1
|
Malikova I, Worth A, Aliyeva D, Khassenova M, Kriajevska MV, Tulchinsky E. Proteolysis of TAM receptors in autoimmune diseases and cancer: what does it say to us? Cell Death Dis 2025; 16:155. [PMID: 40044635 PMCID: PMC11883011 DOI: 10.1038/s41419-025-07480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/09/2025]
Abstract
Proteolytic processing of Receptor Tyrosine Kinases (RTKs) leads to the release of ectodomains in the extracellular space. These soluble ectodomains often retain the ligand binding activity and dampen canonical pathways by acting as decoy receptors. On the other hand, shedding the ectodomains may initiate new molecular events and diversification of signalling. Members of the TAM (TYRO3, AXL, MER) family of RTKs undergo proteolytic cleavage, and their soluble forms are present in the extracellular space and biological fluids. TAM receptors are expressed in professional phagocytes, mediating apoptotic cell clearance, and suppressing innate immunity. Enhanced shedding of TAM ectodomains is documented in autoimmune and some inflammatory conditions. Also, soluble TAM receptors are present at high levels in the biological fluids of cancer patients and are associated with poor survival. We outline the biology of TAM receptors and discuss how their proteolytic processing impacts autoimmunity and tumorigenesis. In autoimmune diseases, proteolysis of TAM receptors likely reflects reduced canonical signalling in professional phagocytes. In cancer, TAM receptors are expressed in the immune cells of the tumour microenvironment, where they control pathways facilitating immune evasion. In tumour cells, ectodomain shedding activates non-canonical TAM pathways, leading to epithelial-mesenchymal transition, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ilona Malikova
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Anastassiya Worth
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Diana Aliyeva
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Madina Khassenova
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Marina V Kriajevska
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Eugene Tulchinsky
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
2
|
Zhang W, Sun M, Liu N, Li X, Sun J, Wang M. Curcumin ameliorates astrocyte inflammation through AXL in cuprizone-induced mice. Toxicol Appl Pharmacol 2025; 494:117170. [PMID: 39586379 DOI: 10.1016/j.taap.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Curcumin has gained global attention owning to its anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. Curcumin has recently been shown to have well-documented effects on neuroinflammation in multiple sclerosis (MS). Astrocytes, the most widely distributed glial cells in the brain, have a significant influence on the regulation of neuroinflammation in MS. However, it is unknown how curcumin exerts neuroprotective effects in astrocytes. To elucidate the mechanism underlying the effects of curcumin on astrocytes, we explored the effect of curcumin on cuprizone (CPZ)-induced mice in vivo and on primary astrocytes in vitro. In this study, we observed that curcumin significantly ameliorated myelin loss and reduced astrocyte activation in the corpus callosum (CC) region in mice induced with CPZ, and in primary astrocytes stimulated with lipopolysaccharide (LPS). Meanwhile, our research indicated that curcumin may exert neuroprotective effects in CPZ-induced mice by downregulating astrocyte-mediated inflammation by AXL. This study provides new insights into possible targeted therapies for MS.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Mengjiao Sun
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China.
| |
Collapse
|
3
|
Apostolo D, D’Onghia D, Nerviani A, Ghirardi GM, Sola D, Perazzi M, Tonello S, Colangelo D, Sainaghi PP, Bellan M. Could Gas6/TAM Axis Provide Valuable Insights into the Pathogenesis of Systemic Sclerosis? Curr Issues Mol Biol 2024; 46:7486-7504. [PMID: 39057085 PMCID: PMC11275301 DOI: 10.3390/cimb46070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular injury, extracellular matrix deposition, autoimmunity, inflammation, and fibrosis. The clinical complexity and high heterogeneity of the disease make the discovery of potential therapeutic targets difficult. However, the recent progress in the comprehension of its pathogenesis is encouraging. Growth Arrest-Specific 6 (Gas6) and Tyro3, Axl, and MerTK (TAM) receptors are involved in multiple biological processes, including modulation of the immune response, phagocytosis, apoptosis, fibrosis, inflammation, cancer development, and autoimmune disorders. In the present manuscript, we review the current evidence regarding SSc pathogenesis and the role of the Gas6/TAM system in several human diseases, suggesting its likely contribution in SSc and highlighting areas where further research is necessary to fully comprehend the role of TAM receptors in this condition. Indeed, understanding the involvement of TAM receptors in SSc, which is currently unknown, could provide valuable insights for novel potential therapeutic targets.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Davide D’Onghia
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Giulia Maria Ghirardi
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Daniele Sola
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- IRCCS Istituto Auxologico Italiano, UO General Medicine, 28824 Oggebbio, Italy
| | - Mattia Perazzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Donato Colangelo
- Department of Health Sciences, Pharmacology, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
4
|
Mosquera-Heredia MI, Vidal OM, Morales LC, Silvera-Redondo C, Barceló E, Allegri R, Arcos-Burgos M, Vélez JI, Garavito-Galofre P. Long Non-Coding RNAs and Alzheimer's Disease: Towards Personalized Diagnosis. Int J Mol Sci 2024; 25:7641. [PMID: 39062884 PMCID: PMC11277322 DOI: 10.3390/ijms25147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder characterized by progressive cognitive decline, is the most common form of dementia. Currently, there is no single test that can diagnose AD, especially in understudied populations and developing countries. Instead, diagnosis is based on a combination of medical history, physical examination, cognitive testing, and brain imaging. Exosomes are extracellular nanovesicles, primarily composed of RNA, that participate in physiological processes related to AD pathogenesis such as cell proliferation, immune response, and neuronal and cardiovascular function. However, the identification and understanding of the potential role of long non-coding RNAs (lncRNAs) in AD diagnosis remain largely unexplored. Here, we clinically, cognitively, and genetically characterized a sample of 15 individuals diagnosed with AD (cases) and 15 controls from Barranquilla, Colombia. Advanced bioinformatics, analytics and Machine Learning (ML) techniques were used to identify lncRNAs differentially expressed between cases and controls. The expression of 28,909 lncRNAs was quantified. Of these, 18 were found to be differentially expressed and harbored in pivotal genes related to AD. Two lncRNAs, ENST00000608936 and ENST00000433747, show promise as diagnostic markers for AD, with ML models achieving > 95% sensitivity, specificity, and accuracy in both the training and testing datasets. These findings suggest that the expression profiles of lncRNAs could significantly contribute to advancing personalized AD diagnosis in this community, offering promising avenues for early detection and follow-up.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
- Department of Health Sciences, Universidad de La Costa, Barranquilla 080002, Colombia
- Grupo Internacional de Investigación Neuro-Conductual (GIINCO), Universidad de La Costa, Barranquilla 080002, Colombia
| | - Ricardo Allegri
- Institute for Neurological Research FLENI, Montañeses 2325, Buenos Aires C1428AQK, Argentina;
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia;
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| |
Collapse
|
5
|
Gou M, Li W, Tong J, Zhou Y, Xie T, Yu T, Feng W, Li Y, Chen S, Tian B, Tan S, Wang Z, Pan S, Luo X, Li CSR, Zhang P, Huang J, Tian L, Hong LE, Tan Y. Correlation of Immune-Inflammatory Response System (IRS)/Compensatory Immune-Regulatory Reflex System (CIRS) with White Matter Integrity in First-Episode Patients with Schizophrenia. Mol Neurobiol 2024; 61:2754-2763. [PMID: 37932545 DOI: 10.1007/s12035-023-03694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
Several studies have reported compromised white matter integrity, and that some inflammatory mediators may underlie this functional dysconnectivity in the brain of patients with schizophrenia. The immune-inflammatory response system and compensatory immune-regulatory reflex system (IRS/CIRS) are novel biomarkers for exploring the role of immune imbalance in the pathophysiological mechanism of schizophrenia. This study aimed to explore the little-known area regarding the composite score of peripheral cytokines, the IRS/CIRS, and its correlation with white matter integrity and the specific microstructures most affected in schizophrenia. First-episode patients with schizophrenia (FEPS, n = 94) and age- and sex-matched healthy controls (HCs, n = 50) were enrolled in this study. Plasma cytokine levels were measured using enzyme-linked immunosorbent assay (ELISA), and psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS). The whole brain white matter integrity was measured by fractional anisotropy (FA) from diffusion tensor imaging (DTI) using a 3-T Prisma MRI scanner. The IRS/CIRS in FEPS was significantly higher than that in HCs (p = 1.5 × 10-5) and Cohen's d effect size was d = 0.74. FEPS had a significantly lower whole-brain white matter average FA (p = 0.032), which was negatively associated with IRS/CIRS (p = 0.029, adjusting for age, sex, years of education, BMI, and total intracranial volume), but not in the HCs (p > 0.05). Among the white matter microstructures, only the cortico-spinal tract was significantly correlated with IRS/CIRS in FEPS (r = - 0.543, p = 0.0009). Therefore, elevated IRS/CIRS may affect the white matter in FEPS.
Collapse
Affiliation(s)
- Mengzhuang Gou
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Wei Li
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Jinghui Tong
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Yanfang Zhou
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Ting Xie
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Ting Yu
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Wei Feng
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Yanli Li
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Song Chen
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Baopeng Tian
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Shujuan Pan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ping Zhang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Junchao Huang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China.
| |
Collapse
|
6
|
Baskol G, Yetkin MÖ, Sevim DG, Guclu K, Arda H, Saracoglu H, Gahramanov K, Evereklioglu C. Serum GAS6, sAXL, IL-10, NO, and BCL-2 levels are decreased in patients with Behçet's disease. Indian J Ophthalmol 2024; 72:S468-S472. [PMID: 38648454 PMCID: PMC467006 DOI: 10.4103/ijo.ijo_2829_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Behçet's disease (BD) is an autoimmune chronic systemic inflammatory disease characterized by a versatile clinical spectrum. Growth arrest specific protein 6 (GAS6)/soluble AXL (sAXL) signaling pathway draws attention in the resolution of inflammation, and its deficiency is associated with chronic inflammatory, autoimmune diseases, as well as clearance of apoptotic cells by phagocytes - efferocytosis. In this study, it was aimed to investigate whether GAS6/sAXL, interleukin (IL)-10, nitric oxide (NO), and BCL-2 levels were associated with inflammation and efferocytosis contributes to the pathogenesis of BD. METHODS A total of 37 Behçet patients with ocular involvement and 30 healthy control subjects were included in this study. GAS6, sAXL, IL-10, NO, and BCL-2 levels were quantified using enzyme-linked immunosorbent assay (ELISA) method. RESULTS Serum GAS6, sAXL, IL-10, NO, and BCL-2 levels were significantly lower in patients with BD compared to the controls (P < 0.005, P < 0.001, P < 0.001, P < 0.001, and P < 0.001, respectively). In correlation analysis, research parameters decreased in patients with BD was significantly correlated with each other: GAS6-IL-10 (r = 0.585, P < 0.001), GAS6-BCL-2 (r = 0.541, P < 0.001), sAXL-BCL-2 (r = 0.696, P < 0.001), IL-10-NO (r = 0.717, P < 0.001), IL-10-BCL-2 (r = 0.759, P < 0.001), and NO-BCL-2 (r = 0.541, P < 0.001). CONCLUSION In conclusion, decreased serum BCL-2 level may be an indicator of increased apoptosis in these patients and decreased levels of GAS6/sAXL, IL-10, and NO may indicate insufficient clearance of apoptotic bodies released as a result of increased apoptosis in BD patients.
Collapse
Affiliation(s)
- Gulden Baskol
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Merve Ö. Yetkin
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duygu G Sevim
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Kenan Guclu
- Department of Biochemistry, Kayseri State Hospital, Kayseri, Turkey
| | - Hatice Arda
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hatice Saracoglu
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Kamran Gahramanov
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Cem Evereklioglu
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
7
|
D’Onghia D, Colangelo D, Bellan M, Tonello S, Puricelli C, Virgilio E, Apostolo D, Minisini R, Ferreira LL, Sozzi L, Vincenzi F, Cantello R, Comi C, Pirisi M, Vecchio D, Sainaghi PP. Gas6/TAM system as potential biomarker for multiple sclerosis prognosis. Front Immunol 2024; 15:1362960. [PMID: 38745659 PMCID: PMC11091300 DOI: 10.3389/fimmu.2024.1362960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction The protein growth arrest-specific 6 (Gas6) and its tyrosine kinase receptors Tyro-3, Axl, and Mer (TAM) are ubiquitous proteins involved in regulating inflammation and apoptotic body clearance. Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system leading to progressive and irreversible disability if not diagnosed and treated promptly. Gas6 and TAM receptors have been associated with neuronal remyelination and stimulation of oligodendrocyte survival. However, few data are available regarding clinical correlation in MS patients. We aimed to evaluate soluble levels of these molecules in the cerebrospinal fluid (CSF) and serum at MS diagnosis and correlate them with short-term disease severity. Methods In a prospective cohort study, we enrolled 64 patients with a diagnosis of clinical isolated syndrome (CIS), radiological isolated syndrome (RIS) and relapsing-remitting (RR) MS according to the McDonald 2017 Criteria. Before any treatment initiation, we sampled the serum and CSF, and collected clinical data: disease course, presence of gadolinium-enhancing lesions, and expanded disability status score (EDSS). At the last clinical follow-up, we assessed EDSS and calculated MS severity score (MSSS) and age-related MS severity (ARMSS). Gas6 and TAM receptors were determined using an ELISA kit (R&D Systems) and compared to neurofilament (NFLs) levels evaluated with SimplePlex™ fluorescence-based immunoassay. Results At diagnosis, serum sAxl was higher in patients receiving none or low-efficacy disease-modifying treatments (DMTs) versus patients with high-efficacy DMTs (p = 0.04). Higher CSF Gas6 and serum sAXL were associated with an EDSS <3 at diagnosis (p = 0.04; p = 0.037). Serum Gas6 correlates to a lower MSSS (r2 = -0.32, p = 0.01). Serum and CSF NFLs were confirmed as disability biomarkers in our cohort according to EDSS (p = 0.005; p = 0.002) and MSSS (r2 = 0.27, p = 0.03; r2 = 0.39, p = 0.001). Results were corroborated using multivariate analysis. Conclusions Our data suggest a protective role of Gas6 and its receptors in patients with MS and suitable severity disease biomarkers.
Collapse
Affiliation(s)
- Davide D’Onghia
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, Pharmacology, University of Piemonte Orientale (UPO), Novara, Italy
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Internal Medicine and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU) “Maggiore della Carita”, Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Chiara Puricelli
- Department of Health Sciences, Clinical Biochemistry, University of Piemonte Orientale (UPO), Novara, Italy
| | - Eleonora Virgilio
- Department of Translational Medicine, Neurology Unit, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Leonardo Sozzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Roberto Cantello
- Department of Translational Medicine, Neurology Unit, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Neurology Unit, S. Andrea Hospital, University of Piemonte Orientale (UPO), Vercelli, Italy
| | - Mario Pirisi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Internal Medicine and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU) “Maggiore della Carita”, Novara, Italy
| | - Domizia Vecchio
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
- Department of Translational Medicine, Neurology Unit, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
- Internal Medicine and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU) “Maggiore della Carita”, Novara, Italy
| |
Collapse
|
8
|
Jia J, Xu S, Hu J, Gan Y, Sun M, Xia S, Bao X, Zhang M, Xu Y. Growth arrest specific protein 6 alleviated white matter injury after experimental ischemic stroke. J Cereb Blood Flow Metab 2024; 44:77-93. [PMID: 37794790 PMCID: PMC10905636 DOI: 10.1177/0271678x231205078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Ischemic white matter injury leads to long-term neurological deficits and lacks effective medication. Growth arrest specific protein 6 (Gas6) clears myelin debris, which is hypothesized to promote white matter integrity in experimental stroke models. By the middle cerebral artery occlusion (MCAO) stroke model, we observed that Gas6 reduced infarcted volume and behavior deficits 4 weeks after MCAO. Compared with control mice, Gas6-treatment mice represented higher FA values in the ipsilateral external capsules by MRI DTI scan. The SMI32/MBP ratio of the ipsilateral cortex and striatum was profoundly alleviated by Gas6 administration. Gas6-treatment group manifested thicker myelin sheaths than the control group by electron microscopy. We observed that Gas6 mainly promoted OPC maturation, which was closely related to microglia. Mechanically, Gas6 accelerated microglia-mediated myelin debris clearance and cholesterol transport protein expression (abca1, abcg1, apoc1, apoe) in vivo and in vitro, accordingly less myelin debris and lipid deposited in Gas6 treated stroke mice. HX531 (RXR inhibitor) administration mitigated the functions of Gas6 in speeding up debris clearance and cholesterol transport protein expression. Generally, we concluded that Gas6 cleared myelin debris and promoted cholesterol transportation protein expression through activating RXR, which could be one critical mechanism contributing to white matter repair after stroke.
Collapse
Affiliation(s)
- Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhenjiang, China
| | - Jinglong Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yonghui Gan
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Sun
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhenjiang, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
- Jiangsu Provincial medical key discipline, Nanjing, China
| |
Collapse
|
9
|
Yuan L, Chu Q, Yang B, Zhang W, Sun Q, Gao R. Purification and identification of anti-inflammatory peptides from sturgeon (Acipenser schrenckii) cartilage. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Hide I, Shiraki H, Masuda A, Maeda T, Kumagai M, Kunishige N, Yanase Y, Harada K, Tanaka S, Sakai N. P2Y 2 receptor mediates dying cell removal via inflammatory activated microglia. J Pharmacol Sci 2023; 153:55-67. [PMID: 37524455 DOI: 10.1016/j.jphs.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023] Open
Abstract
Microglial removal of dying cells plays a beneficial role in maintaining homeostasis in the CNS, whereas under some pathological conditions, inflammatory microglia can cause excessive clearance, leading to neuronal death. However, the mechanisms underlying dying cell removal by inflammatory microglia remain poorly understood. In this study, we performed live imaging to examine the purinergic regulation of dying cell removal by inflammatory activated microglia. Lipopolysaccharide (LPS) stimulation induces rapid death of primary rat microglia, and the surviving microglia actively remove dying cells. The nonselective P2 receptor antagonist, suramin, inhibited dying cell removal to the same degree as that of the selective P2Y2 antagonist, AR-C118925. This inhibition was more potent in LPS-stimulated microglia than in non-stimulated ones. LPS stimulation elicited distribution of the P2Y2 receptor on the leading edge of the plasma membrane and then induced drastic upregulation of P2Y2 receptor mRNA expression in microglia. LPS stimulation caused upregulation of the dying cell-sensing inflammatory Axl phagocytic receptor, which was suppressed by blocking the P2Y2 receptor and its downstream signaling effector, proline-rich tyrosine kinase (Pyk2). Together, these results indicate that inflammatory stimuli may activate the P2Y2 receptor, thereby mediating dying cell removal, at least partially, through upregulating phagocytic Axl in microglia.
Collapse
Affiliation(s)
- Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hiroko Shiraki
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Akihiro Masuda
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takuya Maeda
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Mayuka Kumagai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Nao Kunishige
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yuhki Yanase
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| |
Collapse
|
11
|
Li H, Ye T, Liu X, Guo R, Yang X, Li Y, Qi D, Wei Y, Zhu Y, Wen L, Cheng X. The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer's disease. J Pharm Anal 2023; 13:788-805. [PMID: 37577391 PMCID: PMC10422165 DOI: 10.1016/j.jpha.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 08/15/2023] Open
Abstract
Based on single-cell sequencing of the hippocampi of 5× familiar Alzheimer's disease (5× FAD) and wild type mice at 2-, 12-, and 24-month of age, we found an increased percentage of microglia in aging and Alzheimer's disease (AD) mice. Blood brain barrier injury may also have contributed to this increase. Immune regulation by microglia plays a major role in the progression of aging and AD, according to the functions of 41 intersecting differentially expressed genes in microglia. Signaling crosstalk between C-C motif chemokine ligand (CCL) and major histocompatibility complex-1 bridges intercellular communication in the hippocampus during aging and AD. The amyloid precursor protein (APP) and colony stimulating factor (CSF) signals drive 5× FAD to deviate from aging track to AD occurrence among intercellular communication in hippocampus. Microglia are involved in the progression of aging and AD can be divided into 10 functional types. The strength of the interaction among microglial subtypes weakened with aging, and the CCL and CSF signaling pathways were the fundamental bridge of communication among microglial subtypes.
Collapse
Affiliation(s)
- He Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xingyang Liu
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rui Guo
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiuzhao Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yangyi Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yihua Wei
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yifan Zhu
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lei Wen
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaorui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
12
|
Gardner AM, Atkinson JR, Wilkinson NM, Jerome AD, Bellinger CE, Sas AR, Segal BM. TAM receptor signaling dictates lesion location and clinical phenotype during experimental autoimmune encephalomyelitis. J Neuroimmunol 2023; 375:578016. [PMID: 36708633 DOI: 10.1016/j.jneuroim.2023.578016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE), induced by the adoptive transfer of Th17 cells, typically presents with ascending paralysis and inflammatory demyelination of the spinal cord. Brain white matter is relatively spared. Here we show that treatment of Th17 transfer recipients with a highly selective inhibitor to the TAM family of tyrosine kinase receptors results in ataxia associated with a shift of the inflammatory infiltrate to the hindbrain parenchyma. During homeostasis and preclinical EAE, hindbrain microglia express high levels of the TAM receptor Mer. Our data suggest that constitutive TAM receptor signaling in hindbrain microglia confers region-specific protection against Th17 mediated EAE.
Collapse
Affiliation(s)
- Ashley Munie Gardner
- Department of Neurology, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA; The Neuroscience Research Institute, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA; Graduate Program in Immunology, University of Michigan Medical School, 2978 Taubman Health Sciences Library, 1135 Catherine, Ann Arbor, MI 48109, USA.
| | - Jeffrey R Atkinson
- Department of Neurology, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA; The Neuroscience Research Institute, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA.
| | - Nicole M Wilkinson
- Department of Neurology, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA.
| | - Andrew D Jerome
- Department of Neurology, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA; The Neuroscience Research Institute, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA.
| | - Calli E Bellinger
- Department of Neurology, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA; The Neuroscience Research Institute, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, 255 Institute for Behavioral Medicine Research Building (IBMR), 460 Medical Center Drive, Columbus, OH 43210, USA.
| | - Andrew R Sas
- Department of Neurology, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA; The Neuroscience Research Institute, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA.
| | - Benjamin M Segal
- Department of Neurology, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA; The Neuroscience Research Institute, The Ohio State University, 395 W. 12th Ave., 7th Floor, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Lee J, Shin JA, Lee EM, Nam M, Park EM. Noggin-mediated effects on metabolite profiles of microglia and oligodendrocytes after ischemic insult. J Pharm Biomed Anal 2023; 224:115196. [PMID: 36529041 DOI: 10.1016/j.jpba.2022.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Recent studies show that shifts in energy metabolism in activated microglia are linked to their functions and immune responses in the ischemic brain. We previously reported that an antagonist of the bone morphogenetic protein, noggin, enhanced myelination in the ischemic brain during the chronic phase, and conditioned media (CM) from activated BV2 microglia treated with noggin after ischemia/reperfusion (I/R) increased the expression of myelin basic protein (MBP) in oligodendrocytes (MO3.13). To determine whether noggin induced changes in cell metabolism, metabolite profiles in BV2 and MO3.13 cells were analyzed by untargeted metabolomics using 1H nuclear magnetic resonance spectroscopy. Compared to vehicle-treated BV2 cells, noggin treatment (100 ng/mL for 3 h after I/R) suppressed the I/R-induced increase in intracellular glucose and lactate levels but increased extracellular levels of glucose and several amino acids. When MO3.13 cells were exposed to noggin CM from BV2 cells, most of the vehicle CM-induced changes in the levels of metabolites such as choline, formate, and intermediates of oxidative phosphorylation were reversed, while the glycerol level was markedly increased. An increase in glycerol level was also observed in the noggin-treated ischemic brain and was further supported by the expression of glycerol-3-phosphate dehydrogenase 1 (required for glycerol synthesis) in the cytoplasm of MBP-positive oligodendrocytes in the ischemic brains treated with noggin. These results suggest that noggin-induced changes in the metabolism of microglia provide a favorable environment for myelin synthesis in oligodendrocytes during the recovery phase after ischemic stroke.
Collapse
Affiliation(s)
- Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea.
| | - Jin A Shin
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea
| | - Eun-Mi Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; Food Analysis Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea.
| |
Collapse
|
14
|
Zhang Y, Su Q, Xia W, Jia K, Meng D, Wang X, Ni X, Su Z. MiR-140-3p directly targets Tyro3 to regulate OGD/R-induced neuronal injury through the PI3K/Akt pathway. Brain Res Bull 2023; 192:93-106. [PMID: 36372373 DOI: 10.1016/j.brainresbull.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/21/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND PURPOSE MicroRNAs (miRNAs) are highly expressed in the central nervous system and play important roles in ischaemic stroke pathogenesis. However, the role of miRNAs in cerebral ischaemia-reperfusion injury remains unclear. Here, we investigated the role of miR-140-3p in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury in vitro to identify a new biomarker for research on ischaemic stroke. METHODS The differential expression of miR-140-3p and Tyro3 in OGD/R-exposed N2a cells was verified by qRT-PCR. N2a cells were transfected with miR-140-3p mimic, miR-140-3p inhibitor, Tyro3 or siTyro3, and qRT-PCR, Western blotting, the Cell counting kit-8 (CCK-8) assay, Hoechst 33342/PI staining and flow cytometry analyses were performed to measure miRNA, mRNA and protein expression; cell viability; and apoptosis. RESULTS OGD/R-exposed N2a cells exhibited increased miR-140-3p expression, decreased viability, reduced Bcl-2 protein expression and increased Bax and Caspase-3 protein expression and apoptosis; the miR-140-3p mimic markedly amplified these changes, exacerbating OGD/R-induced injury to N2a cells, while the miR-140-3p inhibitor reversed these changes and alleviated OGD/R-induced injury. OGD/R-exposed N2a cells expressed less Tyro3, and Tyro3 overexpression increased cell viability and Bcl-2 protein expression, reduced Bax and Caspase-3 protein expression, and alleviated OGD/R-induced injury. However, silencing Tyro3 reversed these changes and exacerbated OGD/R-induced injury. MiR-140-3p directly bound the Tyro3 mRNA 3'UTR. Rescue experiments indicated that the miR-140-3p mimic-induced changes in cell viability and protein expression were alleviated by Tyro3 overexpression and that the miR-140-3p inhibitor-induced changes in cell viability and protein expression were alleviated by silencing Tyro3. Tyro3 overexpression increased cell viability and PI3K and p-Akt protein expression, but these effects were weakened by the addition of LY294002. CONCLUSIONS MiR-140-3p directly targets Tyro3 to regulate cell viability and apoptosis of OGD/R-exposed N2a cells through the PI3K/Akt pathway, suggesting that miR-140-3p is a novel biomarker and therapeutic target for ischaemic stroke.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; Central Laboratory of the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qian Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Wenbo Xia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Kejuan Jia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Delong Meng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xunran Ni
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Zhiqiang Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
15
|
Reemst K, Kracht L, Kotah JM, Rahimian R, van Irsen AAS, Congrains Sotomayor G, Verboon LN, Brouwer N, Simard S, Turecki G, Mechawar N, Kooistra SM, Eggen BJL, Korosi A. Early-life stress lastingly impacts microglial transcriptome and function under basal and immune-challenged conditions. Transl Psychiatry 2022; 12:507. [PMID: 36481769 PMCID: PMC9731997 DOI: 10.1038/s41398-022-02265-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Early-life stress (ELS) leads to increased vulnerability to psychiatric disorders including depression later in life. Neuroinflammatory processes have been implicated in ELS-induced negative health outcomes, but how ELS impacts microglia, the main tissue-resident macrophages of the central nervous system, is unknown. Here, we determined the effects of ELS-induced by limited bedding and nesting material during the first week of life (postnatal days [P]2-9) on microglial (i) morphology; (ii) hippocampal gene expression; and (iii) synaptosome phagocytic capacity in male pups (P9) and adult (P200) mice. The hippocampus of ELS-exposed adult mice displayed altered proportions of morphological subtypes of microglia, as well as microglial transcriptomic changes related to the tumor necrosis factor response and protein ubiquitination. ELS exposure leads to distinct gene expression profiles during microglial development from P9 to P200 and in response to an LPS challenge at P200. Functionally, synaptosomes from ELS-exposed mice were phagocytosed less by age-matched microglia. At P200, but not P9, ELS microglia showed reduced synaptosome phagocytic capacity when compared to control microglia. Lastly, we confirmed the ELS-induced increased expression of the phagocytosis-related gene GAS6 that we observed in mice, in the dentate gyrus of individuals with a history of child abuse using in situ hybridization. These findings reveal persistent effects of ELS on microglial function and suggest that altered microglial phagocytic capacity is a key contributor to ELS-induced phenotypes.
Collapse
Affiliation(s)
- Kitty Reemst
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Laura Kracht
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Janssen M. Kotah
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Reza Rahimian
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Astrid A. S. van Irsen
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Gonzalo Congrains Sotomayor
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Laura N. Verboon
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Nieske Brouwer
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sophie Simard
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Gustavo Turecki
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Naguib Mechawar
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Susanne M. Kooistra
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Bart J. L. Eggen
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands.
| |
Collapse
|
16
|
Desai D, Shende P. Dual-action of colloidal ISCOMs: an optimized approach using Box-Behnken design for the management of breast cancer. Biomed Microdevices 2022; 24:28. [DOI: 10.1007/s10544-022-00625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/09/2022]
|
17
|
Fiore NT, Yin Z, Guneykaya D, Gauthier CD, Hayes J, D’hary A, Butovsky O, Moalem-Taylor G. Sex-specific transcriptome of spinal microglia in neuropathic pain due to peripheral nerve injury. Glia 2022; 70:675-696. [PMID: 35050555 PMCID: PMC8852349 DOI: 10.1002/glia.24133] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is a prevalent and debilitating chronic disease that is characterized by activation in glial cells in various pain-related regions within the central nervous system. Recent studies have suggested a sexually dimorphic role of microglia in the maintenance of neuropathic pain in rodents. Here, we utilized RNA sequencing analysis and in vitro primary cultures of microglia to identify whether there is a common neuropathic microglial signature and characterize the sex differences in microglia in pain-related regions in nerve injury and chemotherapy-induced peripheral neuropathy mouse models. While mechanical allodynia and behavioral changes were observed in all models, transcriptomic analysis of microglia revealed no common transcriptional changes in spinal and supraspinal regions and in the different neuropathic models. However, there was a substantial change in microglial gene expression within the ipsilateral lumbar spinal cord 7 days after chronic constriction injury (CCI) of the sciatic nerve. Both sexes upregulated genes associated with inflammation, phagosome, and lysosome activation, though males revealed a prominent global transcriptional shift not observed in female mice. Transcriptomic comparison between male spinal microglia after CCI and data from other nerve injury models and neurodegenerative microglia demonstrated a unique CCI-induced signature reflecting acute activation of microglia. Further, in vitro studies revealed that only male microglia from nerve-injured mice developed a reactive phenotype with increased phagocytotic activity. This study demonstrates a lack of a common neuropathic microglial signature and indicates distinct sex differences in spinal microglia, suggesting they contribute to the sex-specific pain processing following nerve injury.
Collapse
Affiliation(s)
- Nathan T Fiore
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dilansu Guneykaya
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian D Gauthier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica Hayes
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Aaron D’hary
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia,Correspondence: A/Prof. Gila Moalem-Taylor, Neuropathic Pain Research Group, Translational Neuroscience Facility, School of Medical Sciences, Wallace Wurth Building, Level 3, room 355B, The University of New South Wales, UNSW Sydney, NSW, 2052, Australia, +61-2-90658014,
| |
Collapse
|
18
|
Gas6/TAM Signalling Negatively Regulates Inflammatory Induction of GM-CSF in Mouse Brain Microglia. Cells 2021; 10:cells10123281. [PMID: 34943789 PMCID: PMC8699038 DOI: 10.3390/cells10123281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Microglia and astrocytes are the main CNS glial cells responsible for the neuroinflammatory response, where they release a plethora of cytokines into the CNS inflammatory milieu. The TAM (Tyro3, Axl, Mer) receptors and their main ligand Gas6 are regulators of this response, however, the underlying mechanisms remain to be determined. We investigated the ability of Gas6 to modulate the CNS glial inflammatory response to lipopolysaccharide (LPS), a strong pro-inflammatory agent, through a qPCR array that explored Toll-like receptor signalling pathway-associated genes in primary cultured mouse microglia. We identified the Csf2 gene, encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), as a major Gas6 target gene whose induction by LPS was markedly blunted by Gas6. Both the Csf2 gene induction and the suppressive effect of Gas6 on this were emulated through measurement of GM-CSF protein release by cells. We found distinct profiles of GM-CSF induction in different glial cell types, with microglia being most responsive during inflammation. Also, Gas6 markedly inhibited the LPS-stimulated nuclear translocation of NF-κB p65 protein in microglia. These results illustrate microglia as a major resident CNS cellular source of GM-CSF as part of the neuroinflammatory response, and that Gas6/TAM signalling inhibits this response through suppression of NF-κB signalling.
Collapse
|
19
|
Zhang S, Liu Y, Wang X, An N, Ouyang X. STAT1/SOCS1/3 Are Involved in the Inflammation-Regulating Effect of GAS6/AXL in Periodontal Ligament Cells Induced by Porphyromonas gingivalis Lipopolysaccharide In Vitro. J Immunol Res 2021; 2021:9577695. [PMID: 34734092 PMCID: PMC8560282 DOI: 10.1155/2021/9577695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Periodontitis involves chronic inflammation of the tissues around the teeth caused by plaque and the corresponding immune response. Growth arrest-specific protein 6 (GAS6) and AXL receptor tyrosine kinase (AXL) are known to be involved in inflammatory diseases, while signal transducer and activator of transcription-1 (STAT1) and suppressor of cytokine signaling (SOCS) are related to inflammatory processes. Moreover, miRNA34a directly targets AXL to regulate the AXL expression. However, the specific roles of GAS6 and AXL in periodontitis remain unclear. This study was designed to explore the effect and mechanism of AXL on the expression of inflammatory cytokines induced by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) in human periodontal ligament cells (hPDLCs). The effects of different concentrations of P. gingivalis LPS on the expression of GAS6/AXL in hPDLCs were observed. Additionally, the effect of LPS on AXL was investigated by transfection of the miRNA34a inhibitor. AXL was knocked down or overexpressed to observe the release of inflammatory cytokines interleukin- (IL-) 8 and IL-6. The results showed that the expression levels of GAS6 and AXL decreased after P. gingivalis LPS infection. Transfection of a miR-34a inhibitor to hPDLCs demonstrated a role of miR-34a in the downregulation of AXL expression induced by LPS. Moreover, AXL knockdown or overexpression influencing the expression of IL-8 and IL-6 was investigated under LPS stimulation. AXL knockdown decreased the expression of STAT1 and SOCS1/3. Overall, these results demonstrate that AXL inhibits the expression of LPS-induced inflammatory cytokines in hPDLCs and that STAT1 and SOCS1/3 are involved in the regulation of inflammation by GAS6/AXL.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yingjun Liu
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xuekui Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Na An
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
20
|
Yuan L, Chu Q, Wu X, Yang B, Zhang W, Jin W, Gao R. Anti-inflammatory and Antioxidant Activity of Peptides From Ethanol-Soluble Hydrolysates of Sturgeon ( Acipenser schrenckii) Cartilage. Front Nutr 2021; 8:689648. [PMID: 34179062 PMCID: PMC8225940 DOI: 10.3389/fnut.2021.689648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
Research has shown that cartilage containing chondroitin sulfate and protein presents versatile bioactivities. Chondroitin sulfate in cartilage is beneficial to activate the immune system while the protein/peptide has not been fully understood. The current study investigated the antioxidant and anti-inflammatory properties of ethanol-soluble hydrolysates of sturgeon cartilage (ESCH) prepared through hot-pressure, enzymatic hydrolysis and ethanol extraction. UV spectrum, IR and agarose gel electrophoresis results suggested the successful exclusion of chondroitin sulfate from peptides. Nitric oxide (NO) floods in cells activated by inflammation. It was inhibited when administrated with ESCH. To further explain the observed anti-inflammatory activity, ESCH was separated with Sephadex G-15 into 3 components, among which F3 showed a higher NO inhibition rate and significantly reduced the production of the proinflammatory cytokine IL-6. In addition, the yield of IL-10 increased. Western blotting suggested that F3 downregulated the NO content and IL-6 level by suppressing Mitogen-activated protein kinases (MAPK) channels. Moreover, both ESCH and F3 showed DPPH and ABTS free radical scavenging abilities which was possibly related to the anti-inflammatory property. These results indicated that ESCH behaved anti-inflammatory and antioxidant activities. Cartilage may be a good source to produce anti-inflammatory peptides.
Collapse
Affiliation(s)
- Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qian Chu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoyun Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wengang Jin
- Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
21
|
Guo YS, Yuan M, Han Y, Shen XY, Gao ZK, Bi X. Therapeutic Potential of Cytokines in Demyelinating Lesions After Stroke. J Mol Neurosci 2021; 71:2035-2052. [PMID: 33970426 DOI: 10.1007/s12031-021-01851-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
White matter damage is a component of most human stroke and usually accounts for at least half of the lesion volume. Subcortical white matter stroke (WMS) accounts for 25% of all strokes and causes severe motor and cognitive dysfunction. The adult brain has a very limited ability to repair white matter damage. Pathological analysis shows that demyelination or myelin loss is the main feature of white matter injury and plays an important role in long-term sensorimotor and cognitive dysfunction. This suggests that demyelination is a major therapeutic target for ischemic stroke injury. An acute inflammatory reaction is triggered by brain ischemia, which is accompanied by cytokine production. The production of cytokines is an important factor affecting demyelination and myelin regeneration. Different cytokines have different effects on myelin damage and myelin regeneration. Exploring the role of cytokines in demyelination and remyelination after stroke and the underlying molecular mechanisms of demyelination and myelin regeneration after ischemic injury is very important for the development of rehabilitation treatment strategies. This review focuses on recent findings on the effects of cytokines on myelin damage and remyelination as well as the progress of research on the role of cytokines in ischemic stroke prognosis to provide a new treatment approach for amelioration of white matter damage after stroke.
Collapse
Affiliation(s)
- Yi-Sha Guo
- Shanghai University of Sport, Shanghai, 200438, China
| | - Mei Yuan
- Shanghai University of Sport, Shanghai, 200438, China
| | - Yu Han
- Shanghai University of Sport, Shanghai, 200438, China
| | - Xin-Ya Shen
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200438, China
| | - Zhen-Kun Gao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200438, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| |
Collapse
|
22
|
Jiang Q, Stone CR, Elkin K, Geng X, Ding Y. Immunosuppression and Neuroinflammation in Stroke Pathobiology. Exp Neurobiol 2021; 30:101-112. [PMID: 33972464 PMCID: PMC8118752 DOI: 10.5607/en20033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Over the preceding decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. One such advance has been an increased understanding of the multifarious crosstalk in which the nervous and immune systems engage in order to maintain homeostasis. By interrupting the immune-nervous nexus, it is thought that stroke induces change in both systems. Additionally, it has been found that both innate and adaptive immunosuppression play protective roles against the effects of stroke. The release of danger-/damage-associated molecular patterns (DAMPs) activates Toll-like receptors (TLRs), contributing to the harmful inflammatory effects of ischemia/reperfusion injury after stroke; the Tyro3, Axl, and MerTK (TAM)/Gas6 system, however, has been shown to suppress inflammation via downstream signaling molecules that inhibit TLR signaling. Anti-inflammatory cytokines have also been found to promote neuroprotection following stroke. Additionally, adaptive immunosuppression merits further consideration as a potential endogenous protective mechanism. In this review, we highlight recent studies regarding the effects and mechanism of immunosuppression on the pathophysiology of stroke, with the hope that a better understanding of the function of both of innate and adaptive immunity in this setting will facilitate the development of effective therapies for post-stroke inflammation.
Collapse
Affiliation(s)
- Qian Jiang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Christopher R Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit 48201, MI, USA
| |
Collapse
|
23
|
Gilchrist SE, Goudarzi S, Hafizi S. Gas6 Inhibits Toll-Like Receptor-Mediated Inflammatory Pathways in Mouse Microglia via Axl and Mer. Front Cell Neurosci 2020; 14:576650. [PMID: 33192322 PMCID: PMC7584110 DOI: 10.3389/fncel.2020.576650] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Microglia are well known key regulators of neuroinflammation which feature in multiple neurodegenerative disorders. These cells survey the CNS and, under inflammatory conditions, become "activated" through stimulation of toll-like receptors (TLRs), resulting in changes in morphology and production and release of cytokines. In the present study, we examined the roles of the related TAM receptors, Mer and Axl, and of their ligand, Gas6, in the regulation of microglial pro-inflammatory TNF-α production and microglial morphology. Methods: Primary cultures of murine microglia of wild-type (WT), Mer-/- and Axl-/- backgrounds were stimulated by the TLR4 agonist, lipopolysaccharide (LPS) with or without pre-treatment with Gas6. Gene expression of TNF-α, Mer, and Axl was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) was used to measure TNF-α release from microglia. Immunofluorescence staining of β-actin and the microglial marker Iba1 was performed to reveal microglial morphological changes, with cellular characteristics (area, perimeter, Feret's diameter, minimum Feret, roundness, and aspect ratio) being quantified using ImageJ software. Results: Under basal conditions, TNF-α gene expression was significantly lower in Axl-/- microglia compared to WT cells. However, all microglial cultures robustly responded to LPS stimulation with the upregulation of TNF-α expression to similar degrees. Furthermore, Mer receptor expression was less responsive to LPS stimulation when in Axl knockout cells. The presence of Gas6 consistently inhibited the LPS-induced upregulation of TNF-α in WT, Mer-/- and Axl-/- microglia. Moreover, Gas6 also inhibited LPS-induced changes in the microglial area, perimeter length, and cell roundness in wild-type cells. Conclusion: Gas6 can negatively regulate the microglial pro-inflammatory response to LPS as well as via stimulation of other TLRs, acting through either of the TAM receptors, Axl and Mer. This finding indicates an interaction between TLR and TAM receptor signaling pathways and reveals an anti-inflammatory role for the TAM ligand, Gas6, which could have therapeutic potential.
Collapse
Affiliation(s)
- Shannon E Gilchrist
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Salman Goudarzi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Sassan Hafizi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|