1
|
Coleraus F, Azevedo CDMS, Pavlak JL, Marek CB, Guimarães ATB. Multigenerational exposure to trace concentrations of DDT residues in Wistar rats: Effects on biometric development and biochemical parameters. Toxicol Rep 2025; 14:102012. [PMID: 40235714 PMCID: PMC11997410 DOI: 10.1016/j.toxrep.2025.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
The Organochlorine Dichlorodiphenyltrichloroethane (DDT) and its residues, Dichlorodiphenyldichloroethane (DDD) and Dichlorodiphenyldichloroethylene (DDE), are Persistent Organic Pollutants (POPs) that bioaccumulate, persist in the environment, and magnify through the food chain. Chronic exposure is linked to oxidative stress and mitochondrial dysfunction, emphasizing the need to study its multigenerational impacts on health and development. This study investigated the effects of multigenerational exposure to DDT residues in Wistar rats. Pregnant females were provided water containing trace concentrations of p,p'-DDD (0.015 µM) and p,p'-DDE (0.006 µM) from the first day of gestation (PD0) until the end of the life cycle of two generations (F1 and F2). Biometric and biochemical evaluations were conducted at PND35 and PND105, including weight, naso-anal length, and abdominal circumference. Hepatic, renal, and adipose tissues were analyzed macro- and microscopically, along with biochemical analyses. Statistical analyses included ANOVA and generalized linear models. The hypothetical model confirmed that no significant variations occurred between generations, indicating that effects were driven by group, age, and sex differences. The analysis revealed that DDD/DDE synergism and female sex significantly influenced hepatic, renal, cerebral, and white adipose tissues. DDD/DDE exposure increased hepatic enzyme activity, reduced cerebral cholinesterase and renal antioxidants, and altered adipocyte mass. Age also influenced enzymatic activity and development, with notable differences between PND35 and PND105 in tissues and biometric indices. In conclusion, DDD/DDE exposure, particularly in females, significantly impacted hepatic, renal, cerebral, and adipose tissues. The results highlight that observed effects depend on group, age, and sex, emphasizing the risks associated with environmental contamination.
Collapse
Affiliation(s)
- Fernanda Coleraus
- Laboratory of Cellular Toxicology, Center for Medical and Pharmaceutical Sciences, State University of Western Parana (Unioeste), Cascavel, Parana 85819110, Brazil
- Center for Toxicological Information and Assistence (CIATox), University Hospital of Western Parana (HUOP/Unioeste), Cascavel, Parana 85806470, Brazil
- Laboratory of Biological Research, Center for Biological and Health Sciences, Western Paraná State University (Unioeste), Cascavel, Parana 85819-110, Brazil
| | - Camilla de Marchi Sanches Azevedo
- Laboratory of Biological Research, Center for Biological and Health Sciences, Western Paraná State University (Unioeste), Cascavel, Parana 85819-110, Brazil
| | - Jaine Luana Pavlak
- Laboratory of Cellular Toxicology, Center for Medical and Pharmaceutical Sciences, State University of Western Parana (Unioeste), Cascavel, Parana 85819110, Brazil
| | - Carla Brugin Marek
- Laboratory of Cellular Toxicology, Center for Medical and Pharmaceutical Sciences, State University of Western Parana (Unioeste), Cascavel, Parana 85819110, Brazil
- Center for Toxicological Information and Assistence (CIATox), University Hospital of Western Parana (HUOP/Unioeste), Cascavel, Parana 85806470, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratory of Biological Research, Center for Biological and Health Sciences, Western Paraná State University (Unioeste), Cascavel, Parana 85819-110, Brazil
| |
Collapse
|
2
|
Xiao F, Zhong J, Liu G, Liu X, Wu H, Wen X, Zhao H, Wu K. Co-Exposure to Different Zinc Concentrations and High-Fat Diet Modules Endoplasmic Reticulum Stress and Lipotoxicity through the MTF-1/GPx7 Axis in Yellow Catfish ( Pelteobagrus fulvidraco). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10559-10573. [PMID: 40238493 DOI: 10.1021/acs.jafc.4c11635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
As industrialization and societal development accelerate, various organisms, including humans, are exposed to environmental hazards, such as zinc (Zn) and high-fat diet (HFD). These widespread exposures pose significant threats to public health; however, the combined effects and underlying mechanisms of these environmental factors on lipotoxicity remain unclear. In this study, the yellow catfish (Pelteobagrus fulvidraco) was used as a model to investigate the impact of different Zn levels and HFD coexposure on hepatic lipotoxicity. The results indicated that low concentrations of Zn (L-Zn) significantly reduced hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum (ER) stress compared to HFD-only treatment, while high concentrations of Zn (H-Zn) exacerbated these effects. Mechanistically, L-Zn alleviated ER stress by scavenging H2O2 and O2•- within the ER via the MTF-1/GPx7 pathway. Glutathione peroxidase 7 (GPx7), an ER-resident antioxidant enzyme, played a crucial role in mitigating ER stress and lipotoxicity, with metal-responsive transcription factor 1 (MTF-1) identified as its regulator. This study is the first to demonstrate the dual role of Zn in hepatic lipotoxicity, revealing the Zn2+/MTF-1/GPx7 axis as a key modulator of ER stress and lipid metabolism. These findings highlight the importance of considering combined environmental exposures in public health and environmental risk assessments.
Collapse
Affiliation(s)
- Fei Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Juncheng Zhong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Geng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Xuebo Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Hao Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| |
Collapse
|
3
|
Zhang Y, Shu M, Shan S, Liu H, Zhang Y, Song C, Xu Q, Fan Y, Lu C. Perfluorohexane Sulfonic Acid Disrupts the Immune Microenvironment for Spermatogenesis by Damaging the Structure of the Blood-Testis Barrier in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409383. [PMID: 39823537 PMCID: PMC11904953 DOI: 10.1002/advs.202409383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Perfluorohexane sulfonic acid (PFHxS) is extensively used in waterproof coatings and fire-fighting foams, and several studies have found it to be a potential health hazard, but there is still unknown about its effects on spermatogenesis. Our results showed that PFHxS-treated mice have significant reproductive toxicity, including a decrease in sperm count and motility, and the levels of sex hormones (P < 0.05). Concurrently, structural abnormalities are observed in sperm, affecting ≈60-75% of those in the PFHxS-treated group. Additionally, it is found that the structure of the blood-testis barrier (BTB) is damaged after PFHxS treatment, leading to higher expression levels of inflammatory cytokines in the microenvironment for spermatogenesis. Moreover, the expression of proteins associated with mitochondrial biogenesis, including PTEN-induced kinase 1 (PINK1) and NADPH oxidase 4 (NOX4), is dysregulated in the testes after PFHxS treatment. Based on metabolome data, the differential metabolite 3-hydroxybutanoic acid is identified in the PFHxS-treated group, which can regulate the histone Kac levels, especially H3K4ac and H3K9ac. In summary, the results of this study suggest that in the testes of PFHxS-treated mice, inflammatory factors disrupt the mitochondrial function and metabolic profiles and hinder the progress of gene transcription through histone Kac, ultimately causing sperm dysfunction.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Epidemiology, School of Public HealthNantong UniversityNantong226001China
| | - Mingxue Shu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Shilin Shan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Huiying Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Yucheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Chenyang Song
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjing211166China
| |
Collapse
|
4
|
El-Gammal HL, Omar F, Hyder A. Ferulic acid protects rat offspring from maternal high-fat, high-fructose diet-induced toxicity and developmental retardation through a direct effect on pancreatic islets. Food Chem Toxicol 2025; 197:115265. [PMID: 39832708 DOI: 10.1016/j.fct.2025.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Maternal obesity predisposes offspring to type 2 diabetes (T2D) through a direct chronic effect of lipids on pancreatic β-cell neogenesis. β-cells produce FABP3 to bind and metabolize fatty acids. Ferulic acid (FA) is a natural product that may inhibit fatty acids' binding to FABP3, preventing their toxicity. It is aimed to evaluate the consequences of maternal feeding on high-fat, high fructose diet (HFFD) and the role of FA on the offspring. Four-week-old female rats were fed HFFD for 9 weeks prior to and throughout gestation and lactation to develop T2D. A group of them received 50 mg/kg FA daily. Offspring were sampled on gestational day 18 (GD18), and postnatal days (PND) 3 and 30. HFFD increased offspring's blood glucose, insulin, Homa-IR, HbA1c, triglycerides, cholesterol, intrahepatic and intra-insular lipid droplets. The mechanism of islet inflammation and apoptosis, detected by Il-1b and cleaved caspase3, involved the nuclear translocation of NFκB p65. Maternal HFFD caused developmental retardations in offspring's ovaries, testes, kidney and liver. Coupling FA treatment with the maternal HFFD maintained normoglycemia, lipidemia, and healthy islets, and prevented developmental retardations. FA administration to T2D mothers revealed positive effects on the offspring that is related to its direct protective effect on pancreatic β-cells.
Collapse
Affiliation(s)
- Hekmat L El-Gammal
- Zoology Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Fatma Omar
- Zoology Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Ayman Hyder
- Zoology Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
5
|
de Oliveira Santos A, Quadreli DH, Fernandes GSA, de Souza Reis LSL, de Andrade Bernal Fagiani M, Marin LCS, Batista VRG, Teixeira GR, de Lima Paz PJ, Castilho C, de Oliveira Vidotto Figueiredo M, Giometti IC. Quercetin Supplementation Reduces Oxidative Stress in the Testes of Wistar Rats Fed a High-Fat Diet. Am J Reprod Immunol 2025; 93:e70048. [PMID: 39835467 DOI: 10.1111/aji.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/01/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
PROBLEM A high-fat diet (HFD) predisposes animals to glucose intolerance, dyslipidemia and testicular oxidative stress, and impairs sperm production in rats. Quercetin is a flavonoid with antioxidant, anti-inflammatory, and lipolytic actions and is a potential supplement to combat the oxidative stress caused by HFD and its harmful effects on reproduction. This study evaluated the effects of quercetin supplementation at doses of 10 and 20 mg/day on reproductive parameters and testicular oxidative stress in Wistar rats fed a diet rich in pork fat and fructose. METHOD OF STUDY The rats received a basal diet or HFD for 2 months, after which the animals fed the HFD received daily supplementation of 0, 10, or 20 mg of quercetin for another 2 months. Oxidative stress, histological alterations, and the expression of oxidative, inflammatory, and apoptotic mediators in the testes were evaluated. RESULTS Animals fed the HFD had a lower dietary intake and body, epididymis, and duct weights, regardless of the presence of quercetin. There were no changes in testicular weight, germinal epithelium diameter, sperm motility and morphology, or expression of testicular inflammatory genes (p > 0.05). There was a reduction in the oxidative stress index and oxidized glutathione in rats that received the HFD and 20 mg of quercetin compared with the HF group without quercetin. No difference was observed in the expression of BAX, BCL2, TNFα, caspase 3, or AR between the groups. CONCLUSION Daily quercetin supplementation dose-dependently reduces testicular oxidative stress in Wistar rats fed a diet rich in pork fat and fructose.
Collapse
Affiliation(s)
- Aline de Oliveira Santos
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Debora Hipolito Quadreli
- Laboratory of Toxicology and Metabolic Disorders of Reproduction, State University of Londrina (UEL), Londrina, Brazil
| | | | | | - Marcela de Andrade Bernal Fagiani
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Lauren Chrys Soato Marin
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Victor Rogério Garcia Batista
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Patrik Junior de Lima Paz
- School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| | - Caliê Castilho
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Mayara de Oliveira Vidotto Figueiredo
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Ines Cristina Giometti
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
6
|
Li Q, Zhang J, Li Q, Zhong S, Zhou X, Zou F, Deng Y, Luo X, Shen L, Chen X, Guo R. Quantification of testicular fat content: the value of evaluating testicular function after cryptorchidism surgery. Pediatr Res 2024; 96:1788-1793. [PMID: 38769403 DOI: 10.1038/s41390-024-03272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND To investigate the correlation between testicular fat content (TFC) and sex hormone levels in patients with cryptorchidism and its value in assessing postsurgical testicular function. METHODS Pelvic MRI with the mDIXON Quant sequence was performed on 23 cryptorchidism patients and 15 normal controls. The TFC before and after surgery was measured and compared. The correlations between cryptorchid TFC and testosterone (TSTO), follicle-stimulating hormone (FSH), and estradiol (E2) levels were analyzed, as was the specificity of TFC and each hormone for assessing testicular function after surgery. RESULTS The preoperative cryptorchid TFC (3.06% ± 0.74) was higher than that of the normal controls (1.36% ± 0.49). TSTO was negatively correlated with the cryptorchid TFC (r = -0.698), while FSH and E2 were positively associated with the cryptorchid TFC (r = 0.658, 0.676). Cryptorchid TFC after surgery (2.01% ± 0.55) was lower than the preoperative TFC, but hormone levels were not significantly different. The TFC after surgery (0.864) had a larger AUC value than did TSTO (0.639), FSH (0.597), and E2 (0.586). CONCLUSION Noninvasive quantification of cryptorchid TFC using the mDIXON Quant sequence is more specific than hormone levels for assessing postsurgical changes in testicular function. IMPACT The cryptorchid testicular fat content is significantly higher than the normal testicular fat content. Cryptorchid testicular fat content is negatively correlated with presurgical serum TSTO levels and positively correlated with presurgical FSH and E2 levels. Pre- and postoperative changes in cryptorchid testicular fat content change are more sensitive than changes in TSTO, FSH, or E2 levels. Noninvasive cryptorchid testicular fat content quantified by the mDIXON Quant sequence is more specific than serum TSTO, FSH, and E2 levels for assessing changes in testicular function after cryptorchidism surgery.
Collapse
Affiliation(s)
- Qingling Li
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China
- Department of VIP Medical Center, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China
| | - Jie Zhang
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China
| | - Quanxi Li
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China
| | - Shuangshuang Zhong
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China
| | - Xiang Zhou
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China
| | - Fengyun Zou
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China
| | - Yayin Deng
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China
| | - Xiaowen Luo
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China
| | - Lishan Shen
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China.
| | - Xi Chen
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China.
| | - Ruomi Guo
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, PR China.
| |
Collapse
|
7
|
Migliaccio V, Di Gregorio I, Penna S, Panico G, Lombardi A, Lionetti L. Adaptation of Brown Adipose Tissue in Response to Chronic Exposure to the Environmental Pollutant 1,1-Dichloro-2,2-bis(p-chlorophenyl) Ethylene (DDE) and/or a High-Fat Diet in Male Wistar Rats. Nutrients 2024; 16:2616. [PMID: 39203754 PMCID: PMC11357593 DOI: 10.3390/nu16162616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Brown adipose tissue (BAT) participates in thermogenesis and energy homeostasis. Studies on factors capable of influencing BAT function, such as a high-fat diet (HFD) or exposure to environmental pollutants, could be useful for finding metabolic targets for maintaining energy homeostasis. We evaluated the effect of chronic exposure to dichlorodiphenyldichloroethylene (DDE), the major metabolite of dichlorodiphenyltrichloroethane (DDT), and/or a HFD on BAT morphology, mitochondrial mass, dynamics, and oxidative stress in rats. To this end, male Wistar rats were treated for 4 weeks with a standard diet, or a HFD alone, or together with DDE. An increase in paucilocular adipocytes and the lipid droplet size were observed in HFD-treated rats, which was associated with a reduction in mitochondrial mass and in mitochondrial fragmentation, as well as with increased oxidative stress and upregulation of the superoxide dismutase-2. DDE administration mimics most of the effects induced by a HFD on BAT, and it aggravates the increase in the lipid droplet size when administered together with a HFD. Considering the known role of oxidative stress in altering BAT functionality, it could underlie the ability of both DDE and a HFD to induce similar metabolic adaptations in BAT, leading to reduced tissue thermogenesis, which can result in a predisposition to the onset of energy homeostasis disorders.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (V.M.); (I.D.G.); (S.P.)
| | - Ilaria Di Gregorio
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (V.M.); (I.D.G.); (S.P.)
| | - Serena Penna
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (V.M.); (I.D.G.); (S.P.)
| | - Giuliana Panico
- Department of Biology, University of Naples Federico II, Complesso Monte Sant’Angelo Via Cinthia 26, 80126 Napoli, Italy;
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Complesso Monte Sant’Angelo Via Cinthia 26, 80126 Napoli, Italy;
| | - Lillà Lionetti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (V.M.); (I.D.G.); (S.P.)
| |
Collapse
|
8
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
9
|
Guo S, Yang W, Chen D, Ren B, Guo L, Wang X, Xie W, Fan S, Artigas Ramirez MD, Han Y, Yuan Z, Zhang H, Weng Q. The effects of low ambient temperature on steroidogenesis and mitochondrial functions in the testes of wild ground squirrels (Spermophilus dauricus). Comp Biochem Physiol A Mol Integr Physiol 2024; 290:111585. [PMID: 38228267 DOI: 10.1016/j.cbpa.2024.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
Seasonal reproduction is a widely used breeding strategy in wildlife, especially vertebrates inhabiting temperate regions. Generally, ambient temperature is considered a significant factor influencing the reproductive status of animals. In the present study, wild ground squirrels (Spermophilus dauricus), typical seasonal breeders, were used as an animal model to investigate the mechanism behind the impact of low ambient temperature on testicular function. To simulate the winter environment of wild ground squirrels, we lowered the temperature gradient in the rearing environment to 4 °C. At sampling, the body surface temperature of the squirrels reared under normal ambient temperature (22 °C, NAT group) and the low ambient temperature (4 °C, LAT group) were 31.5 °C and 22.8 °C, respectively. Subsequently, we conducted immunohistochemical assays, qPCR, and enzyme-linked immunosorbent assays (ELISA) to examine the variations in testicular functions, as well as the dynamics and functions of mitochondria, in the squirrels of NAT and LAT groups. As a result, the levels of positive immunostaining for PCNA, P21, and P27 were significantly lower in the testes of LAT group, while the levels of immunostaining for Cleaved Caspase-3 and TUNEL were significantly higher. In addition, the low-temperature treatment reduced the expression level of steroidogenesis-related genes, including LHR, FSHR, GATA-4, P450scc, and P450arom, and decreased the testosterone concentration. Moreover, markers of mitochondrial fission and fusion, DRP1 and MFN2, respectively, were increased in the testes of LAT group. Additionally, the mRNA level of SOD1 was notably higher in the testes of LAT group. In conclusion, the low ambient temperature inhibited spermatogenesis, steroidogenesis, as well as mitochondrial dynamics and functions in the testes of wild ground squirrels.
Collapse
Affiliation(s)
- Shiman Guo
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenjin Yang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Chen
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Baolong Ren
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Li Guo
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xi Wang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sijie Fan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Maria Daniela Artigas Ramirez
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
de Oliveira-Júnior FC, Oliveira ACPD, Pansa CC, Molica LR, Moraes KCM. Drosophila melanogaster as a Biotechnological Tool to Investigate the Close Connection Between Fatty Diseases and Pesticides. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2024; 67. [DOI: 10.1590/1678-4324-2024230091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Li R, Wang Z, Wang Y, Sun R, Zou B, Tian X, Liu D, Zhao X, Zhou J, Zhao Y, Yao J. SIRT3 regulates mitophagy in liver fibrosis through deacetylation of PINK1/NIPSNAP1. J Cell Physiol 2023; 238:2090-2102. [PMID: 37417912 DOI: 10.1002/jcp.31069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Damaged mitochondria, a key factor in liver fibrosis, can be removed by the mitophagy pathway to maintain homeostasis of the intracellular environment to alleviate the development of fibrosis. PINK1 (PTEN-induced kinase 1) and NIPSNAP1 (nonneuronal SNAP25-like protein 1), which cooperatively regulate mitophagy, have been predicted to include the sites of lysine acetylation related to SIRT3 (mitochondrial deacetylase sirtuin 3). Our study aimed to discuss whether SIRT3 deacetylates PINK1 and NIPSNAP1 to regulate mitophagy in liver fibrosis. Carbon tetrachloride (CCl4 )-induced liver fibrosis as an in vivo model and LX-2 cells as activated cells were used to simulate liver fibrosis. SIRT3 expression was significantly decreased in mice in response to CCl4 , and SIRT3 knockout in vivo significantly deepened the severity of liver fibrosis, as indicated by increased α-SMA and Col1a1 levels both in vivo and in vitro. SIRT3 overexpression decreased α-SMA and Col1a1 levels. Furthermore, SIRT3 significantly regulated mitophagy in liver fibrosis, as demonstrated by LC3-Ⅱ/Ⅰ and p62 expression and colocalization between TOM20 and LAMP1. Importantly, PINK1 and NIPSNAP1 expression was also decreased in liver fibrosis, and PINK1 and NIPSNAP1 overexpression significantly improved mitophagy and attenuated ECM production. Furthermore, after simultaneously interfering with PINK1 or NIPSNAP1 and overexpressing SIRT3, the effect of SIRT3 on improving mitophagy and alleviating liver fibrosis was disrupted. Mechanistically, we show that SIRT3, as a mitochondrial deacetylase, specifically regulates the acetylation of PINK1 and NIPSNAP1 to mediate the mitophagy pathway in liver fibrosis. SIRT3-mediated PINK1 and NIPSNAP1 deacetylation is a novel molecular mechanism in liver fibrosis.
Collapse
Affiliation(s)
- Ruixi Li
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yue Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Ruimin Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Boyang Zou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xinyao Tian
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Deshun Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuzi Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Migliaccio V, Blal N, De Girolamo M, Mastronardi V, Catalano F, Di Gregorio I, Lionetti L, Pompa PP, Guarnieri D. Inter-Organelle Contact Sites Mediate the Intracellular Antioxidant Activity of Platinum Nanozymes: A New Perspective on Cell-Nanoparticle Interaction and Signaling. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3882-3893. [PMID: 36629473 PMCID: PMC9880958 DOI: 10.1021/acsami.2c22375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/30/2022] [Indexed: 05/25/2023]
Abstract
The catalytic and antioxidant properties of platinum nanoparticles (PtNPs) make them promising candidates for several applications in nanomedicine. However, an open issue, still shared among most nanomaterials, is the understanding on how internalized PtNPs, which are confined within endo-lysosomal compartments, can exert their activities. To address this problem, here we study the protective effect of 5 nm PtNPs on a human hepatic (HepG2) cell line exposed to dichlorodiphenylethylene (DDE) as a model of oxidative stress. Our results indicate that PtNPs are very efficient to reduce DDE-induced damage in HepG2 cells, in an extent that depends on DDE dose. PtNPs can contrast the unbalance of mitochondrial dynamics induced by DDE and increase the expression of the SOD2 mitochondrial enzyme that recovers cells from oxidative stress. Interestingly, in cells treated with PtNPs─alone or in combination with DDE─mitochondria form contact sites with a rough endoplasmic reticulum and endo-lysosomes containing nanoparticles. These findings indicate that the protective capability of PtNPs, through their intrinsic antioxidant properties and modulating mitochondrial functionality, is mediated by an inter-organelle crosstalk. This study sheds new light about the protective action mechanisms of PtNPs and discloses a novel nano-biointeraction mechanism at the intracellular level, modulated by inter-organelle communication and signaling.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Naym Blal
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Micaela De Girolamo
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Valentina Mastronardi
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Federico Catalano
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Ilaria Di Gregorio
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Lillà Lionetti
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Daniela Guarnieri
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| |
Collapse
|
13
|
Latino D, Chieffi Baccari G, Di Fiore MM, Cioffi F, Venditti M, Giacco A, Santillo A. Autophagy and mitochondrial damage in the testis of high-fat diet fed rats. Gen Comp Endocrinol 2022; 328:114104. [PMID: 35973585 DOI: 10.1016/j.ygcen.2022.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
High-fat diet (HFD) affects the physiology of reproduction in males, and many studies have investigated its detrimental effects. In this study, we investigated the cellular response induced by an HFD in the rat testis, focusing on the mitochondrial compartment. After five weeks of HFD, an increase in the levels of malondialdehyde and of reduced form of glutathione in the rat testis indicated an increase in lipid peroxidation. The results showed an increase in autophagy, apoptosis, and mitochondrial damage in the testis of HFD rats. We found a decrease in the protein expression of mitochondrial antioxidant enzymes, such as catalase and SOD2. Immunohistochemical analysis revealed a decrease in the immunofluorescent signal of SOD2, mainly in the spermatogonia and spermatocytes of HFD rats. HFD-induced mitochondrial damage caused a reduction in mitochondria, as evidenced by a decrease in the protein expression of TOM20, a mitochondrial outer membrane receptor. Consistently, HFD enhanced the levels of the PINK1 protein, a mitophagy marker, suggesting the removal of damaged mitochondria under these conditions. Induction of mtDNA damage and repair was stronger in the HFD rat testis. Finally, we found a decrease in the mtDNA copy number and expression of the POLG enzyme, which is involved in mtDNA replication. In conclusion, our results showed that autophagy and apoptosis are activated in the testis of HFD rats as a survival strategy to cope with oxidative stress. Furthermore, HFD-induced oxidative stress affects the mitochondria, inducing mtDNA damage and mtDNA copy number reduction. Mitophagy and mtDNA repair mechanisms might represent a mitochondrial adaptive response.
Collapse
Affiliation(s)
- Debora Latino
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli studi del Sannio, Benevento, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli studi del Sannio, Benevento, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
14
|
Migliaccio V, Putti R, Scudiero R. Metallothionein gene expression in rat tissues: response to dietary restriction after orally dichlorodiphenyldichloroethylene (DDE) exposure and high-fat feeding. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:859-864. [PMID: 36173099 DOI: 10.1080/03601234.2022.2127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dichlorodiphenyldichloroethylene (DDE) is an environmental pollutant that accumulates in adipose tissue through the food chain. Hypercaloric, high-fat diet is considered to promote the accumulation of toxic lipophilic substances in tissues, whereas the loss of body fat through caloric restriction results in a recirculation of these substances. In rats, oral administration of DDE causes the onset of tissues damage; the concomitant intake of a high-fat diet ameliorates tissues status, probably because of the entrapment of the lipophilic substance in fat depots. Recent evidence demonstrates that DDE alters the expression of metallothioneins, proteins involved in cellular defense from oxidative stress, in a diet- and tissue-specific manner. This study is aimed to verify if 2 weeks of caloric restriction after the oral DDE treatment can modify metallothionein gene expression in tissues of high-fat fed rats. Real-time PCR analysis demonstrates that metallothionein gene expression after calorie restriction is tissue-specific and strongly influenced by both previous dietary conditions and DDE exposure. To avoid misleading conclusions on the interference of toxic xenobiotics on metallothionein gene expression is particularly important to consider the tissue, the cellular conditions, and the nutritional status of the animals, especially when the protein is used as an index of cells health.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Fisciano (Sa), Italy
| | - Rosalba Putti
- Department of Biology, University Federico II, Napoli, Italy
| | | |
Collapse
|
15
|
Sang H, Lee KN, Jung CH, Han K, Koh EH. Association between organochlorine pesticides and nonalcoholic fatty liver disease in the National Health and Nutrition Examination Survey 2003-2004. Sci Rep 2022; 12:11590. [PMID: 35803990 PMCID: PMC9270488 DOI: 10.1038/s41598-022-15741-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 12/31/2022] Open
Abstract
While endocrine disruptors are emerging as a cause of nonalcoholic fatty liver disease (NAFLD), little is known about the link between NAFLD and organochlorine pesticides (OCPs), one of the endocrine disruptors. We retrospectively analyzed the U.S. National Health and Nutrition Examination Survey 2003-2004 and compared the baseline demographics in individuals according to the presence of NAFLD (fatty liver index [FLI] ≥ 60). Logistic regression analysis was performed to determine whether OCP concentration affected NAFLD prevalence and subgroup analyses regarding NAFLD-related variables and advanced hepatic fibrosis (FIB-4 ≥ 2.67) were performed. Of the 1515 individuals, 579 (38.2%) had NAFLD. Oxychlordane showed concentration-dependent risk for NAFLD (OR 3.471 in fourth quartile [Q4]; 95% CI 1.865-6.458; P = 0.007). p,p'-DDE and trans-nonachlor showed similar trends without statistical significance. Conversely, mirex showed the lowest risk for NAFLD in the highest concentration quartile (OR 0.29 in Q4; 95% CI 0.175-0.483; P < 0.001). Oxychlordane showed the most pronounced association with the levels of each component of FLI and liver enzymes. None of the OCPs were significantly associated with advanced fibrosis. In conclusion, among OCPs, exposure to oxychlordane showed the most prominent impact associated with NAFLD.
Collapse
Affiliation(s)
- Hyunji Sang
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyu-Na Lee
- Department of Biomedicine & Health Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Eun Hee Koh
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Dose-Dependent Response to the Environmental Pollutant Dichlorodipheniletylhene (DDE) in HepG2 Cells: Focus on Cell Viability and Mitochondrial Fusion/Fission Proteins. TOXICS 2021; 9:toxics9110270. [PMID: 34822661 PMCID: PMC8619198 DOI: 10.3390/toxics9110270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022]
Abstract
Dichlorodiphenyldichloroethylene (DDE), the primary persistent metabolite of dichlorodiphenyltrichloroethane (DDT), has toxic effects on cells, but its dose-dependent impact on mitochondrial proteins involved in mitochondrial fusion and fission processes associated with cell viability impairment has not yet been analysed. Mitochondrial fusion and fission processes are critical to maintaining the mitochondrial network and allowing the cell to respond to external stressors such as environmental pollutants. Fusion processes are associated with optimizing mitochondrial function, whereas fission processes are associated with removing damaged mitochondria. We assessed the effects of different DDE doses, ranging between 0.5 and 100 µM, on cell viability and mitochondrial fusion/fission proteins in an in vitro hepatic cell model (human hepatocarcinomatous cells, HepG2); the DDE induced a decrease in cell viability in a dose-dependent manner, and its effect was enhanced in conditions of coincubation with dietary fatty acids. Fusion protein markers exhibited an inverted U-shape dose-response curve, showing the highest content in the 2.5–25 μM DDE dose range. The fission protein marker was found to increase significantly, leading to an increased fission/fusion ratio with high DDE doses. The low DDE doses elicited cell adaption by stimulating mitochondrial dynamics machinery, whereas high DDE doses induced cell viability loss associated with mitochondrial dynamics to shift toward fission. Present results are helpful to clarify the mechanisms underlying the cell fate towards survival or death in response to increasing doses of environmental pollutants.
Collapse
|
17
|
Burgos-Aceves MA, Migliaccio V, Di Gregorio I, Paolella G, Lepretti M, Faggio C, Lionetti L. 1,1,1-trichloro-2,2-bis (p-chlorophenyl)-ethane (DDT) and 1,1-Dichloro-2,2-bis (p, p'-chlorophenyl) ethylene (DDE) as endocrine disruptors in human and wildlife: A possible implication of mitochondria. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103684. [PMID: 34052433 DOI: 10.1016/j.etap.2021.103684] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
1,1,1-trichloro-2,2-bis (p-chlorophenyl)-ethane (DDT) and its main metabolite 1,1-Dichloro-2,2-bis (p, p'-chlorophenyl) ethylene (DDE) act as endocrine disruptors in humans and wildlife. Immunomodulatory functions have also been attributed to both xenobiotics. DDT was banned in the 1970s due to its toxicity, but it is still produced and used for indoor residual spraying with disease vector control purposes. Due to their persistence and lipophilic properties, DDT and DDE can bioaccumulate through the food chain, being stored in organisms' adipose depots. Their endocrine disruptor function is mediated by agonist or antagonist interaction with nuclear receptors. Present review aimed to provide an overview of how DDT and DDE exposure impacts reproductive and immune systems with estrogen-disrupting action in humans and wildlife. Studies showing DDT and DDE impact on mitochondrial function and apoptosis pathway will also be reviewed, suggesting the hypothesis of direct action on mitochondrial steroid receptors.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Migliaccio
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Ilaria Di Gregorio
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Lillà Lionetti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
18
|
Wang H, Wang L, Li Y, Luo S, Ye J, Lu Z, Li X, Lu H. The HIF-2α/PPARα pathway is essential for liraglutide-alleviated, lipid-induced hepatic steatosis. Biomed Pharmacother 2021; 140:111778. [PMID: 34062416 DOI: 10.1016/j.biopha.2021.111778] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Liraglutide has been demonstrated to alleviate hepatic steatosis in clinical practice, but the underlying mechanism remains unclear. Our previous study indicated that the HIF-2α/PPARα pathway was involved in hepatic lipid accumulation induced by hypoxia.We aimed to investigate whether liraglutide could alleviate lipid-induced hepatic steatosis via the HIF-2α/PPARα pathway. Whole-body HIF-2α heterozygous knockout (HIF-2α+/-) mice and littermate wild-type (WT) mice were successfully established. Male mice challenged with a high-fat diet were treated with liraglutide (0.6 mg/kg/d) or normal saline by intraperitoneal injection for 4 weeks. We observed that, compared with WT mice, many indicators of HIF-2α+/- mice improved, including GTT, ITT, fasting blood glucose, body weight, liver weight, and lipid profile in serum or liver lipid deposition, and the expression level of PPARα, mitochondrial function genes, and fatty acid oxidation genes were upregulated, while those of HIF-2α and lipogenesis genes were downregulated significantly. After liraglutide treatment in WT mice, we found that significant improvements were observed in the fat mass, GTT, ITT, fasting blood glucose, body weight, liver weight, lipid profile in serum or liver lipid deposition; the β-oxidation genes were upregulated and the lipogenesis genes were downregulated; and the abundance of intestinal Akkermansia muciniphila increased significantly. However, the effects of liraglutide on WT mice were not observed in HIF-2α+/- mice. In addition, in the HepG2 steatotic hepatocyte model, liraglutide alleviated lipid deposits by repressing lipid synthesis and enhancing fatty acid β-oxidation, which were substantially suppressed by the HIF-2α modulators. Therefore, the HIF-2α/PPARα pathway is essential for liraglutide-alleviated lipid-induced hepatic steatosis.
Collapse
Affiliation(s)
- Hou Wang
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Lingling Wang
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Yun Li
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Shunkui Luo
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Jianfang Ye
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Zhanjin Lu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, Guangdong, China.
| | - Hongyun Lu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Department of Endocrinology & Metabolism, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, Guangdong, China.
| |
Collapse
|
19
|
Madkour M, Aboelenin MM, Shakweer WME, Alfarraj S, Alharbi SA, Abdel-Fattah SA, Alagawany M. Early life thermal stress modulates hepatic expression of thermotolerance related genes and physiological responses in two rabbit breeds. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1914207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Egypt
| | | | | | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sayed A. Abdel-Fattah
- Faculty of Agriculture, Poultry Production Department, Ain Shams University, Cairo, Egypt
| | - Mahmoud Alagawany
- Faculty of Agriculture, Poultry Department, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020; 10:E1702. [PMID: 33371482 PMCID: PMC7767499 DOI: 10.3390/biom10121702] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often the hepatic expression of metabolic syndrome and its comorbidities that comprise, among others, obesity and insulin-resistance. NAFLD involves a large spectrum of clinical conditions. These range from steatosis, a benign liver disorder characterized by the accumulation of fat in hepatocytes, to non-alcoholic steatohepatitis (NASH), which is characterized by inflammation, hepatocyte damage, and liver fibrosis. NASH can further progress to cirrhosis and hepatocellular carcinoma. The etiology of NAFLD involves both genetic and environmental factors, including an unhealthy lifestyle. Of note, unhealthy eating is clearly associated with NAFLD development and progression to NASH. Both macronutrients (sugars, lipids, proteins) and micronutrients (vitamins, phytoingredients, antioxidants) affect NAFLD pathogenesis. Furthermore, some evidence indicates disruption of metabolic homeostasis by food contaminants, some of which are risk factor candidates in NAFLD. At the molecular level, several models have been proposed for the pathogenesis of NAFLD. Most importantly, oxidative stress and mitochondrial damage have been reported to be causative in NAFLD initiation and progression. The aim of this review is to provide an overview of the contribution of nutrients and food contaminants, especially pesticides, to oxidative stress and how they may influence NAFLD pathogenesis.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Bobinaitė R, Grootaert C, Van Camp J, Šarkinas A, Liaudanskas M, Žvikas V, Viškelis P, Rimantas Venskutonis P. Chemical composition, antioxidant, antimicrobial and antiproliferative activities of the extracts isolated from the pomace of rowanberry (Sorbus aucuparia L.). Food Res Int 2020; 136:109310. [DOI: 10.1016/j.foodres.2020.109310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
|
22
|
Javadov S, Kozlov AV, Camara AKS. Mitochondria in Health and Diseases. Cells 2020; 9:cells9051177. [PMID: 32397376 PMCID: PMC7290976 DOI: 10.3390/cells9051177] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are subcellular organelles evolved by endosymbiosis of bacteria with eukaryotic cells characteristics. They are the main source of ATP in the cell and play a pivotal role in cell life and cell death. Mitochondria are engaged in the pathogenesis of human diseases and aging directly or indirectly through a broad range of signaling pathways. However, despite an increased interest in mitochondria over the past decades, the mechanisms of mitochondria-mediated cell/organ dysfunction in response to pathological stimuli remain unknown. The Special Issue, “Mitochondria in Health and Diseases,” organized by Cells includes 24 review and original articles that highlight the latest achievements in elucidating the role of mitochondria under physiological (healthy) conditions and, in various cell/animal models of human diseases and, in patients. Altogether, the Special Issue summarizes and discusses different aspects of mitochondrial metabolism and function that open new avenues in understanding mitochondrial biology.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
- Correspondence: (S.J.); (A.V.K.); (A.K.S.C.)
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Correspondence: (S.J.); (A.V.K.); (A.K.S.C.)
| | - Amadou K. S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.J.); (A.V.K.); (A.K.S.C.)
| |
Collapse
|
23
|
Migliaccio V, Lionetti L, Putti R, Scudiero R. Exposure to Dichlorodiphenyldichloroethylene (DDE) and Metallothionein Levels in Rats Fed with Normocaloric or High-Fat Diet: A Review. Int J Mol Sci 2020; 21:ijms21051903. [PMID: 32164371 PMCID: PMC7084634 DOI: 10.3390/ijms21051903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023] Open
Abstract
The growing number of studies on metallothioneins (MTs), cysteine-rich metal-binding proteins, have been disclosing new functions of these proteins. Thanks to their inducibility, they were considered to play a pivotal role in regulating trace metals homeostasis and in detoxification from heavy metals; nowadays, it is known that they are involved in various physiological and pathological processes, such as regulation of apoptosis, elimination of free radicals, and protection of nucleic acids against toxic insults. MT induction has been demonstrated following stress factors other than heavy metals, such as endocrine-disrupting chemicals, insecticides, and herbicides. However, retrieved data are often controversial: in some cases, xenobiotics elicit MT expression and synthesis; under different conditions, they lead to a decrease in cellular MT content. This review describes the MT response to dichlorodiphenyltrichloroethane (DDT) contamination in mammalian tissues. In particular, attention focuses on changes in MT expression, synthesis, and localization in rat liver, kidneys, and testes following oral administration of dichlorodiphenyldichloroethylene (DDE), the main metabolite of DDT, under normal dietary conditions or in combination with a high fat diet potentially able to increase the cellular uptake of this lipophilic pesticide. The potential connection between MT expression and synthesis, lipophilic substances and trace metals availability is also discussed.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, 84084 Fisciano (Sa), Italy; (V.M.); (L.L.)
| | - Lillà Lionetti
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, 84084 Fisciano (Sa), Italy; (V.M.); (L.L.)
| | - Rosalba Putti
- Department of Biology, University Federico II, 80126 Napoli, Italy;
| | - Rosaria Scudiero
- Department of Biology, University Federico II, 80126 Napoli, Italy;
- Correspondence:
| |
Collapse
|