1
|
Wei W, Cao L, Li J, Chen L. An efficient cell micronucleus classification network based on multi-layer perception attention mechanism. Sci Rep 2025; 15:7961. [PMID: 40055416 PMCID: PMC11889248 DOI: 10.1038/s41598-025-93158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/05/2025] [Indexed: 05/13/2025] Open
Abstract
Cellular micronucleus detection plays an important role in pathological toxicology detection and early cancer diagnosis. To address the challenges of tiny targets, high inter-class similarity, limited sample data and class imbalance in the field of cellular micronucleus image detection, this paper proposes a lightweight network called MobileViT-MN (Micronucleus), which integrates a multilayer perceptual attention mechanism. Considering that limited data and class imbalance may lead to overfitting of the model, we employ data augmentation to mitigate this problem. Additionally, based on domain adaptation, we innovatively introduce transfer learning. Furthermore, a novel Deep Separation-Decentralization module is designed to implement the reconstruction of the network, which employs attention mechanisms and an alternative strategy of deep separable convolution. Numerous ablation experiments are performed to validate the effectiveness of our method. The experimental results show that MobileViT-MN obtains outstanding performance on the augmented cellular micronucleus dataset. Avg_Acc reaches 0.933, F1 scores 0.971, and ROC scores 0.965. Compared with other classical algorithms, MobileViT-MN is more superior in classification performance.
Collapse
Affiliation(s)
- Weiyi Wei
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
| | - Linfeng Cao
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China.
| | - Jingyu Li
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
| | - Luheng Chen
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
| |
Collapse
|
2
|
Ibarra-Arellano MA, Caprio LA, Hada A, Stotzem N, Cai LL, Shah SB, Walsh ZH, Melms JC, Wünneman F, Bestak K, Mansaray I, Izar B, Schapiro D. micronuclAI enables automated quantification of micronuclei for assessment of chromosomal instability. Commun Biol 2025; 8:361. [PMID: 40038430 PMCID: PMC11880189 DOI: 10.1038/s42003-025-07796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and treatment resistance. CIN may result from chromosome mis-segregation errors and excessive chromatin is frequently packaged in micronuclei (MN), which can be enumerated to quantify CIN. The assessment of CIN remains a predominantly manual and time-consuming task. Here, we present micronuclAI, a pipeline for automated and reliable quantification of MN of varying size and morphology in cells stained only for DNA. micronuclAI can achieve close to human-level performance on various human and murine cancer cell line datasets. The pipeline achieved a Pearson's correlation of 0.9278 on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in which we genetically dialed up or down CIN rates, and on several publicly available image datasets where we achieved a Pearson's correlation of 0.9620. Given the increasing interest in developing therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to quantifying CIN on images that are routinely obtained for research purposes. We release a GUI-implementation for easy access and utilization of the pipeline.
Collapse
Affiliation(s)
- Miguel A Ibarra-Arellano
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Lindsay A Caprio
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aroj Hada
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
- AI-Health Innovation Cluster, Heidelberg, Germany
| | - Niklas Stotzem
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of AI for Health, Helmholtz Munich, Neuherberg, Germany
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany
| | - Luke L Cai
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shivem B Shah
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zachary H Walsh
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Florian Wünneman
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Kresimir Bestak
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Ibrahim Mansaray
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA.
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA.
| | - Denis Schapiro
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- AI-Health Innovation Cluster, Heidelberg, Germany.
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Spatial Profiling Center (TSPC), Heidelberg, Germany.
| |
Collapse
|
3
|
Campos Gudiño R, Neudorf NM, Andromidas D, Lichtensztejn Z, McManus KJ. Loss of EMI1 compromises chromosome stability and is associated with cellular transformation in colonic epithelial cell contexts. Br J Cancer 2024; 131:1516-1528. [PMID: 39358461 PMCID: PMC11519589 DOI: 10.1038/s41416-024-02855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is still a leading cause of cancer deaths worldwide. Thus, identifying the aberrant genes and proteins underlying disease pathogenesis is critical to improve early detection methods and develop novel therapeutic strategies. Chromosome instability (CIN), or ongoing changes in chromosome complements, is a predominant form of genome instability. It is a driver of genetic heterogeneity found in ~85% of CRCs. Although CIN contributes to CRC pathogenesis, the molecular determinants underlying CIN remain poorly understood. Recently, EMI1, an F-box protein, was identified as a candidate CIN gene. In this study, we sought to determine the impact reduced EMI1 expression has on CIN and cellular transformation. METHODS Coupling siRNA-based silencing and CRISPR/Cas9 knockout clones with quantitative imaging microscopy we evaluated the impact reduced EMI1 expression has on CIN and cellular transformation in four colonic epithelial cell contexts. RESULTS Quantitative imaging microscopy data revealed that reduced EMI1 expression induces increases in CIN phenotypes in both transient (siRNA) and constitutive (CRISPR/Cas9) cell models that are associated with increases in DNA damage and cellular transformation phenotypes in long-term studies. CONCLUSIONS This study determined that reduced EMI1 expression induces CIN and promotes cellular transformation, which is consistent with a role in early CRC development.
Collapse
Affiliation(s)
- Rubi Campos Gudiño
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Nicole M Neudorf
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Demi Andromidas
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Zelda Lichtensztejn
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kirk J McManus
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Ibarra-Arellano MA, Caprio LA, Hada A, Stotzem N, Cai L, Shah S, Melms JC, Wünneman F, Izar B, Schapiro D. micronuclAI: Automated quantification of micronuclei for assessment of chromosomal instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595722. [PMID: 38854106 PMCID: PMC11160592 DOI: 10.1101/2024.05.24.595722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and treatment resistance. CIN results from chromosome mis-segregation events during anaphase, as excessive chromatin is packaged in micronuclei (MN), that can be enumerated to quantify CIN. Despite recent advancements in automation through computer vision and machine learning, the assessment of CIN remains a predominantly manual and time-consuming task, thus hampering important work in the field. Here, we present micronuclAI , a novel pipeline for automated and reliable quantification of MN of varying size, morphology and location from DNA-only stained images. In micronucleAI , single-cell crops are extracted from high-resolution microscopy images with the help of segmentation masks, which are then used to train a convolutional neural network (CNN) to output the number of MN associated with each cell. The pipeline was evaluated against manual single-cell level counts by experts and against routinely used MN ratio within the complete image. The classifier was able to achieve a weighted F1 score of 0.937 on the test dataset and the complete pipeline can achieve close to human-level performance on various datasets derived from multiple human and murine cancer cell lines. The pipeline achieved a root-mean-square deviation (RMSE) value of 0.0041, an R 2 of 0.87 and a Pearson's correlation of 0.938 on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in which we genetically dialed up or down CIN rates, and also on a publicly available image data set (obtained at 100X) and achieved an RMSE value of 0.0159, an R 2 of 0.90, and a Pearson's correlation of 0.951. Given the increasing interest in developing therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to quantifying CIN on routinely obtained images. We release a GUI-implementation for easy access and utilization of the pipeline.
Collapse
|
5
|
Yoda H, Abe K, Takeo H, Takamura-Enya T, Koike-Takeshita A. Application of image-recognition techniques to automated micronucleus detection in the in vitro micronucleus assay. Genes Environ 2024; 46:11. [PMID: 38659010 PMCID: PMC11040892 DOI: 10.1186/s41021-024-00305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND An in vitro micronucleus assay is a standard genotoxicity test. Although the technique and interpretation of the results are simple, manual counting of the total and micronucleus-containing cells in a microscopic field is tedious. To address this issue, several systems have been developed for quick and efficient micronucleus counting, including flow cytometry and automated detection based on specialized software and detection systems that analyze images. RESULTS Here, we present a simple and effective method for automated micronucleus counting using image recognition technology. Our process involves separating the RGB channels in a color micrograph of cells stained with acridine orange. The cell nuclei and micronuclei were detected by scaling the G image, whereas the cytoplasm was recognized from a composite image of the R and G images. Finally, we identified cells with overlapping cytoplasm and micronuclei as micronucleated cells, and the application displayed the number of micronucleated cells and the total number of cells. Our method yielded results that were comparable to manually measured values. CONCLUSIONS Our micronucleus detection (MN/cell detection software) system can accurately detect the total number of cells and micronucleus-forming cells in microscopic images with the same level of precision as achieved through manual counting. The accuracy of micronucleus numbers depends on the cell staining conditions; however, the software has options by which users can easily manually optimize parameters such as threshold, denoise, and binary to achieve the best results. The optimization process is easy to handle and requires less effort, making it an efficient way to obtain accurate results.
Collapse
Affiliation(s)
- Hiromi Yoda
- Biomedical Research Center, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
- Department of Applied Biosciences, Kanagawa Institute of Technology, Atsugi, Japan
| | - Kazuya Abe
- Biomedical Research Center, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
- Department of Electrical and Electronic Engineering, Kanagawa Institute of Technology, Atsugi, Japan
| | - Hideya Takeo
- Biomedical Research Center, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
- Department of Electrical and Electronic Engineering, Kanagawa Institute of Technology, Atsugi, Japan
| | - Takeji Takamura-Enya
- Biomedical Research Center, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan.
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan.
| | - Ayumi Koike-Takeshita
- Biomedical Research Center, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
- Department of Applied Biosciences, Kanagawa Institute of Technology, Atsugi, Japan
| |
Collapse
|
6
|
Kasperski A, Heng HH. The Digital World of Cytogenetic and Cytogenomic Web Resources. Methods Mol Biol 2024; 2825:361-391. [PMID: 38913321 DOI: 10.1007/978-1-0716-3946-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The dynamic growth of technological capabilities at the cellular and molecular level has led to a rapid increase in the amount of data on the genes and genomes of organisms. In order to store, access, compare, validate, classify, and understand the massive data generated by different researchers, and to promote effective communication among research communities, various genome and cytogenetic online databases have been established. These data platforms/resources are essential not only for computational analyses and theoretical syntheses but also for helping researchers select future research topics and prioritize molecular targets. Furthermore, they are valuable for identifying shared recurrent genomic patterns related to human diseases and for avoiding unnecessary duplications among different researchers. The website interface, menu, graphics, animations, text layout, and data from databases are displayed by a front end on the screen of a monitor or smartphone. A database front-end refers to the user interface or application that enables accessing tabular, structured, or raw data stored in the database. The Internet makes it possible to reach a greater number of users around the world and gives them quick access to information stored in databases. The number of ways of presenting this data by front-ends increases as well. This requires unifying the ways of operating and presenting information by front-ends and ensuring contextual switching between front-ends of different databases. This chapter aims to present selected cytogenetic and cytogenomic Internet resources in terms of obtaining the needed information and to indicate how to increase the efficiency of access to stored information. Through a brief introduction of these databases and by providing examples of their usage in cytogenetic analyses, we aim to bridge the gap between cytogenetics and molecular genomics by encouraging their utilization.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Institute of Biological Sciences, Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, University of Zielona Góra, Zielona Góra, Poland.
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, and Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
7
|
Campos Gudiño R, Rutherford KA, McManus KJ. Evaluating Chromosome Instability and Genotoxicity Through Single Cell Quantitative Imaging Microscopy. Methods Mol Biol 2024; 2825:309-331. [PMID: 38913318 DOI: 10.1007/978-1-0716-3946-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Across eukaryotes, genome stability is essential for normal cell function, physiology, and species survival. Aberrant expression of key genes or exposure to genotoxic agents can have detrimental effects on genome stability and contribute to the development of various diseases, including cancer. Chromosome instability (CIN), or ongoing changes in chromosome complements, is a frequent form of genome instability observed in cancer and is a driver of genetic and cell-to-cell heterogeneity that can be rapidly detected and quantitatively assessed using surrogate markers of CIN. For example, single cell quantitative imaging microscopy (QuantIM) can be used to simultaneously identify changes in nuclear areas and micronucleus formation. While changes in nuclear areas are often associated with large-scale changes in chromosome complements (i.e., ploidy), micronuclei are small extra-nuclear bodies found outside the primary nucleus that have previously been employed as a measure of genotoxicity of test compounds. Here, we present a facile QuantIM approach that allows for the rapid assessment and quantification of CIN associated phenotypes and genotoxicity. First, we provide protocols to optimize and execute CIN and genotoxicity assays. Secondly, we present the critical imaging settings, optimization steps, downstream statistical analyses, and data visualization strategies employed to obtain high quality and robust data. These approaches can be easily applied to assess the prevalence of CIN associated phenotypes and genotoxic stress for a myriad of experimental and clinical contexts ranging from direct tests to large-scale screens of various genetic contexts (i.e., aberrant gene expression) or chemical compounds. In summary, this QuantIM approach facilitates the identification of novel CIN genes and/or genotoxic agents that will provide greater insight into the aberrant genes and pathways underlying CIN and genotoxicity.
Collapse
Affiliation(s)
- Rubi Campos Gudiño
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kailee A Rutherford
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kirk J McManus
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.
- Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
8
|
Long-Term Exposure to Dust and Noise Can Increase the Risk of Hypertension-A Population Based, Cross-sectional Study. J Occup Environ Med 2023; 65:e128-e133. [PMID: 36528801 PMCID: PMC9988235 DOI: 10.1097/jom.0000000000002769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The aim of the study is to assess whether occupational groups exposed to dust and noise increase their risk of developing hypertension and to identify associated risk factors. METHODS Logistic regression analysis was used to analyze the influence of exposure factors on the occurrence of hypertension, and confounding factors were adjusted to identify independent effects. Stratified analysis and smoothed curve fitting were used to explore the effects in different populations. RESULTS Combined dust + noise exposure significantly increased the risk of hypertension in workers (model 1: odds ratio [OR], 2.75; model 2: OR, 2.66; model 3: OR, 2.85). Further analysis showed that when exposed to dust and noise for more than 17 years, the risk of hypertension increased by 15%. CONCLUSIONS The combined exposure of dust and noise significantly increases the risk of hypertension among occupational groups, especially among workers who have worked for more than 17 years.
Collapse
|
9
|
Liao YY, Cao WM. The progress in our understanding of CIN in breast cancer research. Front Oncol 2023; 13:1067735. [PMID: 36874134 PMCID: PMC9978327 DOI: 10.3389/fonc.2023.1067735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chromosomal instability (CIN) is an important marker of cancer, which is closely related to tumorigenesis, disease progression, treatment efficacy, and patient prognosis. However, due to the limitations of the currently available detection methods, its exact clinical significance remains unknown. Previous studies have demonstrated that 89% of invasive breast cancer cases possess CIN, suggesting that it has potential application in breast cancer diagnosis and treatment. In this review, we describe the two main types of CIN and discuss the associated detection methods. Subsequently, we highlight the impact of CIN in breast cancer development and progression and describe how it can influence treatment and prognosis. The goal of this review is to provide a reference on its mechanism for researchers and clinicians.
Collapse
Affiliation(s)
- Yu-Yang Liao
- Wenzhou Medical University, Wenzhou, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
10
|
Neudorf NM, Thompson LL, Lichtensztejn Z, Razi T, McManus KJ. Reduced SKP2 Expression Adversely Impacts Genome Stability and Promotes Cellular Transformation in Colonic Epithelial Cells. Cells 2022; 11:cells11233731. [PMID: 36496990 PMCID: PMC9738323 DOI: 10.3390/cells11233731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the high morbidity and mortality rates associated with colorectal cancer (CRC), the underlying molecular mechanisms driving CRC development remain largely uncharacterized. Chromosome instability (CIN), or ongoing changes in chromosome complements, occurs in ~85% of CRCs and is a proposed driver of cancer development, as the genomic changes imparted by CIN enable the acquisition of karyotypes that are favorable for cellular transformation and the classic hallmarks of cancer. Despite these associations, the aberrant genes and proteins driving CIN remain elusive. SKP2 encodes an F-box protein, a variable subunit of the SKP1-CUL1-F-box (SCF) complex that selectively targets proteins for polyubiquitylation and degradation. Recent data have identified the core SCF complex components (SKP1, CUL1, and RBX1) as CIN genes; however, the impact reduced SKP2 expression has on CIN, cellular transformation, and oncogenesis remains unknown. Using both short- small interfering RNA (siRNA) and long-term (CRISPR/Cas9) approaches, we demonstrate that diminished SKP2 expression induces CIN in both malignant and non-malignant colonic epithelial cell contexts. Moreover, temporal assays reveal that reduced SKP2 expression promotes cellular transformation, as demonstrated by enhanced anchorage-independent growth. Collectively, these data identify SKP2 as a novel CIN gene in clinically relevant models and highlight its potential pathogenic role in CRC development.
Collapse
Affiliation(s)
- Nicole M. Neudorf
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Laura L. Thompson
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Zelda Lichtensztejn
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Tooba Razi
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Kirk J. McManus
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Correspondence: ; Tel.: +1-204-787-2833
| |
Collapse
|
11
|
Amendola M, Brusson M, Miccio A. CRISPRthripsis: The Risk of CRISPR/Cas9-induced Chromothripsis in Gene Therapy. Stem Cells Transl Med 2022; 11:1003-1009. [PMID: 36048170 PMCID: PMC9585945 DOI: 10.1093/stcltm/szac064] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/23/2022] [Indexed: 12/22/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system has allowed the generation of disease models and the development of therapeutic approaches for many genetic and non-genetic disorders. However, the generation of large genomic rearrangements has raised safety concerns for the clinical application of CRISPR/Cas9 nuclease approaches. Among these events, the formation of micronuclei and chromosome bridges due to chromosomal truncations can lead to massive genomic rearrangements localized to one or few chromosomes. This phenomenon, known as chromothripsis, was originally described in cancer cells, where it is believed to be caused by defective chromosome segregation during mitosis or DNA double-strand breaks. Here, we will discuss the factors influencing CRISPR/Cas9-induced chromothripsis, hereafter termed CRISPRthripsis, and its outcomes, the tools to characterize these events and strategies to minimize them.
Collapse
Affiliation(s)
- Mario Amendola
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Mégane Brusson
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Université Paris Cité, Imagine Institute, Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Université Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
12
|
Pons C, Almacellas E, Tauler A, Mauvezin C. Detection of Nuclear Biomarkers for Chromosomal Instability. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2445:117-125. [PMID: 34972989 DOI: 10.1007/978-1-0716-2071-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer, which is characterized by the gain or loss of chromosomes as well as the rearrangement of the genetic material during cell division. Detection of mitotic errors such as misaligned chromosomes or chromosomal bridges (also known as lagging chromosomes) is challenging as it requires the analysis and manual discrimination of chromosomal aberrations in mitotic cells by molecular techniques. In interphase cells, more frequent in the cell population than mitotic cells, two distinct nuclear phenotypes are associated with CIN: the micronucleus and the toroidal nucleus. Several methods are available for the detection of micronuclei, but none for toroidal nuclei. Here, we provide a method to quantify the presence of both nuclear biomarkers for the evaluation of CIN status in non-mitotic cells particularly suited for genotoxicity screens.
Collapse
Affiliation(s)
- Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Eugenia Almacellas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Albert Tauler
- Department de Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Catalonia, Spain.,Metabolism and Cancer Laboratory, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomédica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Caroline Mauvezin
- Metabolism and Cancer Laboratory, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomédica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain. .,Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, Carrer Casanova, Barcelona, Spain.
| |
Collapse
|
13
|
Plant Cytogenetics in the Micronuclei Investigation-The Past, Current Status, and Perspectives. Int J Mol Sci 2022; 23:ijms23031306. [PMID: 35163228 PMCID: PMC8836153 DOI: 10.3390/ijms23031306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Cytogenetic approaches play an essential role as a quick evaluation of the first genetic effects after mutagenic treatment. Although labor-intensive and time-consuming, they are essential for the analyses of cytotoxic and genotoxic effects in mutagenesis and environmental monitoring. Over the years, conventional cytogenetic analyses were a part of routine laboratory testing in plant genotoxicity. Among the methods that are used to study genotoxicity in plants, the micronucleus test particularly represents a significant force. Currently, cytogenetic techniques go beyond the simple detection of chromosome aberrations. The intensive development of molecular biology and the significantly improved microscopic visualization and evaluation methods constituted significant support to traditional cytogenetics. Over the past years, distinct approaches have allowed an understanding the mechanisms of formation, structure, and genetic activity of the micronuclei. Although there are many studies on this topic in humans and animals, knowledge in plants is significantly limited. This article provides a comprehensive overview of the current knowledge on micronuclei characteristics in plants. We pay particular attention to how the recent contemporary achievements have influenced the understanding of micronuclei in plant cells. Together with the current progress, we present the latest applications of the micronucleus test in mutagenesis and assess the state of the environment.
Collapse
|
14
|
Palmer MCL, Neudorf NM, Farrell AC, Razi T, Lichtensztejn Z, McManus KJ. The F-box protein, FBXO7 is required to maintain chromosome stability in humans. Hum Mol Genet 2021; 31:1471-1486. [PMID: 34791250 PMCID: PMC9071473 DOI: 10.1093/hmg/ddab330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Despite the high morbidity and mortality rates associated with colorectal cancer (CRC), the aberrant genes and mechanisms driving CRC pathogenesis remain poorly understood. Chromosome instability (CIN), or ongoing changes in chromosome numbers, is a predominant form of genome instability associated with ~85% of CRCs, suggesting it may be a key mechanism driving CRC oncogenesis. CIN enables the acquisition of copy number alterations conferring selective growth, proliferation and survival advantages that promote cellular transformation. Despite these associations, the aberrant genes underlying CIN remain largely unknown. Candidate CIN gene FBXO7 encodes an F-box protein, a subunit of the SKP1-CUL1-FBOX (SCF) complex that confers substrate specificity to the complex and targets proteins for subsequent degradation by the 26S proteasome. Recently, the genes encoding the three core SCF complex members were identified as CIN genes; however, it is unknown whether F-box proteins exhibit similar integral roles in maintaining chromosome stability. Using short- small interfering RNA (siRNA) and long- (CRISPR/Cas9) term approaches, we show that reduced FBXO7 expression induces CIN in various colonic epithelial cell contexts, whereas FBXO7 knockout clones also exhibit hallmarks associated with cellular transformation, namely increased clonogenic and anchorage-independent growth. Collectively, these data demonstrate that FBXO7 is required to maintain genome stability identifying FBXO7 a novel CIN gene whose reduced expression may contribute to CRC development and progression.
Collapse
Affiliation(s)
- Michaela C L Palmer
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Nicole M Neudorf
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ally C Farrell
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tooba Razi
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Zelda Lichtensztejn
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kirk J McManus
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Rahmanian N, Shokrzadeh M, Eskandani M. Recent advances in γH2AX biomarker-based genotoxicity assays: A marker of DNA damage and repair. DNA Repair (Amst) 2021; 108:103243. [PMID: 34710661 DOI: 10.1016/j.dnarep.2021.103243] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
The phosphorylation of histone variant H2AX and formation of γH2AX is a primary response to the DNA double-strand breaks (DSBs). Detection of γH2AX is a robust and sensitive tool for diagnosis of DNA damage and repair in pre-clinical drug discovery investigations. In addition, the replication stress also leads to the formation of γH2AX and cell death and so γH2AX can serve as a surrogate marker of drug-induced cytotoxicity. Recent advances in genomic research offer an opportunity to detect γH2AX as a specific biomarker for quantitative analysis of DNA damages and repair using high content screening technology and quantitative imaging analysis. The proposed approaches identify a wide range of genetic disorders and are applied in combination with other assays in drug discovery and also for the evaluation of the efficacy of various developmental drugs. In the current review, we provide recent insights into the potential of γH2AX biomarker as a powerful tool in genotoxicity analyses for the monitoring and managing of cancer diseases.
Collapse
Affiliation(s)
- Nazanin Rahmanian
- Pharmaceutical Sciences Research Center, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Heng E, Moy A, Liu G, Heng HH, Zhang K. ER Stress and Micronuclei Cluster: Stress Response Contributes to Genome Chaos in Cancer. Front Cell Dev Biol 2021; 9:673188. [PMID: 34422803 PMCID: PMC8371933 DOI: 10.3389/fcell.2021.673188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Eric Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Amanda Moy
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
17
|
Lepage CC, Palmer MCL, Farrell AC, Neudorf NM, Lichtensztejn Z, Nachtigal MW, McManus KJ. Reduced SKP1 and CUL1 expression underlies increases in Cyclin E1 and chromosome instability in cellular precursors of high-grade serous ovarian cancer. Br J Cancer 2021; 124:1699-1710. [PMID: 33731859 PMCID: PMC8110794 DOI: 10.1038/s41416-021-01317-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/23/2020] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is the most common and lethal ovarian cancer histotype. Chromosome instability (CIN, an increased rate of chromosome gains and losses) is believed to play a fundamental role in the development and evolution of HGSOC. Importantly, overexpression of Cyclin E1 protein induces CIN, and genomic amplification of CCNE1 contributes to HGSOC pathogenesis in ~20% of patients. Cyclin E1 levels are normally regulated in a cell cycle-dependent manner by the SCF (SKP1-CUL1-FBOX) complex, an E3 ubiquitin ligase that includes the proteins SKP1 and CUL1. Conceptually, diminished SKP1 or CUL1 expression is predicted to underlie increases in Cyclin E1 levels and induce CIN. METHODS This study employs fallopian tube secretory epithelial cell models to evaluate the impact diminished SKP1 or CUL1 expression has on Cyclin E1 and CIN in both short-term (siRNA) and long-term (CRISPR/Cas9) studies. RESULTS Single-cell quantitative imaging microscopy approaches revealed changes in CIN-associated phenotypes and chromosome numbers and increased Cyclin E1 in response to diminished SKP1 or CUL1 expression. CONCLUSIONS These data identify SKP1 and CUL1 as novel CIN genes in HGSOC precursor cells that may drive early aetiological events contributing to HGSOC development.
Collapse
Affiliation(s)
- Chloe Camille Lepage
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| | - Michaela Cora Lynn Palmer
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| | - Ally Catherina Farrell
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| | - Nicole Marie Neudorf
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| | - Zelda Lichtensztejn
- grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| | - Mark William Nachtigal
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada ,grid.21613.370000 0004 1936 9609Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba Canada
| | - Kirk James McManus
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| |
Collapse
|
18
|
Jeusset LM, Guppy BJ, Lichtensztejn Z, McDonald D, McManus KJ. Reduced USP22 Expression Impairs Mitotic Removal of H2B Monoubiquitination, Alters Chromatin Compaction and Induces Chromosome Instability That May Promote Oncogenesis. Cancers (Basel) 2021; 13:cancers13051043. [PMID: 33801331 PMCID: PMC7958346 DOI: 10.3390/cancers13051043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Chromosome instability (CIN) is an enabling feature of oncogenesis associated with poor patient outcomes, whose genetic determinants remain largely unknown. As mitotic chromatin compaction defects can compromise the accuracy of chromosome segregation into daughter cells and drive CIN, characterizing the molecular mechanisms ensuring accurate chromatin compaction may identify novel CIN genes. In vitro, histone H2B monoubiquitination at lysine 120 (H2Bub1) impairs chromatin compaction, while in vivo H2Bub1 is rapidly depleted from chromatin upon entry into mitosis, suggesting that H2Bub1 removal may be a pre-requisite for mitotic fidelity. The deubiquitinating enzyme USP22 catalyzes H2Bub1 removal in interphase and may also be required for H2Bub1 removal in early mitosis to maintain chromosome stability. In this study, we demonstrate that siRNA-mediated USP22 depletion increases H2Bub1 levels in early mitosis and induces CIN phenotypes associated with mitotic chromatin compaction defects revealed by super-resolution microscopy. Moreover, USP22-knockout models exhibit continuously changing chromosome complements over time. These data identify mitotic removal of H2Bub1 as a critical determinant of chromatin compaction and faithful chromosome segregation. We further demonstrate that USP22 is a CIN gene, indicating that USP22 deletions, which are frequent in many tumor types, may drive genetic heterogeneity and contribute to cancer pathogenesis.
Collapse
Affiliation(s)
- Lucile M. Jeusset
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
| | - Brent J. Guppy
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
| | - Zelda Lichtensztejn
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
| | - Darin McDonald
- Department of Oncology, University of Alberta, Edmonton, AB T6G2H7, Canada;
| | - Kirk J. McManus
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E0V9, Canada; (L.M.J.); (B.J.G.); (Z.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E0J9, Canada
- Correspondence: ; Tel.: +1-(204)-787-2833
| |
Collapse
|
19
|
Large Extracellular Vesicle Characterization and Association with Circulating Tumor Cells in Metastatic Castrate Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13051056. [PMID: 33801459 PMCID: PMC7958848 DOI: 10.3390/cancers13051056] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023] Open
Abstract
Liquid biopsies hold potential as minimally invasive sources of tumor biomarkers for diagnosis, prognosis, therapy prediction or disease monitoring. We present an approach for parallel single-object identification of circulating tumor cells (CTCs) and tumor-derived large extracellular vesicles (LEVs) based on automated high-resolution immunofluorescence followed by downstream multiplexed protein profiling. Identification of LEVs >6 µm in size and CTC enumeration was highly correlated, with LEVs being 1.9 times as frequent as CTCs, and additional LEVs were identified in 73% of CTC-negative liquid biopsy samples from metastatic castrate resistant prostate cancer. Imaging mass cytometry (IMC) revealed that 49% of cytokeratin (CK)-positive LEVs and CTCs were EpCAM-negative, while frequently carrying prostate cancer tumor markers including AR, PSA, and PSMA. HSPD1 was shown to be a specific biomarker for tumor derived circulating cells and LEVs. CTCs and LEVs could be discriminated based on size, morphology, DNA load and protein score but not by protein signatures. Protein profiles were overall heterogeneous, and clusters could be identified across object classes. Parallel analysis of CTCs and LEVs confers increased sensitivity for liquid biopsies and expanded specificity with downstream characterization. Combined, it raises the possibility of a more comprehensive assessment of the disease state for precise diagnosis and monitoring.
Collapse
|
20
|
Brendt J, Lackmann C, Heger S, Velki M, Crawford SE, Xiao H, Thalmann B, Schiwy A, Hollert H. Using a high-throughput method in the micronucleus assay to compare animal-free with rat-derived S9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142269. [PMID: 33182016 DOI: 10.1016/j.scitotenv.2020.142269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
This study presents a high-throughput (HTP) micronucleus assay in multi-well plates with an automated evaluation for risk assessment applications. The evaluation of genotoxicity via the micronucleus assays according to international guidelines ISO 21427-2 with Chinese hamster (Cricetulus griseus) V79 cells was the starting point to develop our methodology. A drawback of this assay is that it is very time consuming and cost intensive. Our HTP micronucleus assay in a 48-well plate format allows for the simultaneous assessment of five different sample-concentrations with additional positive, negative and solvent controls with six technical replicates each within a quarter of the time required for the equivalent evaluation using the traditional slide method. In accordance with the 3R principle, animal compounds should be replaced with animal-free alternatives. However, traditional cell culture-based methods still require animal derived compounds like rat-liver derived S9-fraction, which is used to simulate the mammalian metabolism in in vitro assays that do show intrinsic metabolization capabilities. In the present study, a recently developed animal-free biotechnological alternative (ewoS9R) was investigated in the new high-throughput micronucleus assay. In total, 12 different mutagenic or genotoxic chemicals were investigated to assess the potential use of the animal-free metabolization system (ewoS9R) in comparison to a common rat-derived product. Out of the 12 compounds, one compound did not induce micronuclei in any treatment and 2 substances showed a genotoxic potential without the need for a metabolization system. EwoS9R demonstrated promising potential for future applications as it shows comparable results to the rat-derived S9 for 6 of the 9 pro-genotoxic substances tested. The remaining 3 substances (2-Acetamidofluorene, Benzo[a]pyrene, Cyclophosphamide) were only metabolized by rat-derived S9. A potential explanation is that ewoS9R was investigated with an approx. 10-fold lower enzyme concentration and was only optimized for CYP1A metabolization that may be improved with a modified production procedure. Future applications of ewoS9R go beyond the micronucleus assay, but further research is necessary.
Collapse
Affiliation(s)
- Julia Brendt
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Carina Lackmann
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Sebastian Heger
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Sarah E Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Beat Thalmann
- EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany
| | - Andreas Schiwy
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany.
| |
Collapse
|
21
|
Kalefetoğlu Macar T. Investigation of cytotoxicity and genotoxicity of abamectin pesticide in Allium cepa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2391-2399. [PMID: 32888152 DOI: 10.1007/s11356-020-10708-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted to investigate the cytotoxicity and genotoxicity induced by abamectin pesticide in Allium cepa L. bulbs. Following 72-h exposure to different doses (0.025 ml/L, 0.050 ml/L, and 0.100 ml/L) of abamectin, growth level, micronuclei abundance, mitotic index, chromosomal aberrations, malondialdehyde content, meristematic cell damages, and total activities of superoxide dismutase and catalase were explored. The results revealed that all concentrations of abamectin were capable of inducing significant and dose-dependent changes in all parameters. Increasing doses of abamectin caused remarkable decreases in germination ratio, weight gain, and root elongation. Due to abamectin-induced genotoxicity, the mitotic index declined, while chromosomal abnormalities listed as micronucleus, fragment, sticky chromosome, unequal distribution of chromatin, bridge, vacuole nucleus, nucleus damage, and multipolar anaphase. Depending on the oxidative stress caused by abamectin administration, the total activities of superoxide dismutase and catalase enzymes increased significantly along with the malondialdehyde content. Indistinct transmission tissue, epidermis cell deformation and flattened cell nucleus were the meristematic cell damages in pesticide-applied groups. Findings of the present study revealed that abamectin is a risky pesticide with a variety of cytotoxic and genotoxic effects in non-targeted organisms. A. cepa is a promising material for biomonitoring the toxicity of abamectin.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| |
Collapse
|
22
|
Freitas MO, Gartner J, Rangel-Pozzo A, Mai S. Genomic Instability in Circulating Tumor Cells. Cancers (Basel) 2020; 12:cancers12103001. [PMID: 33081135 PMCID: PMC7602879 DOI: 10.3390/cancers12103001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In this review, we focus on recent advances in the detection and quantification of tumor cell heterogeneity and genomic instability of CTCs and the contribution of chromosome instability studies to genetic heterogeneity in CTCs at the single-CTC level. Abstract Circulating tumor cells (CTCs) can promote distant metastases and can be obtained through minimally invasive liquid biopsy for clinical assessment in cancer patients. Having both genomic heterogeneity and instability as common features, the genetic characterization of CTCs can serve as a powerful tool for a better understanding of the molecular changes occurring at tumor initiation and during tumor progression/metastasis. In this review, we will highlight recent advances in the detection and quantification of tumor cell heterogeneity and genomic instability in CTCs. We will focus on the contribution of chromosome instability studies to genetic heterogeneity in CTCs at the single-CTC level by discussing data from different cancer subtypes and their impact on diagnosis and precision medicine.
Collapse
Affiliation(s)
- Monique Oliveira Freitas
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Genetic Service, Institute of Paediatrics and Puericulture Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, Brazil
- Clinical Medicine Postgraduate Programme, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-913, Brazil
| | - John Gartner
- Departments of Pathology and Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-204-787-4125 (S.M.)
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-204-787-4125 (S.M.)
| |
Collapse
|
23
|
Vishwakarma R, McManus KJ. Chromosome Instability; Implications in Cancer Development, Progression, and Clinical Outcomes. Cancers (Basel) 2020; 12:cancers12040824. [PMID: 32235397 PMCID: PMC7226245 DOI: 10.3390/cancers12040824] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chromosome instability (CIN) refers to an ongoing rate of chromosomal changes and is a driver of genetic, cell-to-cell heterogeneity. It is an aberrant phenotype that is intimately associated with cancer development and progression. The presence, extent, and level of CIN has tremendous implications for the clinical management and outcomes of those living with cancer. Despite its relevance in cancer, there is still extensive misuse of the term CIN, and this has adversely impacted our ability to identify and characterize the molecular determinants of CIN. Though several decades of genetic research have provided insight into CIN, the molecular determinants remain largely unknown, which severely limits its clinical potential. In this review, we provide a definition of CIN, describe the two main types, and discuss how it differs from aneuploidy. We subsequently detail its impact on cancer development and progression, and describe how it influences metastatic potential with reference to cancer prognosis and outcomes. Finally, we end with a discussion of how CIN induces genetic heterogeneity to influence the use and efficacy of several precision medicine strategies, including patient and risk stratification, as well as its impact on the acquisition of drug resistance and disease recurrence.
Collapse
Affiliation(s)
- Raghvendra Vishwakarma
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Kirk J. McManus
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-787-2833
| |
Collapse
|
24
|
Thompson LL, Baergen AK, Lichtensztejn Z, McManus KJ. Reduced SKP1 Expression Induces Chromosome Instability through Aberrant Cyclin E1 Protein Turnover. Cancers (Basel) 2020; 12:E531. [PMID: 32106628 PMCID: PMC7139525 DOI: 10.3390/cancers12030531] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Chromosome instability (CIN), or progressive changes in chromosome numbers, is an enabling feature of many cancers; however, the mechanisms giving rise to CIN remain poorly understood. To expand our mechanistic understanding of the molecular determinants of CIN in humans, we employed a cross-species approach to identify 164 human candidates to screen. Using quantitative imaging microscopy (QuantIM), we show that silencing 148 genes resulted in significant changes in CIN-associated phenotypes in two distinct cellular contexts. Ten genes were prioritized for validation based on cancer patient datasets revealing frequent gene copy number losses and associations with worse patient outcomes. QuantIM determined silencing of each gene-induced CIN, identifying novel roles for each as chromosome stability genes. SKP1 was selected for in-depth analyses as it forms part of SCF (SKP1, CUL1, FBox) complex, an E3 ubiquitin ligase that targets proteins for proteolytic degradation. Remarkably, SKP1 silencing induced increases in replication stress, DNA double strand breaks and chromothriptic events that were ascribed to aberrant increases in Cyclin E1 levels arising from reduced SKP1 expression. Collectively, these data reveal a high degree of evolutionary conservation between human and budding yeast CIN genes and further identify aberrant mechanisms associated with increases in chromothriptic events.
Collapse
Affiliation(s)
- Laura L. Thompson
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (L.L.T.); (A.K.B.); (Z.L.)
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Allison K. Baergen
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (L.L.T.); (A.K.B.); (Z.L.)
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Zelda Lichtensztejn
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (L.L.T.); (A.K.B.); (Z.L.)
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Kirk J. McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (L.L.T.); (A.K.B.); (Z.L.)
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|