1
|
Tsoneva Y, Velikova T, Nikolaev G. Circadian clock regulation of myofibroblast fate. Cell Signal 2025; 131:111774. [PMID: 40169063 DOI: 10.1016/j.cellsig.2025.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Fibrosis-related disorders represent an increasing medical and economic burden on a worldwide scale, accounting for one-third of all disease-related deaths with limited therapeutic options. As central mediators in fibrosis development, myofibroblasts have been gaining increasing attention in the last 20 years as potential targets for fibrosis attenuation and reversal. While various aspects of myofibroblast physiology have been proposed as treatment targets, many of these approaches have shown limited long-term efficacy so far. However, ongoing research is uncovering new potential strategies for targeting myofibroblast activity, offering hope for more effective treatments in the future. The circadian molecular clock is a feature of almost every cell in the human body that dictates the rhythmic nature of various aspects of human physiology and behavior in response to changes in the surrounding environment. The dysregulation of these rhythms with aging is considered to be one of the underlying reasons behind the development of multiple aging-related chronic disorders, with fibrotic tissue scarring being a common pathological complication among the majority of them. Myofibroblast dysregulation due to skewed circadian clockwork might significantly contribute to fibrotic scar persistence. In the current review, we highlight the role of the circadian clock in the context of myofibroblast activation and deactivation and examine its dysregulation as a driver of fibrogenesis.
Collapse
Affiliation(s)
- Yoanna Tsoneva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", Bulgaria.
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria.
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", Bulgaria.
| |
Collapse
|
2
|
Li X, Zheng Q, Yu H, Du T, Hu T, Gao L, Jia L, Sun Q. BMAL1 rescued the hippocampus-dependent recognition memory induced by sleep deprivation. Neuroscience 2025; 569:1-11. [PMID: 39904474 DOI: 10.1016/j.neuroscience.2025.01.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/15/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Sleep plays an important role in the process of memory. This study investigated the role of the circadian clock gene, BMAL1 of the master circadian clock in mediating the impairment of hippocampus-dependent recognition memory caused by sleep deprivation. After 4 weeks of sleep deprivation, the novel object recognitiontask was used to evaluate the recognition memory of mice, the expression levels of circadian clock genes, and Nrf2 and PKA/CREB/BDNF signal pathways were detected by Western blot, Realtime-qPCR, and immunofluorescence. The mice in the SD group exhibited a significant decrease in the duration of exploration of novel objects. The protein expression levels of PER1, PER2, CLOCK, and BMAL1, and PKA/CREB/BDNF pathway in the hippocampus of the SD group were significantly reduced, and the Nrf2-mediated anti-oxidative capacity was also compromised in the SD group. Moreover, these aberrations could be mitigated through compensation with BMAL1 in the SCN of the hypothalamus. Sleep deprivation resulted in a reduction in the expression of the core clock gene BMAL1 in the hippocampus, leading to an imbalance in the antioxidant system and damaging down-regulating the PKA/CREB/BDNF signal pathway that related to the proteins associated with recognition memory in the hippocampal synapse plasticity and oxidative stress, which could be reversed by overexpression compensation of BMAL1 in the SCN that might rely on the multi-synaptic neural projections to the hippocampus.
Collapse
Affiliation(s)
- Xiao Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, People's Republic of China.
| | - Qian Zheng
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, People's Republic of China
| | - Honghong Yu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, People's Republic of China
| | - Tingting Du
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, People's Republic of China
| | - Tian Hu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, People's Republic of China
| | - Lanyue Gao
- Experimental Center, China Medical University, Shenyang, Liaoning Province, 110013, People's Republic of China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, People's Republic of China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, People's Republic of China.
| |
Collapse
|
3
|
Dai TM, Qiu JF, Luo C, Cui WZ, Liu K, Li JL, Peng R, Sima YH, Xu SQ. The circadian clock affects starvation resistance through the pentose phosphate pathway in silkworm, Bombyx mori. INSECT SCIENCE 2025; 32:55-68. [PMID: 38769889 DOI: 10.1111/1744-7917.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Disruption of the circadian clock can affect starvation resistance, but the molecular mechanism is still unclear. Here, we found that starvation resistance was significantly reduced in the core gene BmPer deficient mutant silkworms (Per-/-), but the mutant's starvation resistance increased with larval age. Under natural physiological conditions, the weight of mutant 5th instar larvae was significantly increased compared to wild type, and the accumulation ability of triglycerides and glycogen in the fat bodies was upregulated. However, under starvation conditions, the weight consumption of mutant larvae was increased and cholesterol utilization was intensified. Transcriptome analysis showed that beta-oxidation was significantly upregulated under starvation conditions, fatty acid synthesis was inhibited, and the expression levels of genes related to mitochondrial function were significantly changed. Further investigations revealed that the redox balance, which is closely related to mitochondrial metabolism, was altered in the fat bodies, the antioxidant level was increased, and the pentose phosphate pathway, the source of reducing power in cells, was activated. Our findings suggest that one of the reasons for the increased energy burden observed in mutants is the need to maintain a more robust redox balance in metabolic tissues. This necessitates the diversion of more glucose into the pentose phosphate pathway to ensure an adequate supply of reducing power.
Collapse
Affiliation(s)
- Tai-Ming Dai
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Jian-Feng Qiu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Cheng Luo
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Wen-Zhao Cui
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Kai Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang-Lan Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Ruji Peng
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Yang-Hu Sima
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Shi-Qing Xu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Li D, Liu S, Lu X, Gong Z, Wang H, Xia X, Lu F, Jiang J, Zhang Y, Xu G, Zou F, Ma X. The Circadian Clock Gene Bmal1 Regulates Microglial Pyroptosis After Spinal Cord Injury via NF-κB/MMP9. CNS Neurosci Ther 2024; 30:e70130. [PMID: 39648661 PMCID: PMC11625957 DOI: 10.1111/cns.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND The treatment of spinal cord injury (SCI) is usually ineffective, because neuroinflammatory secondary injury is an important cause of the continuous development of spinal cord injury, and microglial pyroptosis is an important step of neuroinflammation. Recently, Bmal1, a core component of circadian clock genes (CCGs), has been shown to play a regulatory role in various tissues and cells. However, it is still unclear whether Bmal1 regulates microglial pyroptosis after SCI. METHODS In this study, we established an in vivo mouse model of SCI using Bmal1 knockout (KO) mice and wild-type (WT) mice, and lipopolysaccharide (LPS)-induced pyroptosis in BV2 cells as an in vitro model. A series of molecular and histological methods were used to detect the level of pyroptosis and explore the regulatory mechanism in vivo and in vitro respectively. RESULTS Both in vitro and in vivo results showed that Bmal1 inhibited NLRP3 inflammasome activation and microglial pyroptosis after SCI. Further analysis showed that Bmal1 inhibited pyroptosis-related proteins (NLRP3, Caspase-1, ASC, GSDMD-N) and reduced the release of IL-18 and IL-1β by inhibiting the NF-κB /MMP9 pathway. It was important that NF-κB was identified as a transcription factor that promotes the expression of MMP9, which in turn regulates microglial pyroptosis after SCI. CONCLUSIONS Our study initially identified that Bmal1 regulates the NF-κB /MMP9 pathway to reduce microglial pyroptosis and thereby reduce secondary spinal cord injury, providing a new promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Dachuan Li
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Siyang Liu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiao Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Zhaoyang Gong
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Hongli Wang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xinlei Xia
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Feizhou Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Guangyu Xu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Fei Zou
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Rakshit K, Brown MR, Javeed N, Lee JH, Ordog T, Matveyenko AV. Core circadian transcription factor Bmal1 mediates β cell response and recovery from pro-inflammatory injury. iScience 2024; 27:111179. [PMID: 39524327 PMCID: PMC11550590 DOI: 10.1016/j.isci.2024.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/18/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The circadian clock plays a vital role in modulating the cellular immune response. However, its role in mediating pro-inflammatory diabetogenic β cell injury remains largely unexplored. Our studies demonstrate that the exposure of β cells to IL-1β-mediated inflammation alters genome-wide DNA binding of core circadian transcription factors BMAL1:CLOCK enriched for genomic sites important for cellular response to inflammation. Correspondingly, conditional deletion of Bmal1 in mouse β cells was shown to impair the ability of β cells to recover from streptozotocin-mediated pro-inflammatory injury in vivo, leading to β cell failure and the development of diabetes. Further data integration analysis revealed that the β cell circadian clock orchestrates the recovery from pro-inflammatory injury by regulating transcriptional responses to oxidative stress, DNA damage, and nuclear factor κB(NF-κB)-driven inflammation. Our study suggests that the β cell circadian clock mediates β cell response and recovery from pro-inflammatory injury common to the pathogenesis of diabetes mellitus.
Collapse
Affiliation(s)
- Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Matthew R. Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, MN, USA
- Department of Medicine, Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Jeong-Heon Lee
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Aleksey V. Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, MN, USA
- Department of Medicine, Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Mayo Clinic School of Medicine, Rochester, MN, USA
| |
Collapse
|
6
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
7
|
Li Y, You L, Nepovimova E, Adam V, Heger Z, Jomova K, Valko M, Wu Q, Kuca K. c-Jun N-terminal kinase signaling in aging. Front Aging Neurosci 2024; 16:1453710. [PMID: 39267721 PMCID: PMC11390425 DOI: 10.3389/fnagi.2024.1453710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
8
|
Li B, Suzuki-Kerr H, Martis RM, Lim CJJ, Wang ZA, Nguyen TX, Donaldson PJ, Poulsen RC, Lim JC. Time of day differences in the regulation of glutathione levels in the rat lens. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1407582. [PMID: 39211001 PMCID: PMC11358124 DOI: 10.3389/fopht.2024.1407582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Introduction Evidence in non-ocular tissues indicate that the antioxidant glutathione (GSH) may be regulated in a circadian manner leading to the idea that GSH levels in the lens may also be controlled in a circadian manner to anticipate periods of oxidative stress. Methods Male rat Wistar lenses (6 weeks) were collected every 4 hours over a 24-hour period at 6am, 10am, 2pm, 6pm, 10pm and 2am and quantitative-PCR, western blotting and immunohistochemistry performed to examine the expression of core clock genes and proteins (BMAL1, CLOCK, CRY1-2, PER 1-3) and their subcellular localisation over a 24-hour period. Western blotting of lenses was also performed to examine the expression of NRF2, a transcription factor involved in regulating genes involved in GSH homeostasis and GSH related enzymes (GCLC, GS and GR) over the 24-hour period. Finally, HLPC was used to measure GSH levels in the aqueous humour and lenses every 4 hours over a 24-hour period. Results The rat lens contains the core molecular components of a circadian clock with the expression of core clock proteins, NRF2 and GSH related enzymes fluctuating over a 24-hour period. BMAL1 expression was highest during the day, with BMAL1 localised to the nuclei at 10am. NRF2 expression remained constant over the 24-hour period, although appeared to move in and out of the nuclei every 4 hours. GSH related enzyme expression tended to peak at the start of night which correlated with high levels of GSH in the lens and lower levels of GSH in the aqueous humour. Conclusion The lens contains the key components of a circadian clock, and time-of-day differences exist in the expression of GSH and GSH related enzymes involved in maintaining GSH homeostasis. GSH levels in the rat lens were highest at the start of night which represents the active phase of the rat when high GSH levels may be required to counteract oxidative stress induced by cellular metabolism. Future work to directly link the clock to regulation of GSH levels in the lens will be important in determining whether the clock can be used to help restore GSH levels in the lens.
Collapse
Affiliation(s)
- Bo Li
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Haruna Suzuki-Kerr
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Renita M. Martis
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Christopher J. J. Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Zhou-ai Wang
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Tai X. Nguyen
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Raewyn C. Poulsen
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Julie C. Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Wang Y, Wang Q, Dou S, Zhou Q, Xie L. Sleep deprivation induces corneal endothelial dysfunction by downregulating Bmal1. BMC Ophthalmol 2024; 24:268. [PMID: 38907352 PMCID: PMC11191275 DOI: 10.1186/s12886-024-03524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Sleep deprivation (SD) is a common public health problem that contributes to various physiological disorders and increases the risk of ocular diseases. However, whether sleep loss can damage corneal endothelial function remains unclear. This study aimed to determine the effect and possible mechanism of SD on the corneal endothelium. METHODS Male C57BL/6J mice were subjected to establish SD models. After 10 days, quantitative RT-PCR (qRT-PCR) and western blot or immunostaining for the expression levels of zonula occludens-1 (ZO-1), ATPase Na+/K + transporting subunit alpha 1 (Atp1a1), and core clock genes in the corneal endothelium were evaluated. Reactive oxygen species staining and mitochondrial abundance characterized the mitochondrial function. The regulatory role of Bmal1 was confirmed by specifically knocking down or overexpressing basic helix-loop-helix ARNT like 1 protein (Bmal1) in vivo. In vitro, a mitochondrial stress test was conducted on cultured human corneal endothelial cells upon Bmal1 knockdown. RESULTS SD damaged the barrier and pump functions of mouse corneal endothelium, accompanied by mitochondrial dysfunction. Interestingly, SD dramatically downregulated the core clock gene Bmal1 expression level. Bmal1 knockdown disrupted corneal endothelial function, while overexpression of Bmal1 ameliorated the dysfunction induced by SD. Mitochondrial bioenergetic deficiency mediated by Bmal1 was an underlying mechanism for SD induced corneal endothelial dysfunction. CONCLUSION The downregulation of Bmal1 expression caused by SD led to corneal endothelial dysfunction via impairing mitochondrial bioenergetics. Our findings offered insight into how SD impairs the physiological function of the corneal endothelium and expanded the understanding of sleep loss leading to ocular diseases.
Collapse
Affiliation(s)
- Yani Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Qun Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Shengqian Dou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China
- School of ophthalmology, Shandong First Medical University, Shandong, China
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, 5 Yan er dao Road, Qingdao, 266071, China.
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong First Medical University, Shandong, China.
- School of ophthalmology, Shandong First Medical University, Shandong, China.
| |
Collapse
|
10
|
Xu L, Jia J, Yu J, Miao S, Zhang Y. The impact of aerobic exercise timing on BMAL1 protein expression and antioxidant responses in skeletal muscle of mice. Free Radic Res 2024; 58:311-322. [PMID: 38946540 DOI: 10.1080/10715762.2024.2348789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 07/02/2024]
Abstract
It is well known that the adaptations of muscular antioxidant system to aerobic exercise depend on the frequency, intensity, duration, type of the exercise. Nonetheless, the timing of aerobic exercise, related to circadian rhythms or biological clock, may also affect the antioxidant defense system, but its impact remains uncertain. Bain and muscle ARNT-like 1 (BMAL1) is the core orchestrator of molecular clock, which can maintain cellular redox homeostasis by directly controlling the transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2). So, our research objective was to evaluate the impacts of aerobic exercise training at various time points of the day on BMAL1 and NRF2-mediated antioxidant system in skeletal muscle. C57BL/6J mice were assigned to the control group, the group exercising at Zeitgeber Time 12 (ZT12), and the group exercising at ZT24. Control mice were not intervened, while ZT12 and ZT24 mice were trained for four weeks at the early and late time point of their active phase, respectively. We observed that the skeletal muscle of ZT12 mice exhibited higher total antioxidant capacity and lower reactive oxygen species compared to ZT24 mice. Furthermore, ZT12 mice improved the colocalization of BMAL1 with nucleus, the protein expression of BMAL1, NRF2, NAD(P)H quinone oxidoreductase 1, heme oxygenase 1, glutamate-cysteine ligase modifier subunit and glutathione reductase in comparison to those of ZT24 mice. In conclusion, the 4-week aerobic training performed at ZT12 is more effective for enhancing NRF2-mediated antioxidant responses of skeletal muscle, which may be attributed to the specific activation of BMAL1.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Jie Jia
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Jingjing Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Shudan Miao
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing, China
| |
Collapse
|
11
|
Xue M, Huang X, Zhu T, Zhang L, Yang H, Shen Y, Feng L. Unveiling the Significance of Peroxiredoxin 6 in Central Nervous System Disorders. Antioxidants (Basel) 2024; 13:449. [PMID: 38671897 PMCID: PMC11047492 DOI: 10.3390/antiox13040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Peroxiredoxin 6 (Prdx6), a unique 1-Cys member of the peroxiredoxin family, exhibits peroxidase activity, phospholipase activity, and lysophosphatidylcholine acyltransferase (LPCAT) activity. Prdx6 has been known to be an important enzyme for the maintenance of lipid peroxidation repair, cellular metabolism, inflammatory signaling, and antioxidant damage. Growing research has demonstrated that the altered activity of this enzyme is linked with various pathological processes including central nervous system (CNS) disorders. This review discusses the distinctive structure, enzyme activity, and function of Prdx6 in different CNS disorders, as well as emphasizing the significance of Prdx6 in neurological disorders.
Collapse
Affiliation(s)
- Min Xue
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
| | - Xiaojie Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Tong Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Lijun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Hao Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
12
|
Qi L, Cheng Y, Sun S, Wan H. The administration of rhBmal1 reduces sleep deprivation-induced anxiety and cognitive impairment in mice. World J Biol Psychiatry 2024; 25:43-53. [PMID: 37640026 DOI: 10.1080/15622975.2023.2252499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND In mammals, circadian rhythms control metabolism, immunological response and reproductive processes. Bmal1 (brain and muscle Arnt-like protein-1) is a key element in the regulation of circadian rhythms. METHODS This investigation explores the pathophysiological effects of sleep deprivation in a mouse model as well as the potential underlying mechanisms. A mouse sleep deprivation model was constructed using a modified multi-platform water environment method. The anxiety-like behaviours of mice were assessed by the open field test and elevated plus maze, and the cognitive function of mice was tested by the nest-building test. The expression levels of targeted genes were determined by Western blotting assay and RT-qPCR assay. RESULTS We found that sleep deprivation profoundly enhanced anxiety levels and impaired cognitive function in mice. Sleep deprivation also reduced the expression levels of Bmal1 and BDNF (brain-derived neurotrophic factor) and increased oxidative stress in the hippocampus of mice. The intraperitoneal injection of human recombinant rhBmal1 protein alleviated sleep deprivation-induced anxiety and cognitive impairment, restored Bmal1 and BDNF levels, and reduced oxidative stress in the hippocampus of mice. CONCLUSIONS rhBmal1 treatment might serve as a potential therapy for mitigating sleep deprivation-related unfavourable symptoms.
Collapse
Affiliation(s)
- Linqing Qi
- Open Mental Department, Qingdao Mental Health Center, Qingdao, China
| | - Youdi Cheng
- Old Age Psychosis Department II, Qingdao Mental Health Center, Qingdao, China
| | - Shan Sun
- Open Mental Department, Qingdao Mental Health Center, Qingdao, China
| | - Hao Wan
- Outpatient Department for Children and Adolescents, Qingdao Mental Health Center, Qingdao, China
| |
Collapse
|
13
|
Verma AK, Khan MI, Ashfaq F, Rizvi SI. Crosstalk Between Aging, Circadian Rhythm, and Melatonin. Rejuvenation Res 2023; 26:229-241. [PMID: 37847148 DOI: 10.1089/rej.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Circadian rhythms (CRs) are 24-hour periodic oscillations governed by an endogenous circadian pacemaker located in the suprachiasmatic nucleus (SCN), which organizes the physiology and behavior of organisms. Circadian rhythm disruption (CRD) is also indicative of the aging process. In mammals, melatonin is primarily synthesized in the pineal gland and participates in a variety of multifaceted intracellular signaling networks and has been shown to synchronize CRs. Endogenous melatonin synthesis and its release tend to decrease progressively with advancing age. Older individuals experience frequent CR disruption, which hastens the process of aging. A profound understanding of the relationship between CRs and aging has the potential to improve existing treatments and facilitate development of novel chronotherapies that target age-related disorders. This review article aims to examine the circadian regulatory mechanisms in which melatonin plays a key role in signaling. We describe the basic architecture of the molecular circadian clock and its functional decline with age in detail. Furthermore, we discuss the role of melatonin in regulation of the circadian pacemaker and redox homeostasis during aging. Moreover, we also discuss the protective effect of exogenous melatonin supplementation in age-dependent CR disruption, which sheds light on this pleiotropic molecule and how it can be used as an effective chronotherapeutic medicine.
Collapse
Affiliation(s)
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
14
|
Fasipe B, Laher I. Nrf2 modulates the benefits of evening exercise in type 2 diabetes. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:251-258. [PMID: 38314046 PMCID: PMC10831386 DOI: 10.1016/j.smhs.2023.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 02/06/2024] Open
Abstract
Exercise has well-characterized therapeutic benefits in the management of type 2 diabetes mellitus (T2DM). Most of the beneficial effects of exercise arise from the impact of nuclear factor erythroid 2 related factor-2 (Nrf2) activation of glucose metabolism. Nrf2 is an essential controller of cellular anti-oxidative capacity and circadian rhythms. The circadian rhythm of Nrf2 is influenced by circadian genes on its expression, where the timing of exercise effects the activation of Nrf2 and the rhythmicity of Nrf2 and signaling, such that the timing of exercise has differential physiological effects. Exercise in the evening has beneficial effects on diabetes management, such as lowering of blood glucose and weight. The mechanisms responsible for these effects have not yet been associated with the influence of exercise on the circadian rhythm of Nrf2 activity. A better understanding of exercise-induced Nrf2 activation on Nrf2 rhythm and signaling can improve our appreciation of the distinct effects of morning and evening exercise. This review hypothesizes that activation of Nrf2 by exercise in the morning, when Nrf2 level is already at high levels, leads to hyperactivation and decrease in Nrf2 signaling, while activation of Nrf2 in the evening, when Nrf2 levels are at nadir levels, improves Nrf2 signaling and lowers blood glucose levels and increases fatty acid oxidation. Exploring the effects of Nrf2 activators on rhythmic signaling could also provide valuable insights into the optimal timing of their application, while also holding promise for timed treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Khezri MR, Esmaeili A, Ghasemnejad-Berenji M. Role of Bmal1 and Gut Microbiota in Alzheimer's Disease and Parkinson's Disease Pathophysiology: The Probable Effect of Melatonin on Their Association. ACS Chem Neurosci 2023; 14:3883-3893. [PMID: 37823531 DOI: 10.1021/acschemneuro.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
In recent years, the role of new factors in the pathophysiology of neurodegenerative diseases has been investigated. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. Although pathological changes such as the accumulation of aggregated proteins in the brain and inflammatory responses are known as the main factors involved in the development of these diseases, new studies show the role of gut microbiota and circadian rhythm in the occurrence of these changes. However, the association between circadian rhythm and gut microbiota in AD and PD has not yet been investigated. Recent results propose that alterations in circadian rhythm regulators, mainly Bmal1, may regulate the abundance of gut microbiota. This correlation has been linked to the regulation of the expression of immune-related genes and Bmal-1 mediated oscillation of IgA and hydrogen peroxide production. These data seem to provide new insight into the molecular mechanism of melatonin inhibiting the progression of AD and PD. Therefore, this manuscript aims to review the role of the gut microbiota and circadian rhythm in health and AD and PD and also presents a hypothesis on the effect of melatonin on their communication.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Faculty of Pharmacy. Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Ayda Esmaeili
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| |
Collapse
|
16
|
Cortés-Espinar AJ, Ibarz-Blanch N, Soliz-Rueda JR, Bonafos B, Feillet-Coudray C, Casas F, Bravo FI, Calvo E, Ávila-Román J, Mulero M. Rhythm and ROS: Hepatic Chronotherapeutic Features of Grape Seed Proanthocyanidin Extract Treatment in Cafeteria Diet-Fed Rats. Antioxidants (Basel) 2023; 12:1606. [PMID: 37627601 PMCID: PMC10452039 DOI: 10.3390/antiox12081606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols play a key role in the modulation of circadian rhythms, while the cafeteria diet (CAF) is able to perturb the hepatic biological rhythm and induce important ROS production. Consequently, we aimed to elucidate whether grape seed proanthocyanidin extract (GSPE) administration recovers the CAF-induced hepatic antioxidant (AOX) misalignment and characterize the chronotherapeutic properties of GSPE. For this purpose, Fischer 344 rats were fed a standard diet (STD) or a CAF and concomitantly treated with GSPE at two time-points (ZT0 vs. ZT12). Animals were euthanized every 6 h and the diurnal rhythms of hepatic ROS-related biomarkers, hepatic metabolites, and AOX gene expression were examined. Interestingly, GSPE treatment was able to recover the diurnal rhythm lost due to the CAF. Moreover, GSPE treatment also increased the acrophase of Sod1, as well as bringing the peak closer to that of the STD group. GSPE also corrected some hepatic metabolites altered by the CAF. Importantly, the differences observed at ZT0 vs. ZT12 due to the time of GSPE administration highlight a chronotherapeutic profile on the proanthocyanin effect. Finally, GSPE could also reduce diet-induced hepatic oxidative stress not only by its ROS-scavenging properties but also by retraining the circadian rhythm of AOX enzymes.
Collapse
Affiliation(s)
- Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Néstor Ibarz-Blanch
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Jorge R. Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Béatrice Bonafos
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Christine Feillet-Coudray
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - François Casas
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| |
Collapse
|
17
|
McKee CA, Polino AJ, King MW, Musiek ES. Circadian clock protein BMAL1 broadly influences autophagy and endolysosomal function in astrocytes. Proc Natl Acad Sci U S A 2023; 120:e2220551120. [PMID: 37155839 PMCID: PMC10194014 DOI: 10.1073/pnas.2220551120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
An emerging role for the circadian clock in autophagy and lysosome function has opened new avenues for exploration in the field of neurodegeneration. The daily rhythms of circadian clock proteins may coordinate gene expression programs involved not only in daily rhythms but in many cellular processes. In the brain, astrocytes are critical for sensing and responding to extracellular cues to support neurons. The core clock protein BMAL1 serves as the primary positive circadian transcriptional regulator and its depletion in astrocytes not only disrupts circadian function but also leads to a unique cell-autonomous activation phenotype. We report here that astrocyte-specific deletion of Bmal1 influences endolysosome function, autophagy, and protein degradation dynamics. In vitro, Bmal1-deficient astrocytes exhibit increased endocytosis, lysosome-dependent protein cleavage, and accumulation of LAMP1- and RAB7-positive organelles. In vivo, astrocyte-specific Bmal1 knockout (aKO) brains show accumulation of autophagosome-like structures within astrocytes by electron microscopy. Transcriptional analysis of isolated astrocytes from young and aged Bmal1 aKO mice indicates broad dysregulation of pathways involved in lysosome function which occur independently of TFEB activation. Since a clear link has been established between neurodegeneration and endolysosome dysfunction over the course of aging, this work implicates BMAL1 as a key regulator of these crucial astrocyte functions in health and disease.
Collapse
Affiliation(s)
- Celia A. McKee
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Alexander J. Polino
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Melvin W. King
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Erik S. Musiek
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| |
Collapse
|
18
|
Khezri MR, Ghasemnejad-Berenji M. Gut microbiota and circadian rhythm in Alzheimer's disease pathophysiology: a review and hypothesis on their association. NPJ AGING 2023; 9:9. [PMID: 37130863 PMCID: PMC10154390 DOI: 10.1038/s41514-023-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia worldwide. Different pathologic changes have been introduced to be involved in its progression. Although amyloid-β (Aβ) deposition and tau hyperphosphorylation and aggregation are mainly considered the main characterizations of AD, several other processes are involved. In recent years, several other changes, including alterations in gut microbiota proportion and circadian rhythms, have been noticed due to their role in AD progression. However, the exact mechanism indicating the association between circadian rhythms and gut microbiota abundance has not been investigated yet. This paper aims to review the role of gut microbiota and circadian rhythm in AD pathophysiology and introduces a hypothesis to explain their association.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
19
|
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110721. [PMID: 36702452 DOI: 10.1016/j.pnpbp.2023.110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
An association with circadian clock function and pathophysiology of aging, major depressive disorder (MDD), and Alzheimer's disease (AD) is well established and has been proposed as a factor in the development of these diseases. Depression and changes in circadian rhythm have been increasingly suggested as the two primary overlapping and interpenetrating changes that occur with aging. The relationship between AD and depression in late life is not completely understood and probably is complex. Patients with major depression or AD suffer from disturbed sleep/wake cycles and altered rhythms in daily activities. Although classical monoaminergic hypotheses are traditionally proposed to explain the pathophysiology of MDD, several clinical and preclinical studies have reported a strong association between circadian rhythm and mood regulation. In addition, a large body of evidence supports an association between disruption of circadian rhythm and AD. Some clock genes are dysregulated in rodent models of depression. If aging, AD, and MDD share a common biological basis in pathophysiology, common therapeutic tools could be investigated for their prevention and treatment. Nitro-oxidative stress (NOS), for example, plays a fundamental role in aging, as well as in the pathogenesis of AD and MDD and is associated with circadian clock disturbances. Thus, development of therapeutic possibilities with these NOS-related conditions is advisable. This review describes recent findings that link disrupted circadian clocks to aging, MDD, and AD and summarizes the experimental evidence that supports connections between the circadian clock and molecular pathologic factors as shared common pathophysiological mechanisms underlying aging, AD, and MDD.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Michelle Lima Garcez
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
20
|
Ye C, Zhang Y, Lin S, Chen Y, Wang Z, Feng H, Fang G, Quan S. Berberine Ameliorates Metabolic-Associated Fatty Liver Disease Mediated Metabolism Disorder and Redox Homeostasis by Upregulating Clock Genes: Clock and Bmal1 Expressions. Molecules 2023; 28:1874. [PMID: 36838862 PMCID: PMC9960773 DOI: 10.3390/molecules28041874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases, which in turn triggers mild inflammation, metabolic dysfunction, fibrosis, and even cancer. Accumulating evidence has suggested that Berberine (BBR) could significantly improve MAFLD progression. Clock and Bmal1 as heterodimer proteins highly participated in the development of MAFLD, but whether BBR targets Clock and Bmal1 in MAFLD remains poorly understood. The result suggested that the protein levels of Clock and Bmal1 were decreased in MAFLD mice, which was negatively correlated with elevated reactive oxygen species (ROS) accumulation, the H2O2 level, liver inflammation, metabolic dysfunction, and insulin resistance. The mRNA and protein levels of Clock and Bmal1 were also decreased in glucosamine-induced HepG2 cells, which were are negatively related to glucose uptake, the ROS level, and the H2O2 level. More importantly, Bmal1 siRNA could mimic the effect of glucosamine in HepG2 cells. Interestingly, Berberine (BBR) could rescue metabolism disorder and redox homeostasis through enhancing Clock and Bmal1 expression in vivo and in vitro. Therefore, BBR might be an effective natural compound for alleviating redox homeostasis, metabolism disorder, and liver pathological changes in MAFLD by activating Clock and Bmal1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shijian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
21
|
Chhunchha B, Kubo E, Krueger RR, Singh DP. Hydralazine Revives Cellular and Ocular Lens Health-Span by Ameliorating the Aging and Oxidative-Dependent Loss of the Nrf2-Activated Cellular Stress Response. Antioxidants (Basel) 2023; 12:140. [PMID: 36671002 PMCID: PMC9854670 DOI: 10.3390/antiox12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
A major hallmark of aging-associated diseases is the inability to evoke cellular defense responses. Transcriptional protein Nrf2 (nuclear factor erythroid-derived 2-related factor) plays a pivotal role in the oxidative stress response, cellular homeostasis, and health span. Nrf2's activation has been identified as a therapeutic target to restore antioxidant defense in aging. Here, we demonstrated that FDA-approved drug, hydralazine (Hyd), was a reactivator of the Nrf2/ARE (antioxidant response element) pathway in various ages and types of mouse (m) or human (h) lens epithelial cells (LECs) and mice lenses in-vitro/in-vivo. This led to Hyd-driven abatement of carbonyls, reduced reactive oxygen species (ROS), and reduced 4-HNE/MDA-adducts with cytoprotection, and extended lens healthspan by delaying/preventing lens opacity against aging/oxidative stress. We elucidated that Hyd activated the protective signaling by inducing Nrf2 to traverse from the cytoplasm to the nucleus and potentiated the ARE response by direct interaction of Nrf2 and ARE sequences of the promoter. Loss-of-function study and cotreatment of Hyd and antioxidant, N-acetyl cysteine (NAC) or Peroxiredoxin (Prdx)6, specified that Nrf2/ARE-driven increase in the promoter activity was Hyd-dependent. Our study provides proof-of concept evidence and, thereby, paves the way to repurposing Hyd as a therapeutic agent to delay/prevent aging and oxidative-related disorders.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan
| | - Ronald R. Krueger
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
22
|
Anti-Oxidant and Pro-Oxidant Effects of Peroxiredoxin 6: A Potential Target in Respiratory Diseases. Cells 2023; 12:cells12010181. [PMID: 36611974 PMCID: PMC9818991 DOI: 10.3390/cells12010181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6) is widely distributed in several organs, especially the lungs. The role of PRDX6 in oxidative stress is controversial and even contradictory, as indicated by research conducted over the past 20 years. PRDX6 has anti-oxidant or pro-oxidant effects on oxidative stress in different diseases. It can even exhibit both anti-oxidant and pro-oxidant effects in the same disease. These findings are attributed to the fact that PRDX6 is a multifunctional enzyme. The peroxidase and phospholipase A2 activity of PRDX6 is closely related to its anti-oxidant and pro-oxidant effects, which leads to the conflicting regulatory effects of PRDX6 on oxidative stress in respiratory diseases. Moreover, PRDX6 interacts with multiple redox signaling pathways to interfere with cell proliferation and apoptosis. PRDX6 has become a new target in respiratory disease research due to its important regulatory role in oxidative stress. In this paper, the role of PRDX6 in oxidative stress in respiratory diseases and the research progress in targeting PRDX6 are reviewed.
Collapse
|
23
|
He Y, B'nai Taub A, Yu L, Yao Y, Zhang R, Zahr T, Aaron N, LeSauter J, Fan L, Liu L, Tazebay R, Que J, Pajvani U, Wang L, Silver R, Qiang L. PPARγ Acetylation Orchestrates Adipose Plasticity and Metabolic Rhythms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204190. [PMID: 36394167 PMCID: PMC9839851 DOI: 10.1002/advs.202204190] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/13/2022] [Indexed: 05/28/2023]
Abstract
Systemic glucose metabolism and insulin activity oscillate in response to diurnal rhythms and nutrient availability with the necessary involvement of adipose tissue to maintain metabolic homeostasis. However, the adipose-intrinsic regulatory mechanism remains elusive. Here, the dynamics of PPARγ acetylation in adipose tissue are shown to orchestrate metabolic oscillation in daily rhythms. Acetylation of PPARγ displays a diurnal rhythm in young healthy mice, with the peak at zeitgeber time 0 (ZT0) and the trough at ZT18. This rhythmic pattern is deranged in pathological conditions such as obesity, aging, and circadian disruption. The adipocyte-specific acetylation-mimetic mutation of PPARγ K293Q (aKQ) restrains adipose plasticity during calorie restriction and diet-induced obesity, associated with proteolysis of a core circadian component BMAL1. Consistently, the rhythmicity in glucose tolerance and insulin sensitivity is altered in aKQ and the complementary PPARγ deacetylation-mimetic K268R/K293R (2KR) mouse models. Furthermore, the PPARγ acetylation-sensitive downstream target adipsin is revealed as a novel diurnal factor that destabilizes BMAL1 and mediates metabolic rhythms. These findings collectively signify that PPARγ acetylation is a hinge connecting adipose plasticity and metabolic rhythms, the two determinants of metabolic health.
Collapse
Affiliation(s)
- Ying He
- Naomi Berrie Diabetes Center, Columbia UniversityNew YorkNY10032USA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNY10032USA
| | | | - Lexiang Yu
- Naomi Berrie Diabetes Center, Columbia UniversityNew YorkNY10032USA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNY10032USA
| | - Yifan Yao
- Department of NeuroscienceBarnard CollegeNew YorkNY10027USA
| | - Ruotong Zhang
- Naomi Berrie Diabetes Center, Columbia UniversityNew YorkNY10032USA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNY10032USA
| | - Tarik Zahr
- Naomi Berrie Diabetes Center, Columbia UniversityNew YorkNY10032USA
- Department of Molecular Pharmacology and TherapeuticsColumbia UniversityNew YorkNY10032USA
| | - Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia UniversityNew YorkNY10032USA
- Department of Molecular Pharmacology and TherapeuticsColumbia UniversityNew YorkNY10032USA
| | | | - Lihong Fan
- Naomi Berrie Diabetes Center, Columbia UniversityNew YorkNY10032USA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNY10032USA
| | - Longhua Liu
- Naomi Berrie Diabetes Center, Columbia UniversityNew YorkNY10032USA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNY10032USA
| | - Ruya Tazebay
- Department of NeuroscienceBarnard CollegeNew YorkNY10027USA
| | - Jianwen Que
- Department of MedicineColumbia UniversityNew YorkNY10032USA
| | - Utpal Pajvani
- Naomi Berrie Diabetes Center, Columbia UniversityNew YorkNY10032USA
- Department of MedicineColumbia UniversityNew YorkNY10032USA
| | - Liheng Wang
- The DiabetesObesity and Metabolism InstituteThe Icahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Rae Silver
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNY10032USA
- Department of PsychologyColumbia UniversityNew YorkNY10027USA
- Department of NeuroscienceBarnard CollegeNew YorkNY10027USA
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia UniversityNew YorkNY10032USA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNY10032USA
| |
Collapse
|
24
|
Stowe TA, McClung CA. How Does Chronobiology Contribute to the Development of Diseases in Later Life. Clin Interv Aging 2023; 18:655-666. [PMID: 37101656 PMCID: PMC10124625 DOI: 10.2147/cia.s380436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
An increasingly older population is one of the major social and medical challenges we currently face. Between 2010 and 2050, it is estimated that the proportion of adults over 65 years of age will double from 8% to 16% of the global population. A major concern associated with aging is the changes in health that can lead to various diseases such as cancer and neurogenerative diseases, which are major burdens on individuals and societies. Thus, it is imperative to better understand changes in sleep and circadian rhythms that accompany aging to improve the health of an older population and target diseases associated with aging. Circadian rhythms play a role in most physiological processes and can contribute to age-related diseases. Interestingly, there is a relationship between circadian rhythms and aging. For example, many older adults have a shift in chronotype, which is an individual's natural inclination to sleep certain times of the day. As adults age, most people tend to go to sleep earlier while also waking up earlier. Numerous studies also suggest that disrupted circadian rhythms may be indicative of developing age-related diseases, like neurodegenerative disorders and cancer. Better understanding the relationship between circadian rhythms and aging may allow us to improve current treatments or develop novel ones that target diseases commonly associated with aging.
Collapse
Affiliation(s)
- Taylor A Stowe
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Correspondence: Colleen A McClung, Email
| |
Collapse
|
25
|
Yu S, Zeng Y, Ruan C, Bai L, Liang Z. Protective effects of brain and muscle ARNT-like gene 1 on oxidized low-density lipoprotein-induced human brain microvascular endothelial cell injury by alleviating ferroptosis. Hum Exp Toxicol 2023; 42:9603271231184630. [PMID: 37343012 DOI: 10.1177/09603271231184630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Ferroptosis plays an important role in atherosclerotic cerebrovascular diseases. The brain and muscle ARNT-like gene 1 (BMAL1) is an important mediator in the progression of cerebrovascular diseases. However, whether BMAL1 regulates ferroptosis in atherosclerotic cerebrovascular diseases remains obscure. Here, human brain microvascular endothelial cells (HBMECs) were exposed to oxidized low-density lipoprotein (ox-LDL) to imitate cerebrovascular atherosclerosis. It was found that ox-LDL treatment induced ferroptosis events and reduced BMAL1 expression in HBMECs, which could be reversed by ferroptosis inhibitor ferrostatin-1. Furthermore, BMAL1 overexpression markedly mitigated ox-LDL-induced ferroptosis events and cell damage. Moreover, BMAL1 overexpression significantly promoted nuclear factor erythroid 2-related factor 2 (Nrf2) expression in HBMECs under ox-LDL conditions. And, Nrf2 silencing attenuated the protective effects of BMAL1 on ox-LDL-stimulated HBMEC damage and ferroptosis. Altogether, our findings delineate the cerebrovascular protective role of BMAL1/Nrf2 by antagonizing ferroptosis in response to ox-LDL stimulation and provide novel perspectives for therapeutic strategies for atherosclerotic cerebrovascular diseases.
Collapse
Affiliation(s)
- Shui Yu
- Department of Neurosurgery, The People's Hospital of Dujiangyan, Dujiangyan, Sichuan Province, China
| | - Yijun Zeng
- Department of Neurosurgery, The People's Hospital of Dujiangyan, Dujiangyan, Sichuan Province, China
| | - Chenbin Ruan
- Department of Neurology, The People's Hospital of Dujiangyan, Dujiangyan, Sichuan Province, China
| | - Lei Bai
- Department of Neurology, The People's Hospital of Dujiangyan, Dujiangyan, Sichuan Province, China
| | - Zhang Liang
- Department of Neurosurgery, The People's Hospital of Dujiangyan, Dujiangyan, Sichuan Province, China
| |
Collapse
|
26
|
Ma L, Huang M, Sun G, Lin Y, Lu D, Wu B. Puerariae lobatae radix protects against UVB-induced skin aging via antagonism of REV-ERBα in mice. Front Pharmacol 2022; 13:1088294. [PMID: 36618934 PMCID: PMC9813444 DOI: 10.3389/fphar.2022.1088294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Puerariae lobatae radix (PLR) is a wildly used herbal medicine. Here we aimed to assess the PLR efficacy against UVB (ultraviolet-B)-induced skin aging and to determine the mechanisms thereof. We found a significant protective effect of PLR (topical application) on UVB-induced skin aging in mice, as evidenced by reduced skin wrinkles, epidermal thickness, and MDA (malondialdehyde) content as well as increased levels of HYP (hydroxyproline) and SOD (superoxide dismutase) in the skin. In the meantime, Mmp-1, p21 and p53 levels were decreased in the skin of PLR-treated mice. Anti-aging effects of PLR were also confirmed in L929 cells. Furthermore, PLR up-regulated skin expression of BMAL1, which is a known regulator of aging by promoting Nrf2 and antioxidant enzymes. Consistently, Nrf2 and several genes (i.e., Prdx6, Sod1, and Sod2) encoding antioxidant enzymes in the skin were increased in PLR-treated mice. Moreover, based on Gal4 chimeric assay, Bmal1 reporter gene and expression assays, we identified PLR as an antagonist of REV-ERBα that can increase Bmal1 expression. Intriguingly, loss of Rev-erbα protected mice against UVB-induced skin aging and abrogated the protective effect of PLR. In conclusion, PLR acts as an antagonist of REV-ERBα and promotes the expression of BMAL1 to protect against skin aging in mice.
Collapse
Affiliation(s)
- Luyao Ma
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiping Huang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Sun
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Retinoic acid-induced 1 gene haploinsufficiency alters lipid metabolism and causes autophagy defects in Smith-Magenis syndrome. Cell Death Dis 2022; 13:981. [PMID: 36411275 PMCID: PMC9678881 DOI: 10.1038/s41419-022-05410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown. Here, we generated and characterized primary cells derived from four SMS patients (two with SMS-del and two carrying RAI1 point mutations) and four control subjects to investigate the pathogenetic processes underlying SMS. By combining transcriptomic and lipidomic analyses, we found altered expression of lipid and lysosomal genes, deregulation of lipid metabolism, accumulation of lipid droplets, and blocked autophagic flux. We also found that SMS cells exhibited increased cell death associated with the mitochondrial pathology and the production of reactive oxygen species. Treatment with N-acetylcysteine reduced cell death and lipid accumulation, which suggests a causative link between metabolic dyshomeostasis and cell viability. Our results highlight the pathological processes in human SMS cells involving lipid metabolism, autophagy defects and mitochondrial dysfunction and suggest new potential therapeutic targets for patient treatment.
Collapse
|
28
|
Zhu Y, Liu Y, Escames G, Yang Z, Zhao H, Qian L, Xue C, Xu D, Acuña-Castroviejo D, Yang Y. Deciphering clock genes as emerging targets against aging. Ageing Res Rev 2022; 81:101725. [PMID: 36029999 DOI: 10.1016/j.arr.2022.101725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
The old people often suffer from circadian rhythm disturbances, which in turn accelerate aging. Many aging-related degenerative diseases such as Alzheimer's disease, Parkinson's disease, and osteoarthritis have an inextricable connection with circadian rhythm. In light of the predominant effects of clock genes on regulating circadian rhythm, we systematically present the elaborate network of roles that clock genes play in aging in this review. First, we briefly introduce the basic background regarding clock genes. Second, we systemically summarize the roles of clock genes in aging and aging-related degenerative diseases. Third, we discuss the relationship between clock genes polymorphisms and aging. In summary, this review is intended to clarify the indispensable roles of clock genes in aging and sheds light on developing clock genes as anti-aging targets.
Collapse
Affiliation(s)
- Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chengxu Xue
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Danni Xu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
29
|
Mezhnina V, Ebeigbe OP, Poe A, Kondratov RV. Circadian Control of Mitochondria in Reactive Oxygen Species Homeostasis. Antioxid Redox Signal 2022; 37:647-663. [PMID: 35072523 PMCID: PMC9587791 DOI: 10.1089/ars.2021.0274] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Significance: Mitochondria produce most of the cellular ATP through the process of oxidative phosphorylation. Energy metabolism in the mitochondria is associated with the production of reactive oxygen species (ROS). Excessive ROS production leads to oxidative stress and compromises cellular physiology. Energy metabolism in the mitochondria depends on nutrient flux and cellular metabolic needs, which are in turn connected with the feeding/fasting cycle. In animals, the feeding/fasting cycle is controlled by the circadian clock that generates 24-h rhythms in behavior, metabolism, and signaling. Recent Advances: Here, we discuss the role of the circadian clock and rhythms in mitochondria on ROS homeostasis. The circadian clock is involved in mitochondrial ROS production and detoxification through the control of nutrient flux and oxidation, uncoupling, antioxidant defense, and mitochondrial dynamics. Critical Issues: Little is known on the molecular mechanisms of circadian control of mitochondrial functions. The circadian clock regulates the expression and activity of mitochondrial metabolic and antioxidant enzymes. The regulation involves a direct transcriptional control by Circadian Locomotor Output Cycles Kaput/brain and muscle ARNT-like 1(CLOCK/BMAL1), nuclear factor erythroid-2-related factor 2 (NRF2) transcriptional network, and sirtuin-dependent posttranslational protein modifications. Future Perspectives: We hypothesize that the circadian clock orchestrates mitochondrial physiology to synchronize it with the feeding/fasting cycle. Circadian coordination of mitochondrial function couples energy metabolism with diets and contributes to antioxidant defense to prevent metabolic diseases and delay aging. Antioxid. Redox Signal. 37, 647-663.
Collapse
Affiliation(s)
- Volha Mezhnina
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Oghogho P. Ebeigbe
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Allan Poe
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Roman V. Kondratov
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
30
|
Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, Shi X, Zhang S, Chen J, Yu X, Yang Y. Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell 2022; 21:e13704. [PMID: 36056774 PMCID: PMC9577946 DOI: 10.1111/acel.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
With the aging world population, the prevalence of aging-related disorders is on the rise. Diseases such as Alzheimer's, type 2 diabetes mellitus (T2DM), Parkinson's, atherosclerosis, hypertension, and osteoarthritis are age-related, and most of these diseases are comorbidities or risk factors for AD; however, our understandings of molecular events that regulate the occurrence of these diseases are still not fully understood. Brain and muscle Arnt-like protein-1 (Bmal1) is an irreplaceable clock gene that governs multiple important physiological processes. Continuous research of Bmal1 in AD and associated aging-related diseases is ongoing, and this review picks relevant studies on a detailed account of its role and mechanisms in these diseases. Oxidative stress and inflammation turned out to be common mechanisms by which Bmal1 deficiency promotes AD and associated aging-related diseases, and other Bmal1-dependent mechanisms remain to be identified. Promising therapeutic strategies involved in the regulation of Bmal1 are provided, including melatonin, natural compounds, metformin, d-Ser2-oxyntomodulin, and other interventions, such as exercise, time-restricted feeding, and adiponectin. The establishment of the signaling pathway network for Bmal1 in aging-related diseases will lead to advances in the comprehension of the molecular and cellular mechanisms, shedding light on novel treatments for aging-related diseases and promoting aging-associated brain health.
Collapse
Affiliation(s)
- Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| |
Collapse
|
31
|
Zhang Y, Yu W, Liu Y, Chang W, Wang M, Zhang L. Regulation of nuclear factor erythroid-2-related factor 2 as a potential therapeutic target in intracerebral hemorrhage. Front Mol Neurosci 2022; 15:995518. [PMID: 36245922 PMCID: PMC9559574 DOI: 10.3389/fnmol.2022.995518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Hemorrhagic stroke can be categorized into several subtypes. The most common is intracerebral hemorrhage (ICH), which exhibits significant morbidity and mortality, affecting the lives of millions of people worldwide every year. Brain injury after ICH includes the primary injury that results from direct compression as well as stimulation by the hematoma and secondary brain injury (SBI) that is due to ischemia and hypoxia in the penumbra around the hematoma. A number of recent studies have analyzed the mechanisms producing the oxidative stress and inflammation that develop following hematoma formation and are associated with the ICH induced by the SBI as well as the resulting neurological dysfunction. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a critical component in mediating oxidative stress and anti-inflammatory response. We summarize the pathological mechanisms of ICH focusing on oxidative stress and the regulatory role of Nrf2, and review the mechanisms regulating Nrf2 at the transcriptional and post-transcriptional levels by influencing gene expression levels, protein stability, subcellular localization, and synergistic effects with other transcription factors. We further reviewing the efficacy of several Nrf2 activators in the treatment of ICH in experimental ICH models. Activation of Nrf2 might produce antioxidant, anti-inflammatory, and neuron-protection effects, which could potentially be a focus for developing future treatments and prevention of ICH.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Yuan Zhang,
| | - Wanpeng Yu
- Medical College, Qingdao University, Qingdao, China
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenguang Chang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Man Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Chhunchha B, Kubo E, Singh DP. Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity. Cells 2022; 11:3021. [PMID: 36230981 PMCID: PMC9563310 DOI: 10.3390/cells11193021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Increasing levels of oxidative-stress due to deterioration of the Nrf2 (NFE2-related factor)/ARE (antioxidant response element) pathway is found to be a primary cause of aging pathobiology. Metformin having anti-aging effects can delay/halt aging-related diseases. Herein, using lens epithelial cell lines (LECs) of human (h) or mouse (m) and aging h/m primary LECs along with lenses as model systems, we demonstrated that Metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation, and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. This ensued reactive oxygen species (ROS) mitigation with cytoprotection and prevention of lens opacity in response to aging/oxidative stress. It was intriguing to observe that Metformin internalized lens/LECs and upregulated OCTs (Organic Cation Transporters). Mechanistically, we found that Metformin evoked AMPK activation-dependent increase of Bmal1, Nrf2, and antioxidants transcription by promoting direct E-Box and ARE binding of Bmal1 and Nrf2 to the promoters. Loss-of-function and disruption of E-Box/ARE identified that Metformin acted by increasing Bmal1/Nrf2-mediated antioxidant expression. Data showed that AMPK-activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded the Metformin's effect. Collectively, the results for the first-time shed light on the hitherto incompletely uncovered crosstalk between the AMPK and Bmal1/Nrf2/antioxidants mediated by Metformin for blunting oxidative/aging-linked pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
33
|
Redox Homeostasis in Ocular Tissues: Circadian Regulation of Glutathione in the Lens? Antioxidants (Basel) 2022; 11:antiox11081516. [PMID: 36009235 PMCID: PMC9404810 DOI: 10.3390/antiox11081516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Accumulating evidence in tissues suggests an interconnection between circadian clocks and redox regulation. Diurnal variations in antioxidant levels, circadian rhythms of antioxidant enzyme activity, and differences in oxidative stress markers at different times of the day all indicate that oxidative stress responses follow a circadian rhythm. Disruptions of circadian rhythms are linked to a number of age-related diseases, including those in the eye. Typically, ocular tissues contain a robust antioxidant defence system to maintain redox balance and minimise oxidative stress and damage. The lens, in particular, contains remarkably high levels of the antioxidant glutathione (GSH). However, with advancing age, GSH levels deplete, initiating a chain of biochemical events that ultimately result in protein aggregation, light scattering, and age-related cataracts. While there is evidence that the lens exhibits circadian rhythms in the synthesis and release of melatonin, little is known about the regulation or function of timekeeping mechanisms in the lens. Since circadian rhythms are disrupted with age, and the depletion of GSH in the lens is a known initiating factor in the development of age-related cataracts, understanding the mechanisms involved in regulating GSH levels may lead to the future development of approaches to manipulate the clock to restore GSH levels and redox balance in the lens, and protect the lens from cataracts.
Collapse
|
34
|
Poole J, Ray D. The Role of Circadian Clock Genes in Critical Illness: The Potential Role of Translational Clock Gene Therapies for Targeting Inflammation, Mitochondrial Function, and Muscle Mass in Intensive Care. J Biol Rhythms 2022; 37:385-402. [PMID: 35880253 PMCID: PMC9326790 DOI: 10.1177/07487304221092727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Earth's 24-h planetary rotation, with predictable light and heat cycles, has driven profound evolutionary adaptation, with prominent impacts on physiological mechanisms important for surviving critical illness. Pathways of interest include inflammation, mitochondrial function, energy metabolism, hypoxic signaling, apoptosis, and defenses against reactive oxygen species. Regulation of these by the cellular circadian clock (BMAL-1 and its network) has an important influence on pulmonary inflammation; ventilator-associated lung injury; septic shock; brain injury, including vasospasm; and overall mortality in both animals and humans. Whether it is cytokines, the inflammasome, or mitochondrial biogenesis, circadian medicine represents exciting opportunities for translational therapy in intensive care, which is currently lacking. Circadian medicine also represents a link to metabolic determinants of outcome, such as diabetes and cardiovascular disease. More than ever, we are appreciating the problem of circadian desynchrony in intensive care. This review explores the rationale and evidence for the importance of the circadian clock in surviving critical illness.
Collapse
Affiliation(s)
- Joanna Poole
- Anaesthetics and Critical Care, Gloucestershire Royal Hospital, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - David Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Yang WY, Meng X, Wang YR, Wang QQ, He X, Sun XY, Cheng N, Zhang L. PRDX6 alleviates lipopolysaccharide-induced inflammation and ferroptosis in periodontitis. Acta Odontol Scand 2022; 80:535-546. [PMID: 35723029 DOI: 10.1080/00016357.2022.2047780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Periodontitis is a progressive and inflammatory oral disease and results in the damage of the supporting tissues of teeth. Peroxiredoxin 6 (PRDX6) is an antioxidant enzyme identified as a regulator in ferroptosis. This study aimed to investigate whether PRDX6 could protect human gingival fibroblasts (HGFs) from lipopolysaccharide (LPS)-induced inflammation and its mechanisms. MATERIAL AND METHODS Both inflamed and non-inflamed human gingival tissues were collected to assess the expression of PRDX6 and nuclear factor erythropoietin 2-related factor 2 (NRF2) by Immunohistochemistry and Western blotting. Furthermore, the molecular mechanisms of PRDX6 have been clarified in PRDX6 silenced cells. The inflammatory cytokines in HGFs were measured by RT-qPCR and ELISA. The lipid hydroperoxide (LOOH) was detected by C11-BODIPY. RESULTS The expression of PRDX6 and NRF2 were decreased in gingival tissues of severe periodontitis patients. The increased LPS-induced LOOH and inflammatory cytokines were found in PRDX6 knockdown HGFs. Besides, the inhibition of ferroptosis or PRDX6 phospholipase A2 activity (PLA2) alleviated LPS-induced inflammatory cytokines and LOOH. However, inhibiting NRF2 signalling upregulated those in HGFs. CONCLUSIONS Therefore, this study provided a new mechanistic insight that PRDX6, regulated by the NRF2 signalling, alleviates LPS-induced inflammation and ferroptosis in human gingival fibroblasts.
Collapse
Affiliation(s)
- Wen-Ying Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - Yue-Rong Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - Qing-Qing Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China.,Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, China
| | - Xin He
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China.,Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, China
| | - Xiao-Yu Sun
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China.,Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, China
| | - Nan Cheng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China.,Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, China
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China.,Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
36
|
Zhang W, Xiong Y, Tao R, Panayi AC, Mi B, Liu G. Emerging Insight Into the Role of Circadian Clock Gene BMAL1 in Cellular Senescence. Front Endocrinol (Lausanne) 2022; 13:915139. [PMID: 35733785 PMCID: PMC9207346 DOI: 10.3389/fendo.2022.915139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Cell senescence is a crucial process in cell fate determination and is involved in an extensive array of aging-associated diseases. General perceptions and experimental evidence point out that the decline of physical function as well as aging-associated diseases are often initiated by cell senescence and organ ageing. Therefore, regulation of cell senescence process can be a promising way to handle aging-associated diseases such as osteoporosis. The circadian clock regulates a wide range of cellular and physiological activities, and many age-linked degenerative disorders are associated with the dysregulation of clock genes. BMAL1 is a core circadian transcription factor and governs downstream genes by binding to the E-box elements in their promoters. Compelling evidence has proposed the role of BMAL1 in cellular senescence and aging-associated diseases. In this review, we summarize the linkage between BMAL1 and factors of cell senescence including oxidative stress, metabolism, and the genotoxic stress response. Dysregulated and dampened BMAL1 may serve as a potential therapeutic target against aging- associated diseases.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
37
|
Hibernation with Rhythmicity in the Retina, Brain, and Plasma but Not in the Liver of Hibernating Giant Spiny Frogs (Quasipaa spinosa). BIOLOGY 2022; 11:biology11050722. [PMID: 35625450 PMCID: PMC9138901 DOI: 10.3390/biology11050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary Aquatic ectotherms experience hypoxia under water during hibernation, which enables them to move denoting some level of consciousness, unlike terrestrial hibernators. However, how aquatic ectotherms modulate their clocks and clock-controlled genes in different tissues and plasma melatonin and corticosterone in light-dark cycles under natural environments before and during hibernation, remains to be largely unexplored. To achieve these, in this study, we investigated circadian clock genes, circadian clock-controlled genes, antioxidant enzyme genes, and related hormones in giant spiny frog (Quasipaa spinosa). Our results demonstrated that, despite the hypometabolic state of hibernation, the retina and the brain displayed some circadian rhythms of clock and antioxidant genes, as well as melatonin, while the liver was inactive. These novel findings may contribute to an understanding of how aquatic ectotherms use their circadian system differentially to modulate their physiology in escaping hypoxia during hibernation and preparing for arousal. Abstract Hibernation in ectotherms is well known, however, it is unclear how the circadian clock regulates endocrine and antioxidative defense systems of aquatic hibernators. Using the giant spiny frog (Quasipaa spinosa), we studied mRNA expression levels of (1) circadian core clock (Bmal1, Clock, Cry1 and Per2), clock-controlled (Ror-α, Mel-1c and AANAT), and antioxidant enzyme (AOE) (SOD1, SOD2, CAT and GPx) genes in retina, brain, and liver; and (2) plasma melatonin (MT) and corticosterone (CORT) levels, over a 24-hour period at six intervals pre-hibernation and during hibernation. Our results showed that brain Bmal1, Cry1, Per2 and Mel-1c were rhythmic pre-hibernation and Clock and Ror-α during hibernation. However, the retina Bmal1, Clock and Mel-1c, and plasma MT became rhythmic during hibernation. All brain AOEs (SOD1, SOD2, CAT and GPx) were rhythmic pre-hibernation and became non-rhythmic but upregulated, except SOD1, during hibernation. However, plasma CORT and liver clocks and AOEs were non-rhythmic in both periods. The mRNA expression levels of AOEs closely resembled those of Ror-α but not plasma MT oscillations. In the hibernating aquatic frogs, these modulations of melatonin, as well as clock and clock-controlled genes and AOEs might be fundamental for them to remain relatively inactive, increase tolerance, and escape hypoxia, and to prepare for arousal.
Collapse
|
38
|
Liang C, Ke Q, Liu Z, Ren J, Zhang W, Hu J, Wang Z, Chen H, Xia K, Lai X, Wang Q, Yang K, Li W, Wu Z, Wang C, Yan H, Jiang X, Ji Z, Ma M, Long X, Wang S, Wang H, Sun H, Belmonte J, Qu J, Xiang A, Liu GH. BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates. Nucleic Acids Res 2022; 50:3323-3347. [PMID: 35286396 PMCID: PMC8989534 DOI: 10.1093/nar/gkac146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Abstract
Aging in humans is intricately linked with alterations in circadian rhythms concomitant with physiological decline and stem cell exhaustion. However, whether the circadian machinery directly regulates stem cell aging, especially in primates, remains poorly understood. In this study, we found that deficiency of BMAL1, the only non-redundant circadian clock component, results in an accelerated aging phenotype in both human and cynomolgus monkey mesenchymal progenitor cells (MPCs). Unexpectedly, this phenotype was mainly attributed to a transcription-independent role of BMAL1 in stabilizing heterochromatin and thus preventing activation of the LINE1-cGAS-STING pathway. In senescent primate MPCs, we observed decreased capacity of BMAL1 to bind to LINE1 and synergistic activation of LINE1 expression. Likewise, in the skin and muscle tissues from the BMAL1-deficient cynomolgus monkey, we observed destabilized heterochromatin and aberrant LINE1 transcription. Altogether, these findings uncovered a noncanonical role of BMAL1 in stabilizing heterochromatin to inactivate LINE1 that drives aging in primate cells.
Collapse
Affiliation(s)
- Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haoteng Yan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Miyang Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing 400062, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
39
|
Switching of Redox Signaling by Prdx6 Expression Decides Cellular Fate by Hormetic Phenomena Involving Nrf2 and Reactive Oxygen Species. Cells 2022; 11:cells11081266. [PMID: 35455944 PMCID: PMC9028283 DOI: 10.3390/cells11081266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Changes in intracellular reactive oxygen species (ROS) levels due to remodeling of antioxidant defense can affect the status of biological homeostasis in aging/oxidative stress. Peroxiredoxin 6 (Prdx6), an antioxidant gene downstream target for the Nrf2 pathway, plays a role in regulating ROS homeostasis. Using aging human (h) lens epithelial cells (LECs) or Prdx6-deficient (Prdx6-/-) mouse (m) LECs, here we showed that dichlorofluorescein (DCF) oxidation or H2O2 were strictly controlled by Prdx6. We observed that a moderate degree of oxidative stress augmented Nrf2-mediated Prdx6 expression, while higher doses of H2O2 (≥100 µM) caused a dramatic loss of Prdx6 expression, resulting in increased DCF oxidation and H2O2 amplification and cell death. Mechanistically, at increased oxidative stress, Nrf2 upregulated transcriptional factor Klf9, and that Klf9 bound to the promoter and repressed the Prdx6 gene. Similarly, cells overexpressing Klf9 displayed Klf9-dependent Prdx6 suppression and DCF oxidation with H2O2 amplification, while ShKlf9 reversed the process. Our data revealed that H2O2 and DCF oxidation levels play a hormetical role, and the Nrf2-Klf9-Prdx6 pathway is pivotal for the phenomena under the conditions of oxidative load/aging. On the whole, the results demonstrate that oxidative hormetical response is essentially based on levels of oxidative triggering and the status of Klf9-Prdx6 pathway activation; thus, Klf9 can be considered as a therapeutic target for hormetic shifting of cellular defense to improve protective resilience to oxidative stress.
Collapse
|
40
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
41
|
Mathew D, Luo Q, Bhatwadekar AD. Circadian Rhythm Disruption Results in Visual Dysfunction. FASEB Bioadv 2022; 4:364-378. [PMID: 35664832 PMCID: PMC9164246 DOI: 10.1096/fba.2021-00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/14/2022] Open
Abstract
Artificial light has been increasingly in use for the past 70 years. The aberrant light exposure and round‐the‐clock nature of work lead to the disruption of biological clock. Circadian rhythm disruption (CRD) contributes to multiple metabolic and neurodegenerative diseases. However, its effect on vision is not understood. Moreover, the mammalian retina possesses an autonomous clock that could be reset with light exposure. We evaluated the impact of CRD on retinal morphology, physiology, and vision after housing mice in a disruption inducing shorter light/dark cycle (L10:D10). Interestingly, the mice under L10:D10 exhibited three different entrainment behaviors; “entrained,” “free‐running,” and “zigzagging.” These behavior groups under CRD exhibited reduced visual acuity, retinal thinning, and a decrease in the number of photoreceptors. Intriguingly, the electroretinogram response was decreased only in the mice exhibiting “entrained” behavior. The retinal proteome showed distinct changes with each entrainment behavior, and there was a dysfunctional oxidative stress‐antioxidant mechanism. These results demonstrate that CRD alters entrainment behavior and leads to visual dysfunction in mice. Our studies uniquely show the effect of entrainment behavior on retinal physiology. Our data have broader implications in understanding and mitigating the impact of CRD on vision and its potential role in the etiology of retinal diseases.
Collapse
Affiliation(s)
- Deepa Mathew
- Department of Ophthalmology Indiana University Indianapolis IN USA
| | - Qianyi Luo
- Department of Ophthalmology Indiana University Indianapolis IN USA
| | | |
Collapse
|
42
|
Bevinakoppamath S, Ramachandra SC, Yadav AK, Basavaraj V, Vishwanath P, Prashant A. Understanding the Emerging Link Between Circadian Rhythm, Nrf2 Pathway, and Breast Cancer to Overcome Drug Resistance. Front Pharmacol 2022; 12:719631. [PMID: 35126099 PMCID: PMC8807567 DOI: 10.3389/fphar.2021.719631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The levels of different molecules in the cell are rhythmically cycled by the molecular clock present at the cellular level. The circadian rhythm is closely linked to the metabolic processes in the cells by an underlying mechanism whose intricacies need to be thoroughly investigated. Nevertheless, Nrf2 has been identified as an essential bridge between the circadian clock and cellular metabolism and is activated by the by-product of cellular metabolism like hydrogen peroxide. Once activated it binds to the specific DNA segments and increases the transcription of several genes that play a crucial role in the normal functioning of the cell. The central clock located in the suprachiasmatic nucleus of the anterior hypothalamus synchronizes the timekeeping in the peripheral tissues by integrating the light-dark input from the environment. Several studies have demonstrated the role of circadian rhythm as an effective tumor suppressor. Tumor development is triggered by the stimulation or disruption of signaling pathways at the cellular level as a result of the interaction between cells and environmental stimuli. Oxidative stress is one such external stimulus that disturbs the prooxidant/antioxidant equilibrium due to the loss of control over signaling pathways which destroy the bio-molecules. Altered Nrf2 expression and impaired redox balance are associated with various cancers suggesting that Nrf2 targeting may be used as a novel therapeutic approach for treating cancers. On the other hand, Nrf2 has also been shown to enhance the resistance of cancer cells to chemotherapeutic agents. We believe that maximum efficacy with minimum side effects for any particular therapy can be achieved if the treatment strategy regulates the circadian rhythm. In this review, we discuss the various molecular mechanisms interlinking the circadian rhythm with the Nrf2 pathway and contributing to breast cancer pathogenesis, we also talk about how these two pathways work in close association with the cell cycle which is another oscillatory system, and whether this interplay can be exploited to overcome drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shobha Chikkavaddaragudi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Anshu Kumar Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
- Special Interest Group-Human Genomics and Rare Disorders, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Akila Prashant,
| |
Collapse
|
43
|
Baba K, Tosini G. Real-Time Monitoring of Circadian Rhythms in the Eye. Methods Mol Biol 2022; 2550:367-375. [PMID: 36180706 DOI: 10.1007/978-1-0716-2593-4_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mammalian eye harbors a full circadian system that controls several physiologically relevant functions within this organ. During the last two decades a few laboratories have developed transgenic animal models in which circadian rhythms can be monitored in real time using luciferase activity. The most famous transgenic mouse to record bioluminescence rhythms from different tissues and organs is the PERIOD2::LUCIFERASE (PER2::LUC) mouse developed by the Takahashi laboratory in early 2000. Since then, several studies have used this mouse model to dissect the mammalian circadian system by monitoring the circadian rhythm in the brain, the eye, and in many other peripheral organs and tissues. This chapter describes the methodology to record and analyze bioluminescence rhythms from the retina, retinal pigment epithelium, and cornea of PER2::LUC mice.
Collapse
Affiliation(s)
- Kenkichi Baba
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA.
| | - Gianluca Tosini
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
44
|
Chen WH, Huang QY, Wang ZY, Zhuang XX, Lin S, Shi QY. Therapeutic potential of exosomes/miRNAs in polycystic ovary syndrome induced by the alteration of circadian rhythms. Front Endocrinol (Lausanne) 2022; 13:918805. [PMID: 36465652 PMCID: PMC9709483 DOI: 10.3389/fendo.2022.918805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a reproductive dysfunction associated with endocrine disorders and is most common in women of reproductive age. Clinical and/or biochemical manifestations include hyperandrogenism, persistent anovulation, polycystic ovary, insulin resistance, and obesity. Presently, the aetiology and pathogenesis of PCOS remain unclear. In recent years, the role of circadian rhythm changes in PCOS has garnered considerable attention. Changes in circadian rhythm can trigger PCOS through mechanisms such as oxidative stress and inflammation; however, the specific mechanisms are unclear. Exosomes are vesicles with sizes ranging from 30-120nm that mediate intercellular communication by transporting microRNAs (miRNAs), proteins, mRNAs, DNA, or lipids to target cells and are widely involved in the regulation of various physiological and pathological processes. Circadian rhythm can alter circulating exosomes, leading to a series of related changes and physiological dysfunctions. Therefore, we speculate that circadian rhythm-induced changes in circulating exosomes may be involved in PCOS pathogenesis. In this review, we summarize the possible roles of exosomes and their derived microRNAs in the occurrence and development of PCOS and discuss their possible mechanisms, providing insights into the potential role of exosomes for PCOS treatment.
Collapse
Affiliation(s)
- Wei-hong Chen
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qiao-yi Huang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhi-yi Wang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xuan-xuan Zhuang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Qi-yang Shi, ; Shu Lin,
| | - Qi-yang Shi
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- *Correspondence: Qi-yang Shi, ; Shu Lin,
| |
Collapse
|
45
|
Gong Y, Zhang G, Li B, Cao C, Cao D, Li X, Li H, Ye M, Shen H, Chen G. BMAL1 attenuates intracerebral hemorrhage-induced secondary brain injury in rats by regulating the Nrf2 signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1617. [PMID: 34926661 PMCID: PMC8640921 DOI: 10.21037/atm-21-1863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
Background Intracerebral hemorrhage (ICH) is a severe cerebrovascular disease with high morbidity and mortality rates. Oxidative stress and inflammation are important pathological mechanisms of secondary brain injury (SBI) after ICH. Brain and muscle Arnt-like protein 1 (BMAL1), which forms the core component of the circadian clock, was previously shown to be involved in many diseases and to participate in oxidative stress and inflammatory responses. However, the role of BMAL1 in SBI following ICH is unknown. In addition, treatments targeting miR-155 and its downstream signaling pathway may exert a beneficial effect on SBI after ICH, while miR-155 may regulate Bmal1 mRNA stability and translation. Nevertheless, researchers have not clearly determined whetheantagomir-155 upregulates BMAL1 expression and subsequently attenuates ICH-induced brain injury in rats. Methods After establishing an ICH rat model by injecting autologous blood, the time course of changes in levels of the BMAL1 protein after ICH was analyzed. Subsequently, this study was designed to investigate the potential role and mechanisms of BMAL1 in SBI following ICH using lentiviral overexpression and antagomir-155 treatments. Results BMAL1 protein levels were significantly decreased in the ICH group compared to the sham group. Genetic overexpression of BMAL1 alleviated oxidative stress, inflammation, brain edema, blood-brain barrier injury, neuronal death, and neurological dysfunction induced by ICH. On the other hand, we observed that inhibiting miRNA-155 using antagomir-155 promoted the expression of BMAL1 and further activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway to attenuate brain injury after ICH. Conclusions These results reveal that BMAL1 serves as a neuroprotective agent in ICH and upregulation of BMAL1 attenuates ICH-induced SBI. Therefore, BMAL1 may be a promising therapeutic target for SBI following ICH.
Collapse
Affiliation(s)
- Yan Gong
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guoguo Zhang
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Li
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Cao
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Demao Cao
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Ye
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
46
|
Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:732243. [PMID: 35156088 PMCID: PMC8830366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022]
Abstract
The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.
Collapse
Affiliation(s)
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
47
|
Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:732243. [PMID: 35156088 PMCID: PMC8830366 DOI: 10.3389/fnetp.2021.732243] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 08/01/2023]
Abstract
The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.
Collapse
|
48
|
Chhunchha B, Kubo E, Kompella UB, Singh DP. Engineered Sumoylation-Deficient Prdx6 Mutant Protein-Loaded Nanoparticles Provide Increased Cellular Defense and Prevent Lens Opacity. Antioxidants (Basel) 2021; 10:antiox10081245. [PMID: 34439493 PMCID: PMC8389307 DOI: 10.3390/antiox10081245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant Sumoylation-mediated protein dysfunction is involved in a variety of oxidative and aging pathologies. We previously reported that Sumoylation-deficient Prdx6K(lysine)122/142R(Arginine) linked to the TAT-transduction domain gained stability and protective efficacy. In the present study, we formulated wild-type TAT-HA-Prdx6WT and Sumoylation-deficient Prdx6-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) to further enhance stability, protective activities, and sustained delivery. We found that in vitro and subconjuctival delivery of Sumoylation-deficient Prdx6-NPs provided a greater protection of lens epithelial cells (LECs) derived from human and Prdx6-/--deficient mouse lenses against oxidative stress, and it also delayed the lens opacity in Shumiya cataract rats (SCRs) than TAT-HA-Prdx6WT-NPs. The encapsulation efficiencies of TAT-HA-Prdx6-NPs were ≈56%-62%. Dynamic light scattering (DLS) and atomic force microscopy (AFM) analyses showed that the NPs were spherical, with a size of 50-250 nm and a negative zeta potential (≈23 mV). TAT-HA-Prdx6 analog-NPs released bioactive TAT-HA-Prdx6 (6%-7%) within 24 h. Sumoylation-deficient TAT-HA-Prdx6-NPs provided 35% more protection by reducing the oxidative load of LECs exposed to H2O2 compared to TAT-HA-Prdx6WT-NPs. A subconjuctival delivery of TAT-HA-Prdx6 analog-NPs demonstrated that released TAT-HA-Prdx6K122/142R could reduce lens opacity by ≈60% in SCRs. Collectively, our results demonstrate for the first time that the subconjuctival delivery of Sumoylation-deficient Prdx6-NPs is efficiently cytoprotective and provide a proof of concept for potential use to delay cataract and oxidative-related pathobiology in general.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (B.C.); (D.P.S.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200265, Ishikawa, Japan;
| | - Uday B. Kompella
- Departments of Pharmaceutical Sciences, Ophthalmology, and Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Dhirendra P. Singh
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (B.C.); (D.P.S.)
| |
Collapse
|
49
|
Wishart TFL, Flokis M, Shu DY, Das SJ, Lovicu FJ. Hallmarks of lens aging and cataractogenesis. Exp Eye Res 2021; 210:108709. [PMID: 34339681 DOI: 10.1016/j.exer.2021.108709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Lens homeostasis and transparency are dependent on the function and intercellular communication of its epithelia. While the lens epithelium is uniquely equipped with functional repair systems to withstand reactive oxygen species (ROS)-mediated oxidative insult, ROS are not necessarily detrimental to lens cells. Lens aging, and the onset of pathogenesis leading to cataract share an underlying theme; a progressive breakdown of oxidative stress repair systems driving a pro-oxidant shift in the intracellular environment, with cumulative ROS-induced damage to lens cell biomolecules leading to cellular dysfunction and pathology. Here we provide an overview of our current understanding of the sources and essential functions of lens ROS, antioxidative defenses, and changes in the major regulatory systems that serve to maintain the finely tuned balance of oxidative signaling vs. oxidative stress in lens cells. Age-related breakdown of these redox homeostasis systems in the lens leads to the onset of cataractogenesis. We propose eight candidate hallmarks that represent common denominators of aging and cataractogenesis in the mammalian lens: oxidative stress, altered cell signaling, loss of proteostasis, mitochondrial dysfunction, dysregulated ion homeostasis, cell senescence, genomic instability and intrinsic apoptotic cell death.
Collapse
Affiliation(s)
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia; Schepens Eye Research Institute of Mass Eye and Ear. Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shannon J Das
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
50
|
Liu X, Xiao W, Jiang Y, Zou L, Chen F, Xiao W, Zhang X, Cao Y, Xu L, Zhu Y. Bmal1 Regulates the Redox Rhythm of HSPB1, and Homooxidized HSPB1 Attenuates the Oxidative Stress Injury of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5542815. [PMID: 34239687 PMCID: PMC8238613 DOI: 10.1155/2021/5542815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Oxidative stress is the main cause of acute myocardial infarction (AMI), which is related to the disorder of the regulation of Bmal1 on the redox state. HSPB1 form homologous-oxidized HSPB1 (homooxidized HSPB1) to resist oxidative damage via S-thiolated modification. However, it is still unclarified whether there is an interaction between the circadian clock and HSPB1 in myocardial injury. A total of 118 AMI patients admitted and treated in our hospital from Sep. 2019 to Sep. 2020 were selected to detect the plasma HSPB1 expression and the redox state. We divided the AMI patients into three subgroups: morning-onset AMI (5 : 00 am to 8 : 00 am; Am-subgroup, n = 38), noon-onset AMI (12 : 00 pm to 15 : 00; Pm-subgroup, n = 45), and night-onset AMI (20 : 00 pm to 23 : 00 pm; Eve-subgroup, n = 35) according to the circadian rhythm of onset. The Am-subgroup had remarkably higher cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and B-type natriuretic peptide (BNP) but lower left ventricular ejection fraction (LVEF) than the Pm-subgroup and Eve-subgroup. Patients complicated with cardiogenic shock were significantly higher in the Am-subgroup than in the other two groups. The homooxidized HSPB1 in plasma markedly decreased in the Am-subgroup. The HSPB1C141S mutant accelerated H9c2 cell apoptosis, increased reactive oxygen species (ROS), and decreased reduced-glutathione (GSH) and the ratio of reduced-GSH and GSSG during oxidative stress. Importantly, we found that the redox state of HSPB1 was consistent with the oscillatory rhythm of Bmal1 expression in normal C57B/L mice. The circadian rhythm disorder contributed to decrease Bmal1 and homooxidized HSPB1 in cardiomyocytes of C57BL/6 mice. In addition, Bmal1 and homooxidized HSPB1 decreased in neonatal rat cardiomyocytes exposed to H2O2. Knockdown of Bmal1 led to significant attenuation in homooxidized HSPB1 expression, whereas overexpression of Bmal1 increased homooxidized HSPB1 expression in response to H2O2. Our findings indicated that the homooxidized HSPB1 reduced probably the AMI patients' risk of shock and target organ damage, which was associated with Bmal1 regulating the redox state of HSPB1.
Collapse
Affiliation(s)
- Xiehong Liu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Wen Xiao
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Lianhong Zou
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Fang Chen
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Weiwei Xiao
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xingwen Zhang
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yan Cao
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Lei Xu
- Public Health Clinical Center, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yimin Zhu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| |
Collapse
|