagnosed, and temozolomide (TMZ) is a common chemotherapeutic drug used in glioma. Yet, resistance to TMZ is a chief hurdle towards curing the malignancy. The current work explores the pathways and involvement of miR-3116 in the TMZ resistance. miR-3116 and FGFR1 mRNA were quantified by real-time PCR in malignant samples and cell lines. Appropriate assays were designed for apoptosis, viability, the ability to form colonies and reporter assays to study the effects of the miR-3116 or FGFR1. The involvement of PI3K/AKT signalling was assessed using Western blotting. Tumorigenesis was evaluated in an appropriate xenograft mouse model in vivo. This work revealed that the levels of miR-3116 dipped in samples resistant to TMZ, while increased miR-3116 caused an inhibition of the tumour features mentioned above to hence augment TMZ sensitivity. miR-3116 was found to target FGFR1. When FGFR1 was overexpressed, resistance to TMZ was augmented and reversed the sensitivity caused by miR-3116. Our findings further confirmed PI3K/AKT signalling pathway is involved in this action. In conclusion, miR-3116 sensitizes glioma cells to TMZ through FGFR1 downregulation and the PI3K/AKT pathway inactivation. Our results provide a strategy to overcome TMZ resistance in glioma treatment.
Collapse
Affiliation(s)
- Shiqi Kong
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yingxiao Cao
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Xin Li
- Department of NeurosurgeryThe First People's Hospital of ShenyangShenyangChina
| | - Zhenzhong Li
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yuling Xin
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yan Meng
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| |
Collapse
|
28
|
Sobhani N, Fan C, O. Flores-Villanueva P, Generali D, Li Y. The Fibroblast Growth Factor Receptors in Breast Cancer: from Oncogenesis to Better Treatments. Int J Mol Sci 2020; 21:E2011. [PMID: 32188012 PMCID: PMC7139621 DOI: 10.3390/ijms21062011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Breast cancer (BC) is the most frequent form of malignancy and second only to lung cancer as cause of deaths in women. Notwithstanding many progresses made in the field, metastatic BC has a very poor prognosis. As therapies are becoming more personalized to meet the needs of patients, a better knowledge of the molecular biology leading to the disease unfolds the possibility to project more precise compounds or antibodies targeting definite alteration at the molecular level and functioning on such cancer-causing molecules expressed in cancer cells of patients, or present as antigens on the surface of cancer cell membranes. Fibroblast growth factor receptor (FGFR) is one of such druggable targets, activated by its own ligands -namely the Fibroblast Growth Factors (FGFs). This pathway provides a vast range of interesting molecular targets pursued at different levels of clinical investigation. Herein we provide an update on the knowledge of genetic alterations of the receptors in breast cancer, their role in tumorigenesis and the most recent drugs against this particular receptor for the treatment of the disease.
Collapse
Affiliation(s)
- Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada Di Fiume 447, 34149 Trieste, Italy;
| | - Chunmei Fan
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
| | - Pedro O. Flores-Villanueva
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada Di Fiume 447, 34149 Trieste, Italy;
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
| |
Collapse
|
29
|
Abdel-Mohsen HT, Abd El-Meguid EA, El Kerdawy AM, Mahmoud AEE, Ali MM. Design, synthesis, and molecular docking of novel 2-arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Arch Pharm (Weinheim) 2020; 353:e1900340. [PMID: 32045054 DOI: 10.1002/ardp.201900340] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
Abstract
A novel series of 2-arylbenzothiazoles 9, 10, and 12 were designed and synthesized as VEGFR-2/FGFR-1/PDGFR-β multiangiokinase inhibitors targeting breast cancer. Structural elongation of the known 2-phenylbenzothiazole scaffold (type I protein kinase inhibitor [PKI]), was carried out to afford series of type II PKIs 9, 10, and 12. Compounds 9d, 9f, 9i, and 9k exhibited potent multikinase inhibitory activity with IC50 values of 0.19, 0.18, 0.17, and 0.13 μM, respectively, against VEGFR-2; IC50 values of 0.28, 0.37, 0.19, and 0.27 μM, respectively, against FGFR-1; and IC50 values of 0.07, 0.04, 0.08, and 0.14 μM, respectively, against PDGFR-β. Moreover, the synthesized benzothiazoles demonstrated promising cytotoxic activity against the MCF-7 cell line. The most potent benzothiazoles 9d and 9i exhibited IC50 values of 7.83 and 6.58 μM, respectively, on the MCF-7 cell line in comparison to sorafenib (III), which showed IC50 = 4.33 μM. Additionally, 9d and 9i showed VEGFR-2 inhibitory activity in MCF-7 cells of 81% and 83% when compared with sorafenib (III), which showed 88% inhibition. Molecular docking of the designed compounds in the VEGFR-2 and FGFR-1 active sites showed the accommodation of the 2-phenylbenzothiazole moiety, as reported, in the hinge region of the receptor tyrosine kinase (RTK)-binding site, while the amide moiety is involved in hydrogen bond interactions with the key amino acids in the gate area; this in turn directs the aryl group to the hydrophobic allosteric back pocket of the RTKs in a type II-like binding mode. The synthesized benzothiazoles showed satisfactory ADME properties for further optimization in drug discovery.
Collapse
Affiliation(s)
- Heba T Abdel-Mohsen
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Eman A Abd El-Meguid
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Cairo, Egypt
| | - Abeer E E Mahmoud
- Department of Biochemistry, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, Egypt
| | - Mamdouh M Ali
- Department of Biochemistry, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, Egypt
| |
Collapse
|
30
|
Figueroa V, Rodríguez MS, Lanari C, Lamb CA. Nuclear action of FGF members in endocrine-related tissues and cancer: Interplay with steroid receptor pathways. Steroids 2019; 152:108492. [PMID: 31513818 DOI: 10.1016/j.steroids.2019.108492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
Dysregulation of the fibroblast growth factors/fibroblast growth factor receptor (FGF/FGFR) pathway has been implicated in a wide range of human disorders and several members have been localized in the nuclear compartment. Hormone-activated steroid receptors or ligand independent activated receptors form nuclear complexes that activate gene transcription. This review aims to highlight the interplay between the steroid receptor and the FGF/FGFR pathways and focuses on the current knowledge on nuclear action of FGF members in endocrine-related tissues and cancer. The nuclear trafficking and targets of FGF/FGFR members and the available evidence on the interplay with steroid hormones and receptors is described. Finally, the data on aberrant FGF/FGFR signaling is summarized and the nuclear action of FGF members on endocrine resistant breast cancer is highlighted. Identifying the mechanisms underlying FGF-induced endocrine resistance will be important to understand how to efficiently target endocrine-related diseases and even enhance or restore endocrine sensitivity in hormone receptor positive tumors.
Collapse
Affiliation(s)
- Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Caroline Ana Lamb
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
31
|
Shin WS, Lee HW, Lee ST. Catalytically inactive receptor tyrosine kinase PTK7 activates FGFR1 independent of FGF. FASEB J 2019; 33:12960-12971. [PMID: 31490704 PMCID: PMC6902674 DOI: 10.1096/fj.201900932r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein tyrosine kinase 7 (PTK7), a catalytically defective receptor protein tyrosine kinase (RPTK), plays an oncogenic role by activating an unidentified TKI-258 (dovitinib)-sensitive RPTK in esophageal squamous cell carcinoma (ESCC) cells. Here, we demonstrate that among TKI-258–sensitive RPTKs, fibroblast growth factor receptor (FGFR) 1 is significantly up-regulated in ESCC tissues and cell lines. We show that PTK7 colocalizes with FGFR1 and binds it via its extracellular domain in human embryonic kidney 293 and ESCC TE-10 cells. PTK7 knockdown not only reduced ligand-free and fibroblast growth factor (FGF)-induced phosphorylation of FGFR1 but also the interaction of signaling adaptor proteins with FGFR1 and activation of downstream signaling proteins in TE-10 cells. In addition, PTK7 knockdown reduced FGF-induced oncogenic phenotypes including proliferation, anchorage-independent colony formation, wound healing, and invasion in ESCC cells. Taken together, our data demonstrate that PTK7 binds and activates FGFR1 independent of FGF and thus increases oncogenicity of PTK7- and FGFR1-positive cancers such as ESCC.—Shin, W.-S., Lee, H. W., Lee, S.-T. Catalytically inactive receptor tyrosine kinase PTK7 activates FGFR1 independent of FGF.
Collapse
Affiliation(s)
- Won-Sik Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hae Won Lee
- Department of Thoracic Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Cheng Y, Li N, Eapen A, Parajuli R, Mehta R. Somatic BRCA2 Mutation-Positive Concurrent Accessory Male Breast Cancer (BC) and Non-Small Cell Lung Cancer (NSCLC): Excellent Efficacy of Palbociclib, Fulvestrant and Leuprolide in Platinum-Exposed and Endocrine-Refractory BC Associated with Cyclin D1 and FGFR1 Amplification and of Carboplatin, Paclitaxel and Radiation in NSCLC. Case Rep Oncol 2019; 12:494-499. [PMID: 31320873 PMCID: PMC6616081 DOI: 10.1159/000501304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023] Open
Abstract
Accessory male breast cancer (BC) is a rare entity and is associated with poor outcome. We report a 76-year-old patient who was diagnosed with concurrent accessory breast and primary lung cancer, both were positive for somatic BRCA-2 (E1593D) mutation. He received concurrent radiation and platinum-based chemotherapy for lung cancer with good response, but breast cancer progressed in about 8 months, and further progressed after single agent anastrozole in 10 months. Next Generation Sequencing (NGS) of breast cancer was also positive for CCND1 (Cyclin D1) and FGFR1 amplifications. Despite a poor molecular profile of breast cancer, and progression following platinum-based chemotherapy and anastrozole, he was successfully treated with the Cyclin-dependent kinase (CKD) 4/6 inhibitor palbociclib, estrogen-receptor down-regulator fulvestrant and luteinizing hormone-releasing hormone (LHRH) agonist leuprolide with the duration of response of 21 months which has exceeded duration of response to prior treatments. This case is of interest given FDA expanded the approval of palbociclib in combination with AI or fulvestrant for male patients with HR-positive, HER2-negative metastatic breast cancer in Apr. 2019 based on real-world data from electronic health records.
Collapse
Affiliation(s)
- Yu Cheng
- Division of Hematology and Oncology, UC Irvine Medical Center, Irvine, California, USA
| | - Ningjing Li
- Lutheran General Hospital, Park Ridge, Illinois, USA
| | - Ann Eapen
- Division of Hematology and Oncology, UC Irvine Medical Center, Irvine, California, USA
| | - Ritesh Parajuli
- Division of Hematology and Oncology, UC Irvine Medical Center, Irvine, California, USA
| | - Rita Mehta
- Division of Hematology and Oncology, UC Irvine Medical Center, Irvine, California, USA
| |
Collapse
|
33
|
Santolla MF, Vivacqua A, Lappano R, Rigiracciolo DC, Cirillo F, Galli GR, Talia M, Brunetti G, Miglietta AM, Belfiore A, Maggiolini M. GPER Mediates a Feedforward FGF2/FGFR1 Paracrine Activation Coupling CAFs to Cancer Cells toward Breast Tumor Progression. Cells 2019; 8:cells8030223. [PMID: 30866584 PMCID: PMC6468560 DOI: 10.3390/cells8030223] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
The FGF2/FGFR1 paracrine loop is involved in the cross-talk between breast cancer cells and components of the tumor stroma as cancer-associated fibroblasts (CAFs). By quantitative PCR (qPCR), western blot, immunofluorescence analysis, ELISA and ChIP assays, we demonstrated that 17β-estradiol (E2) and the G protein estrogen receptor (GPER) agonist G-1 induce the up-regulation and secretion of FGF2 via GPER together with the EGFR/ERK/c-fos/AP-1 signaling cascade in (ER)-negative primary CAFs. Evaluating the genetic alterations from METABRIC and TCGA datasets, we then assessed that FGFR1 is the most frequently amplified FGFRs family member and its amplification/expression associates with shorter survival rates in breast cancer patients. Therefore, in order to assess the functional FGF2/FGFR1 interplay between CAFs and breast cancer cells, we generated the FGFR1-knockout MDA-MB-231 cells using CRISPR/Cas9 genome editing strategy. Using conditioned medium from estrogen-stimulated CAFs, we established that the activation of FGF2/FGFR1 paracrine signaling triggers the expression of the connective tissue growth factor (CTGF), leading to the migration and invasion of MDA-MB-231 cells. Our findings shed new light on the role elicited by estrogens through GPER in the activation of the FGF2/FGFR1 signaling. Moreover, our findings may identify further biological targets that could be considered in innovative combination strategies halting breast cancer progression.
Collapse
Affiliation(s)
- Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | | | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giulia Raffaella Galli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Giuseppe Brunetti
- University of Natural Resources and Life Sciences, 1180 Vienna, Austria.
| | | | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
34
|
Zheng W, Cao L, Ouyang L, Zhang Q, Duan B, Zhou W, Chen S, Peng W, Xie Y, Fan Q, Gong D. Anticancer activity of 1,25-(OH) 2D 3 against human breast cancer cell lines by targeting Ras/MEK/ERK pathway. Onco Targets Ther 2019; 12:721-732. [PMID: 30774359 PMCID: PMC6348968 DOI: 10.2147/ott.s190432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose Breast cancer is the most common cancer among women with ~1.67 million cases diagnosed annually worldwide, and ~1 in 37 women succumbed to breast cancer. Over the past decades, new therapeutic strategy has substantially improved the curative effect for women with breast cancer. However, the currently available ER-targeted and HER-2-based therapies are not effective for triple-negative breast cancer patients, which account for ~15% of total breast cancer cases. Materials and methods We reported that 1,25-(OH)2D3, a biologically active form of vitamin D3, exhibited a strong anticancer effects on the proliferation, migration, invasion, cell cycle arrest, and apoptosis of both ER-positive (MCF-7) and ER-negative breast cancer cells (MDA-MB-453). Results The anticancer effect of 1,25-(OH)2D3 was more potent compared to the classical chemotherapeutics tamoxifen in MDA-MB-453 cells. Furthermore, we also found that 1,25-(OH)2D3 decreased the expression of Ras and resulted in decrease of the phosphorylation of downstream proteins MEK and ERK1/2, indicating that 1,25-(OH)2D3 plays its anticancer roles through targeting the Ras/MEK/ERK signaling pathway. In addition, Ras overexpression abrogated 1,25-(OH)2D3-induced G0/G1 cell cycle arrest and apoptosis of breast cancer cells, as well as the suppression of proliferation, migration, and invasion. Our study suggested that 1,25-(OH)2D3 suppressed breast cancer tumorigenesis by targeting the Ras/MEK/ERK signaling pathway. Conclusion 1,25-(OH)2D3 might serve as a promising supplement for breast cancer drug therapy, especially for the ER-negative breast cancer and drug-resistant breast cancer.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China,
| | - Lin Cao
- Department of Breast Surgery, Maternal and Child Health Care Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Linna Ouyang
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China,
| | - Qian Zhang
- School of Clinical Medicine, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Bofeng Duan
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China,
| | - Wei Zhou
- Department of Medical Examination, Zhuzhou Central Hospital, Zhuzhou, Hunan 412007, China
| | - Shan Chen
- Department of General Surgery, The Third Hospital of Changsha, Changsha, Hunan 410013, China
| | - Wei Peng
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China,
| | - Yi Xie
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China,
| | - Qing Fan
- Department of Gastrointestinal and Breast and Thyroid Surgery, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan 410100, China
| | - Daoxing Gong
- Department of Surgery, The Medical School, University of South China, Hengyang, Hunan 421000, China
| |
Collapse
|
35
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|