1
|
Shin DW, Cho YA, Moon SH, Kim TH, Park JW, Lee JW, Choe JY, Kim MJ, Kim SE. High cellular prion protein expression in cholangiocarcinoma: A marker for early postoperative recurrence and unfavorable prognosis. World J Gastrointest Surg 2025; 17:101940. [PMID: 40162420 PMCID: PMC11948104 DOI: 10.4240/wjgs.v17.i3.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The cellular prion protein (PrPC), traditionally associated with neurodegenerative disorders, plays an important role in cancer progression and metastasis by inhibiting apoptosis. AIM To investigate the influence of PrPC expression in cholangiocarcinoma (CCA) on patient outcomes following surgical resection. METHODS Patients who underwent curative surgical resection for either intrahepatic or hilar CCA were enrolled in this retrospective study. Based on the immunohistochemical staining results of the surgical specimens, patients were categorized into two groups: The low PrPC group (negative or 1+) and the high PrPC group (2+ or 3+). Survival analyses, including overall survival and recurrence-free survival, were conducted using the Kaplan-Meier method and compared using the log-rank test. RESULTS In total, seventy-six patients diagnosed with CCA (39 with intrahepatic and 37 with hilar CCA) underwent curative hepatectomy from January 2011 to November 2021. Among these patients, 38 (50%) demonstrated high PrPC expression, whereas the remaining 38 (50%) showed low expression of PrPC. During a median follow-up period of 31.2 months (range: 1 to 137 months), the high PrPC group had a significantly shorter median overall survival than the low PrPC group (40.4 months vs 137.9 months, respectively; P = 0.041). Moreover, the high PrPC group had a significantly shorter median recurrence-free survival than the low PrPC group (13.3 months vs 23.8 months, respectively; P = 0.026). CONCLUSION PrPC expression is significantly associated with early recurrence and decreased survival period in CCA patients following surgical resection. Thus, PrPC may be used as a prognostic factor in treatment planning.
Collapse
Affiliation(s)
- Dong Woo Shin
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Yoon Ah Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Sung-Hoon Moon
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Tae Hyung Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Ji-Won Park
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Jung-Woo Lee
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, South Korea
| | - Ji-Young Choe
- Anatomic Pathology Reference Lab, Seegene Medical Foundation, Seoul 04805, South Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, South Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| |
Collapse
|
2
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Limone A, Maggisano V, Sarnataro D, Bulotta S. Emerging roles of the cellular prion protein (PrP C) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell Mol Life Sci 2023; 80:207. [PMID: 37452879 PMCID: PMC10349719 DOI: 10.1007/s00018-023-04844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.
Collapse
Affiliation(s)
- Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| |
Collapse
|
4
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
5
|
Gumusoglu-Acar E, Gunel T, Hosseini MK, Dogan B, Tekarslan EE, Gurdamar B, Cevik N, Sezerman U, Topuz S, Aydinli K. Metabolic pathways of potential miRNA biomarkers derived from liquid biopsy in epithelial ovarian cancer. Oncol Lett 2023; 25:142. [PMID: 36909377 PMCID: PMC9996378 DOI: 10.3892/ol.2023.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/03/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the type of OC with the highest mortality rate. Due to the asymptomatic nature of the disease and few available diagnostic tests, it is mostly diagnosed at the advanced stage. Therefore, the present study aimed to discover predictive and/or early diagnostic novel circulating microRNAs (miRNAs or miRs) for EOC. Firstly, microarray analysis of miRNA expression levels was performed on 32 samples of female individuals: Eight plasma samples from patients with pathologically confirmed EOC (mean age, 45 (30-54) years), eight plasma samples from matched healthy individuals (HIs) (mean age, 44 (30-65) years), eight EOC tissue samples (mean age, 45 (30-54) years) and eight benign ovarian (mean age, 35 (17-70) years) neoplastic tissue samples A total of 31 significantly dysregulated miRNAs in serum and three miRNAs in tissue were identified by microarray. The results were validated using reverse transcription-quantitative PCR on samples from 10 patients with pathologically confirmed EOC (mean age, 47(30-54) years), 10 matched His (mean age, 40(26-65) years], 10 EOC tissue samples (mean age, 47(30-54) years) and 10 benign ovarian neoplastic tissue samples (mean age, 40(17-70) years). The 'Kyoto Encyclopedia of Genes and Genomes' (KEGG) database was used for target gene and pathway analysis. A total of three miRNAs from EOC serum (hsa-miR-1909-5p, hsa-miR-885-5p and hsa-let-7d-3p) and one microRNA from tissue samples (hsa-miR-200c-3p) were validated as significant to distinguish patients with EOC from HIs. KEGG pathway enrichment analysis showed seven significant pathways, which included 'prion diseases', 'proteoglycans in cancer', 'oxytocin signaling pathway', 'hippo signaling pathway', 'adrenergic signaling in cardiomyocytes', 'oocyte meiosis' and 'thyroid hormone signaling pathway', in which the validated miRNAs served a role. This supports the hypothesis that four validated miRNAs, have the potential to be a biomarker of EOC diagnosis and target for treatment.
Collapse
Affiliation(s)
- Ece Gumusoglu-Acar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berkcan Dogan
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Efnan Elif Tekarslan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berk Gurdamar
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Nazife Cevik
- Computer Engineering Department, Engineering and Architecture Faculty, Istanbul Arel University, 34537 Istanbul, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Samet Topuz
- Department of Obstetrics and Gynecology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | | |
Collapse
|
6
|
Deng J, Fu F, Zhang F, Xia Y, Zhou Y. Construct ceRNA Network and Risk Model of Breast Cancer Using Machine Learning Methods under the Mechanism of Cuproptosis. Diagnostics (Basel) 2023; 13:diagnostics13061203. [PMID: 36980514 PMCID: PMC10047351 DOI: 10.3390/diagnostics13061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer (BRCA) has an undesirable prognosis and is the second most common cancer among women after lung cancer. A novel mechanism of programmed cell death called cuproptosis is linked to the development and spread of tumor cells. However, the function of cuproptosis in BRCA remains unknown. To this date, no studies have used machine learning methods to screen for characteristic genes to explore the role of cuproptosis-related genes (CRGs) in breast cancer. Therefore, 14 cuproptosis-related characteristic genes (CRCGs) were discovered by the feature selection of 39 differentially expressed CRGs using the three machine learning methods LASSO, SVM-RFE, and random forest. Through the PPI network and immune infiltration analysis, we found that PRNP was the key CRCG. The miRTarBase, TargetScan, and miRDB databases were then used to identify hsa-miR-192-5p and hsa-miR-215-5p as the upstream miRNA of PRNP, and the upstream lncRNA, CARMN, was identified by the StarBase database. Thus, the mRNA PRNP/miRNA hsa-miR-192-5p and hsa-miR-215-5p/lncRNA CARMN ceRNA network was constructed. This ceRNA network, which has not been studied before, is extremely innovative. Furthermore, four cuproptosis-related lncRNAs (CRLs) were screened in TCGA-BRCA by univariate Cox, LASSO, and multivariate Cox regression analysis. The risk model was constructed by using these four CRLs, and the risk score = C9orf163 * (1.8365) + PHC2-AS1 * (-2.2985) + AC087741.1 * (-0.9504) + AL109824.1 * (0.6016). The ROC curve and C-index demonstrated the superior predictive capacity of the risk model, and the ROC curve demonstrated that the AUC of 1-, 3-, and 5-year OS in all samples was 0.721, 0.695, and 0.633, respectively. Finally, 50 prospective sensitive medicines were screened with the pRRophetic R package, among which 17-AAG may be a therapeutic agent for high-risk patients, while the other 49 medicines may be suitable for the treatment of low-risk patients. In conclusion, our study constructs a new ceRNA network and a novel risk model, which offer a theoretical foundation for the treatment of BRCA and will aid in improving the prognosis of BRCA.
Collapse
Affiliation(s)
- Jianzhi Deng
- Guangxi Key Laboratory of Embedded Technology and Intelligent Information Processing, Guilin University of Technology, Guilin 541006, China
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Fei Fu
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Fengming Zhang
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Yuanyuan Xia
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China
- College of Foreign Studies, Guilin University of Technology, Guilin 541004, China
| | - Yuehan Zhou
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
7
|
Armocida D, Busceti CL, Biagioni F, Fornai F, Frati A. The Role of Cellular Prion Protein in Glioma Tumorigenesis Could Be through the Autophagic Mechanisms: A Narrative Review. Int J Mol Sci 2023; 24:ijms24021405. [PMID: 36674920 PMCID: PMC9865539 DOI: 10.3390/ijms24021405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
The carcinogenesis of glial tumors appears complex because of the many genetic and epigenetic phenomena involved. Among these, cellular prion protein (PrPC) is considered a key factor in cell-death resistance and important aspect implicated in tumorigenesis. Autophagy also plays an important role in cell death in various pathological conditions. These two cellular phenomena are related and share the same activation by specific alterations in the cellular microenvironment. Furthermore, there is an interdependence between autophagy and prion activity in glioma tumorigenesis. Glioma is one of the most aggressive known cancers, and the fact that such poorly studied processes as autophagy and PrPC activity are so strongly involved in its carcinogenesis suggests that by better understanding their interaction, more can be understood about its origin and treatment. Few studies in the literature relate these two cellular phenomena, much less try to explain their combined activity and role in glioma carcinogenesis. In this study, we explored the recent findings on the molecular mechanism and regulation pathways of autophagy, examining the role of PrPC in autophagy processes and how they may play a central role in glioma tumorigenesis. Among the many molecular interactions that PrP physiologically performs, it appears that processes shared with autophagy activity are those most implicated in glial tumor carcinogeneses such as activity on MAP kinases, PI3K, and mTOR. This work can be supportive and valuable as a basis for further future studies on this topic.
Collapse
Affiliation(s)
- Daniele Armocida
- Department of Human Neuroscience, Sapienza University of Rome, Via Caserta 6, 00161 Roma, Italy
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Roma, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Correspondence: ; Tel.: +39-39-3287-4496
| | - Carla Letizia Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Francesco Fornai
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
8
|
Kroll F, Dimitriadis A, Campbell T, Darwent L, Collinge J, Mead S, Vire E. Prion protein gene mutation detection using long-read Nanopore sequencing. Sci Rep 2022; 12:8284. [PMID: 35585119 PMCID: PMC9117325 DOI: 10.1038/s41598-022-12130-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
Prion diseases are fatal neurodegenerative conditions that affect humans and animals. Rapid and accurate sequencing of the prion gene PRNP is paramount to human prion disease diagnosis and for animal surveillance programmes. Current methods for PRNP genotyping involve sequencing of small fragments within the protein-coding region. The contribution of variants in the non-coding regions of PRNP including large structural changes is poorly understood. Here, we used long-range PCR and Nanopore sequencing to sequence the full length of PRNP, including its regulatory region, in 25 samples from blood and brain of individuals with inherited or sporadic prion diseases. Nanopore sequencing detected the same variants as identified by Sanger sequencing, including repeat expansions/deletions. Nanopore identified additional single-nucleotide variants in the non-coding regions of PRNP, but no novel structural variants were discovered. Finally, we explored somatic mosaicism of PRNP's octapeptide repeat region, which is a hypothetical cause of sporadic prion disease. While we found changes consistent with somatic mutations, we demonstrate that they may have been generated by the PCR. Our study illustrates the accuracy of Nanopore sequencing for rapid and field prion disease diagnosis and highlights the need for single-molecule sequencing methods for the detection of somatic mutations.
Collapse
Affiliation(s)
- François Kroll
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Athanasios Dimitriadis
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Tracy Campbell
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Lee Darwent
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - John Collinge
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF, UK.
| | - Emmanuelle Vire
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| |
Collapse
|
9
|
Yerukala Sathipati S, Tsai MJ, Shukla SK, Ho SY, Liu Y, Beheshti A. MicroRNA signature for estimating the survival time in patients with bladder urothelial carcinoma. Sci Rep 2022; 12:4141. [PMID: 35264666 PMCID: PMC8907292 DOI: 10.1038/s41598-022-08082-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder urothelial carcinoma (BLC) is one of the most common cancers in men, and its heterogeneity challenges the treatment to cure this disease. Recently, microRNAs (miRNAs) gained promising attention as biomarkers due to their potential roles in cancer biology. Identifying survival-associated miRNAs may help identify targets for therapeutic interventions in BLC. This work aims to identify a miRNA signature that could estimate the survival in patients with BLC. We developed a survival estimation method called BLC-SVR based on support vector regression incorporated with an optimal feature selection algorithm to select a robust set of miRNAs as a signature to estimate the survival in patients with BLC. BLC-SVR identified a miRNA signature consisting of 29 miRNAs and obtained a mean squared correlation coefficient and mean absolute error of 0.79 ± 0.02 and 0.52 ± 0.32 year between actual and estimated survival times, respectively. The prediction performance of BLC-SVR had a better estimation capability than other standard regression methods. In the identified miRNA signature, 14 miRNAs, hsa-miR-432-5p, hsa-let-7e-3p, hsa-miR-652-3p, hsa-miR-629-5p, and hsa-miR-203a-3p, hsa-miR-129-5p, hsa-miR-769-3p, hsa-miR-570-3p, hsa-miR-320c, hsa-miR-642a-5p, hsa-miR-496, hsa-miR-5480-3p, hsa-miR-221-5p, and hsa-miR-7-1-3p, were found to be good biomarkers for BLC diagnosis; and the six miRNAs, hsa-miR-652-5p, hsa-miR-193b-5p, hsa-miR-129-5p, hsa-miR-143-5p, hsa-miR-496, and hsa-miR-7-1-3p, were found to be good biomarkers of prognosis. Further bioinformatics analysis of this miRNA signature demonstrated its importance in various biological pathways and gene ontology annotation. The identified miRNA signature would further help in understanding of BLC diagnosis and prognosis in the development of novel miRNA-target based therapeutics in BLC.
Collapse
Affiliation(s)
| | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi Liu
- Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
10
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Gil‐Garcia M, Iglesias V, Pallarès I, Ventura S. Prion-like proteins: from computational approaches to proteome-wide analysis. FEBS Open Bio 2021; 11:2400-2417. [PMID: 34057308 PMCID: PMC8409284 DOI: 10.1002/2211-5463.13213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Prions are self-perpetuating proteins able to switch between a soluble state and an aggregated-and-transmissible conformation. These proteinaceous entities have been widely studied in yeast, where they are involved in hereditable phenotypic adaptations. The notion that such proteins could play functional roles and be positively selected by evolution has triggered the development of computational tools to identify prion-like proteins in different kingdoms of life. These algorithms have succeeded in screening multiple proteomes, allowing the identification of prion-like proteins in a diversity of unrelated organisms, evidencing that the prion phenomenon is well conserved among species. Interestingly enough, prion-like proteins are not only connected with the formation of functional membraneless protein-nucleic acid coacervates, but are also linked to human diseases. This review addresses state-of-the-art computational approaches to identify prion-like proteins, describes proteome-wide analysis efforts, discusses these unique proteins' functional role, and illustrates recently validated examples in different domains of life.
Collapse
Affiliation(s)
- Marcos Gil‐Garcia
- Departament de Bioquímica i Biologia MolecularInstitut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaSpain
| | - Valentín Iglesias
- Departament de Bioquímica i Biologia MolecularInstitut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaSpain
| | - Irantzu Pallarès
- Departament de Bioquímica i Biologia MolecularInstitut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaSpain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia MolecularInstitut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaSpain
| |
Collapse
|
12
|
Kim YC, Park KJ, Hwang JY, Park HC, Kang HE, Sohn HJ, Jeong BH. In-depth examination of PrP Sc in Holstein cattle carrying the E211K somatic mutation of the bovine prion protein gene (PRNP). Transbound Emerg Dis 2021; 69:e356-e361. [PMID: 34470082 DOI: 10.1111/tbed.14309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
Prion diseases are transmissible spongiform encephalopathies caused by deleterious prion protein (PrPSc ) derived from normal prion protein (PrPC ), which is encoded by the prion protein gene (PRNP). We performed an in-depth examination to detect PrPSc by using enzyme immunoassay (EIA), real-time quaking-induced conversion reactions (RT-QuIC) and protein misfolding cyclic amplification (PMCA) in nine brain tissues derived from three Holstein cattle carrying the E211K somatic mutation of the bovine PRNP gene. The EIA, RT-QuIC and PMCA analyses were not able to detect the PrPSc band in any tested samples. To the best of our knowledge, this report is the first to describe an in-depth examination of PrPSc in cattle carrying the E211K somatic mutation of the bovine PRNP gene.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyung-Je Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ji-Yong Hwang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hoo-Chang Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hae-Eun Kang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Joo Sohn
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
13
|
Large-scale lipidomic profiling identifies novel potential biomarkers for prion diseases and highlights lipid raft-related pathways. Vet Res 2021; 52:105. [PMID: 34289911 PMCID: PMC8296529 DOI: 10.1186/s13567-021-00975-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies induced by the abnormally-folded prion protein (PrPSc), which is derived from the normal prion protein (PrPC). Previous studies have reported that lipid rafts play a pivotal role in the conversion of PrPC into PrPSc, and several therapeutic strategies targeting lipids have led to prolonged survival times in prion diseases. In addition, phosphatidylethanolamine, a glycerophospholipid member, accelerated prion disease progression. Although several studies have shown that prion diseases are significantly associated with lipids, lipidomic analyses of prion diseases have not been reported thus far. We intraperitoneally injected phosphate-buffered saline (PBS) or ME7 mouse prions into mice and sacrificed them at different time points (3 and 7 months) post-injection. To detect PrPSc in the mouse brain, we carried out western blotting analysis of the left hemisphere of the brain. To identify potential novel lipid biomarkers, we performed lipid extraction on the right hemisphere of the brain and liquid chromatography mass spectrometry (LC/MS) to analyze the lipidomic profiling between non-infected mice and prion-infected mice. Finally, we analyzed the altered lipid-related pathways by a lipid pathway enrichment analysis (LIPEA). We identified a total of 43 and 75 novel potential biomarkers at 3 and 7 months in prion-infected mice compared to non-infected mice, respectively. Among these novel potential biomarkers, approximately 75% of total lipids are glycerophospholipids. In addition, altered lipids between the non-infected and prion-infected mice were related to sphingolipid, glycerophospholipid and glycosylphosphatidylinositol (GPI)-anchor-related pathways. In the present study, we found novel potential biomarkers and therapeutic targets of prion disease. To the best of our knowledge, this study reports the first large-scale lipidomic profiling in prion diseases.
Collapse
|
14
|
Kim YC, Won SY, Jeong MJ, Jeong BH. Absence of proteinase K-resistant PrP in Korean Holstein cattle carrying potential bovine spongiform encephalopathy-related E211K somatic mutation. Transbound Emerg Dis 2021; 69:805-812. [PMID: 33660931 DOI: 10.1111/tbed.14053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
Bovine spongiform encephalopathy (BSE) is a kind of prion disease caused by proteinase K-resistant prion protein (PrPSc ) in cattle. Although BSE has been reported worldwide, BSE-infected cases have never been reported in Korea. In a previous study, we identified BSE-related somatic mutation E211K in 3 Korean Holstein cattle. In Korea, the BSE surveillance system has been established. However, several genetic factors have not been controlled simultaneously thus far. In the present study, we performed enhanced surveillance of prion disease-related factors in Korean cattle, including Holstein cattle and Hanwoo (Korean native cattle), which is widely raised for meat. We investigated the germline mutation E211K at codon 211 of the PRNP gene and analysed genotype, allele and haplotype frequencies of the 23- and 12-bp insertion/deletion polymorphisms of the PRNP gene using direct DNA sequencing. In addition, we investigated linkage disequilibrium (LD) and compared haplotype distributions of polymorphisms among cattle breeds. Furthermore, we carried out BSE diagnosis in the medulla oblongata (MO) of Korean cattle including 3 Korean Holstein cattle carrying somatic mutation E211K using Western blotting analysis. We did not find the E211K mutation in the PRNP gene in any of the Korean cattle and found significantly different genotype, allele and haplotype distributions of the 23- and 12-bp insertion/deletion polymorphisms of the PRNP gene in male Holstein compared with male Hanwoo, female Hanwoo and total Hanwoo. In addition, only male Holstein showed weak LD between 23- and 12-bp insertion/deletion polymorphisms. Furthermore, the PrPSc bands were not detected in all Korean cattle tested. To the best of our knowledge, the enhanced surveillance system of BSE was conducted for the first time in Korean cattle.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Korea
| | - Min-Ju Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
15
|
Ryskalin L, Biagioni F, Busceti CL, Giambelluca MA, Morelli L, Frati A, Fornai F. The Role of Cellular Prion Protein in Promoting Stemness and Differentiation in Cancer. Cancers (Basel) 2021; 13:170. [PMID: 33418999 PMCID: PMC7825291 DOI: 10.3390/cancers13020170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 02/05/2023] Open
Abstract
Cellular prion protein (PrPC) is seminal to modulate a variety of baseline cell functions to grant homeostasis. The classic role of such a protein was defined as a chaperone-like molecule being able to rescue cell survival. Nonetheless, PrPC also represents the precursor of the deleterious misfolded variant known as scrapie prion protein (PrPSc). This variant is detrimental in a variety of prion disorders. This multi-faceted role of PrP is greatly increased by recent findings showing how PrPC in its folded conformation may foster tumor progression by acting at multiple levels. The present review focuses on such a cancer-promoting effect. The manuscript analyzes recent findings on the occurrence of PrPC in various cancers and discusses the multiple effects, which sustain cancer progression. Within this frame, the effects of PrPC on stemness and differentiation are discussed. A special emphasis is provided on the spreading of PrPC and the epigenetic effects, which are induced in neighboring cells to activate cancer-related genes. These detrimental effects are further discussed in relation to the aberrancy of its physiological and beneficial role on cell homeostasis. A specific paragraph is dedicated to the role of PrPC beyond its effects in the biology of cancer to represent a potential biomarker in the follow up of patients following surgical resection.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (M.A.G.)
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Carla L. Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Maria A. Giambelluca
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (M.A.G.)
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy;
- EndoCAS (Center for Computer Assisted Surgery), University of Pisa, 56124 Pisa, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135 Roma, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (M.A.G.)
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| |
Collapse
|
16
|
Kim YC, Jeong BH. Strong Association of the rs4986790 Single Nucleotide Polymorphism (SNP) of the Toll-Like Receptor 4 ( TLR4) Gene with Human Immunodeficiency Virus (HIV) Infection: A Meta-Analysis. Genes (Basel) 2020; 12:genes12010036. [PMID: 33396586 PMCID: PMC7823319 DOI: 10.3390/genes12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) causes acquired immune deficiency syndrome (AIDS) and enters the host cell via CD4 and either CC-chemokine receptor 5 (CCR) or CXC-chemokine receptor 4 (CXCR4). HIV is directly recognized by toll-like receptor 4 (TLR4) and affects downstream immune-related signal pathways. In addition, stimulated TLR4 inhibits HIV-1 invasion, and the rs4986790 single nucleotide polymorphism (SNP) (D299G) of the TLR4 gene contributes to the risk of HIV-1 infection in an Indian population. To evaluate whether the rs4986790 SNP of the TLR4 gene is related to vulnerability to HIV-1 infection, we collected genetic information from HIV-1 patients in previous studies and performed an association analysis with a matched control population obtained from the 1000 Genomes Project. In addition, to strengthen the results of association analysis, we performed a meta-analysis. We identified a strong association between the rs4986791 SNP and susceptibility to HIV infection in HIV-infected patients in previous studies and a matched control population obtained from the 1000 Genomes Project. In addition, we found that the G allele of the rs4986791 SNP in the TLR4 gene is strongly related to susceptibility to HIV infection in three Caucasian populations (odd ratio = 2.29, 95% confidence interval: 1.72–3.07, p = 1.438 × 10−7) and all four populations (odd ratio = 2.22, 95% confidence interval: 1.74–2.84, p = 2 × 10−10) in a meta-analysis. To the best our knowledge, this was the first meta-analysis on the association between the rs4986791 SNP of the TLR4 gene and susceptibility to HIV infection.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea;
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea;
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
- Correspondence: ; Tel.: +82-63-900-4040; Fax: +82-63-900-4012
| |
Collapse
|
17
|
Kim HH, Kim YC, Kim K, Kim AD, Jeong BH. Novel Polymorphisms and Genetic Features of the Prion Protein Gene ( PRNP) in Cats, Hosts of Feline Spongiform Encephalopathy. Genes (Basel) 2020; 12:genes12010013. [PMID: 33374431 PMCID: PMC7824082 DOI: 10.3390/genes12010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by vacuolation and gliosis in the brain. Prion diseases have been reported in several mammals, and genetic polymorphisms of the prion protein gene (PRNP) play an essential role in the vulnerability of prion diseases. However, to date, investigations of PRNP polymorphisms are rare in cats, which are the major host of feline spongiform encephalopathy (FSE). Thus, we investigated the genetic polymorphisms of the cat PRNP gene and analyzed the structural characteristics of the PrP of cats compared to those of dog, prion disease-resistant animal. To investigate the genetic variations of the cat PRNP gene in 208 cats, we performed amplicon sequencing and examined the genotype, allele and haplotype frequencies of cat PRNP polymorphisms. We evaluated the influence of cat PRNP polymorphisms using PolyPhen-2, PANTHER, PROVEAN and AMYCO. In addition, we carried out structural analysis of cat PrP according to the allele of nonsynonymous single nucleotide polymorphism (SNP) (c.457G > A, Glu153Lys) using Swiss-PdbViewer. Finally, we compared the structural differences between cat and canine PrPs for SNPs associated with prion disease resistance in dogs. We identified a total of 15 polymorphisms, including 14 novel SNPs and one insertion/deletion polymorphism (InDel). Among them, Glu153Lys was predicted to affect the structural stability and amyloid propensity of cat PrP. In addition, asparagine at codon 166 of cat PrP was predicted to have longer hydrogen bond than aspartic acid at codon 163 of canine PrP. Furthermore, substitution to dog-specific amino acids in cat PrP showed an increase in structural stability. To the best of our knowledge, this is the first study regarding the structural characteristics of cat PRNP gene.
Collapse
Affiliation(s)
- Hyeon-Ho Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea; (H.-H.K.); (Y.-C.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea; (H.-H.K.); (Y.-C.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Kiwon Kim
- Haemalken Animal Hospital, Yangju, Gyeonggi 11492, Korea;
| | - An-Dang Kim
- Cool-Pet Animal Hospital, Anyang, Gyeonggi 14066, Korea;
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea; (H.-H.K.); (Y.-C.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
- Correspondence: ; Tel.: +82-63-900-4040; Fax: +82-63-900-4012
| |
Collapse
|
18
|
Kim YC, Jeong BH. Identification of Somatic Mutations in Dementia-related Genes in Cancer Patients. Curr Alzheimer Res 2020; 17:835-844. [PMID: 33272183 DOI: 10.2174/1567205017666201203124341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/10/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dementia is an overall term of brain diseases, including Alzheimer's disease (AD), tauopathies and synucleinopathies. To date, somatic mutations in dementia-related genes, including the amyloid precursor protein (APP) gene, presenilin 1 (PSEN1) gene, PSEN2 gene, microtubule- associated protein tau (MAPT) gene, alpha-synuclein (SNCA) gene and leucine-rich repeat kinase 2 (LRRK2) gene, have been considered one cause of dementia. We have questioned the impact of somatic mutations in dementia-related genes on cancer. METHODS In the present study, we investigated somatic mutations in the APP, PSEN1, PSEN2, MAPT, SNCA and LRRK2 genes and the impact of these somatic mutations. RESULTS From The Cancer Genome Atlas (TCGA) database, we found 1,643 somatic mutations in the APP, PSEN1, PSEN2, MAPT, SNCA and LRRK2 genes in cancer patients. Strikingly, compared to the distributions of cancer types in total cancer patients, somatic mutations in the dementia-related genes showed an extremely low distribution in glioblastoma patients. CONCLUSION To the best of our knowledge, this is the first investigation of dementia-related genes in cancer patients.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea
| |
Collapse
|
19
|
The Cellular Prion Protein: A Promising Therapeutic Target for Cancer. Int J Mol Sci 2020; 21:ijms21239208. [PMID: 33276687 PMCID: PMC7730109 DOI: 10.3390/ijms21239208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Studies on the cellular prion protein (PrPC) have been actively conducted because misfolded PrPC is known to cause transmissible spongiform encephalopathies or prion disease. PrPC is a glycophosphatidylinositol-anchored cell surface glycoprotein that has been reported to affect several cellular functions such as stress protection, cellular differentiation, mitochondrial homeostasis, circadian rhythm, myelin homeostasis, and immune modulation. Recently, it has also been reported that PrPC mediates tumor progression by enhancing the proliferation, metastasis, and drug resistance of cancer cells. In addition, PrPC regulates cancer stem cell properties by interacting with cancer stem cell marker proteins. In this review, we summarize how PrPC promotes tumor progression in terms of proliferation, metastasis, drug resistance, and cancer stem cell properties. In addition, we discuss strategies to treat tumors by modulating the function and expression of PrPC via the regulation of HSPA1L/HIF-1α expression and using an anti-prion antibody.
Collapse
|