1
|
Marastoni D, Colato E, Foschi M, Tamanti A, Ziccardi S, Eccher C, Crescenzo F, Bajrami A, Schiavi GM, Camera V, Anni D, Virla F, Guandalini M, Turano E, Pizzini FB, Montemezzi S, Bonetti B, Howell O, Magliozzi R, Nicholas RS, Scalfari A, Granziera C, Kappos L, Calabrese M. Intrathecal Inflammatory Profile and Gray Matter Damage Predict Progression Independent of Relapse Activity in Early Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200399. [PMID: 40311103 DOI: 10.1212/nxi.0000000000200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND AND OBJECTIVES The objective of this study was to determine, at the time of diagnosis, a CSF and MRI profile of intrathecal compartmentalized inflammation predictive of progression independent of relapse activity (PIRA) in early relapsing-remitting multiple sclerosis (RRMS). METHODS This five-year prospective study included 80 treatment-naïve patients with RRMS enrolled at time of diagnosis. All patients underwent a lumbar puncture, regular neurologic evaluations including an Expanded Disability Status Scale (EDSS) assessment every 6 months, and an annual 3T brain MRI. PIRA was defined as having a confirmed disability progression independent of relapse activity. CSF levels of 68 inflammatory molecules were evaluated in combination with white matter and cortical lesion number (CLn) and volume, and regional gray matter thickness and volume. RESULTS During the follow-up, 23 patients with RRMS (28.8%) experienced PIRA. At diagnosis, participants with PIRA were older (44.0 ± 10.7 vs 37.4 ± 12.4, p = 0.017) and with more disability (median EDSS score [interquartile range] of 3 [range 2-4] for PIRA vs 1.5 [range 1-2] for no PIRA group, p < 0.001). Random forest selected LIGHT, CXCL13, sTNFR1, sTNFR2, CCL7, MIF, sIL6Rbeta, IL35, CCL2, and IFNβ as the CSF markers best associated with PIRA. sTNFR1 (hazard ratio [HR] 10.11 [2.61-39.10], p = 0.001), sTNFR2 (HR 5.05 [1.63-15.64], p = 0.005), and LIGHT (HR 1.79 [1.11-2.88], p = 0.018) were predictors of PIRA at regression analysis. Baseline thalamus volume (HR 0.98 [0.97-0.99], p = 0.005), middle frontal gyrus thickness (HR 0.05 [0.01-0.72], p = 0.028), and CLn (HR 1.15 [1.05-1.25], p = 0.003) were MRI predictors of PIRA. DISCUSSION A specific intrathecal inflammatory profile associated with TNF superfamily markers, CLn, and atrophy of several cortical and deep gray matter regions, assessed at time of diagnosis, is predictive of PIRA in early MS.
Collapse
Affiliation(s)
- Damiano Marastoni
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | - Elisa Colato
- Neurology B, Department of Neurosciences, University of Verona, Italy
- MS Centre, Department of Anatomy and Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center, Neurology Unit, S.Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Agnese Tamanti
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | - Stefano Ziccardi
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | - Chiara Eccher
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | | | - Albulena Bajrami
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | | | - Valentina Camera
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | - Daniela Anni
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | - Federica Virla
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | | | - Ermanna Turano
- Neurology B, Department of Neurosciences, University of Verona, Italy
| | | | - Stefania Montemezzi
- Radiology Unit, Department of Pathology and Diagnostics, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Bruno Bonetti
- Neurology A, Azienda Ospedaliera Universitaria Integrata di Verona, Italy
| | - Owain Howell
- Institute of Life Sciences, Swansea University, United Kingdom
| | - Roberta Magliozzi
- Neurology B, Department of Neurosciences, University of Verona, Italy
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, United Kingdom; and
| | - Richard S Nicholas
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, United Kingdom; and
| | - Antonio Scalfari
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, United Kingdom; and
| | - Cristina Granziera
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Switzerland
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Switzerland
| | | |
Collapse
|
2
|
Heppell C, Subramanian A, Adderley NJ, Nirantharakumar K, Denniston AK, Pavesio C, Braithwaite T. Comprehensive Update on Multiple Sclerosis-Associated Uveitis and New Epidemiological Insights from the United Kingdom. Ocul Immunol Inflamm 2025; 33:535-547. [PMID: 40238829 DOI: 10.1080/09273948.2025.2491567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Multiple sclerosis (MS)-associated uveitis is characterised most frequently by bilateral intermediate uveitis with peripheral vascular leakage or panuveitis. The interesting association between these autoimmune diseases, which develop in two immune-privileged sites, places some undifferentiated uveitis patients at heightened risk of demyelination and clinical MS precipitation from the use of licensed anti-tumour necrosis factor α (TNFα) biologic therapy. However, their association may also open novel treatment avenues, considering the rapidly expanding arsenal of highly effective MS disease-modifying therapies. Here, we offer new data on MS-uveitis from the first national population-representative matched case-control and cohort study, using IQVIA medical research data (IMRD-UK), a primary care database of 11 million people. Amongst 25 thousand uveitis cases, patients with (any) uveitis are nearly three times more likely than matched controls to develop MS by 15 years follow-up (adjusted Hazard 2.7 (95% CI 2.1-3.6, p < 0.001)), but the proportion of MS-uveitis is low overall (0.72%, 180/24,895 uveitis cases). What tools might enhance MS risk stratification in uveitis patients in the future? In this comprehensive narrative review, we summarise primary observational data informing our epidemiological understanding of the association between MS and uveitis, and its variable clinical presentations, to highlight the state of play, and the important questions that remain in MS-uveitis.
Collapse
Affiliation(s)
- Cara Heppell
- Ophthalmology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Nicola J Adderley
- Department of Applied Health Sciences, University of Birmingham, Birmingham, UK
- Department of Applied Health Research, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, UK
| | - Krishnarajah Nirantharakumar
- Department of Applied Health Sciences, University of Birmingham, Birmingham, UK
- Department of Applied Health Research, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, UK
- Health Data Research United Kingdom (HDRUK), London, UK
| | - Alastair K Denniston
- Health Data Research United Kingdom (HDRUK), London, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Carlos Pavesio
- Uveitis Department, Moorfields Eye Hospital and UCL, London, UK
| | - Tasanee Braithwaite
- Ophthalmology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Ophthalmology, King's Health Partners Centre for Translational Medicine, London, UK
- School of Population and Lifecourse Sciences and School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
3
|
Gysemans C, Beya M, Pedace E, Mathieu C. Exploring Neutrophil Heterogeneity and Plasticity in Health and Disease. Biomedicines 2025; 13:597. [PMID: 40149573 PMCID: PMC11940349 DOI: 10.3390/biomedicines13030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Neutrophils, the most abundant polymorphonuclear leukocytes, are critical first responders to infection, and have historically been underappreciated in terms of their functional complexity within the immune response. Once viewed primarily as short-lived, innate immune cells with limited functional plasticity, recent research has illuminated their considerable heterogeneity and diverse functional roles, which extend beyond their involvement in steady-state immunity. This review seeks to provide an updated analysis of neutrophil development, maturation, heterogeneity, and plasticity, with a focus on how these characteristics influence immune modulation in both healthy and diseased tissues. Beginning with the origin of neutrophils, we explore their maturation into effector cells and their evolving roles in immune defense under homeostatic and disease-associated conditions. We then delve into their heterogeneity, discussing recent breakthroughs in neutrophil research that challenge the traditional view of neutrophils as a uniform population. We address the significant advances that have been made in identifying distinct neutrophil subsets, the emerging complexities of their plasticity, and the challenges that remain in fully understanding their functional diversity. Finally, we highlight future directions and opportunities for continued exploration in this rapidly advancing field, shedding light on how these insights could open new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Conny Gysemans
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| | - Mateson Beya
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| | - Erika Pedace
- Diabetes Unit, Department of Medicine, Surgery, and Neurosciences, University of Siena, 53100 Siena, Italy;
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Chantal Mathieu
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| |
Collapse
|
4
|
Segal Y, Soltys J, Clarkson BDS, Howe CL, Irani SR, Pittock SJ. Toward curing neurological autoimmune disorders: Biomarkers, immunological mechanisms, and therapeutic targets. Neuron 2025; 113:345-379. [PMID: 39809275 DOI: 10.1016/j.neuron.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Autoimmune neurology is a rapidly expanding field driven by the discovery of neuroglial autoantibodies and encompassing a myriad of conditions affecting every level of the nervous system. Traditionally, autoantibodies targeting intracellular antigens are considered markers of T cell-mediated cytotoxicity, while those targeting extracellular antigens are viewed as pathogenic drivers of disease. However, recent advances highlight complex interactions between these immune mechanisms, suggesting a continuum of immunopathogenesis. The breakdown of immune tolerance, central to these conditions, is affected by modifiable and non-modifiable risk factors such as genetic predisposition, infections, and malignancy. While significant therapeutic advancements have revolutionized treatment of certain diseases, such as neuromyelitis optica, our understanding of many others, particularly T cell-mediated conditions, remains limited, with fewer treatment options available. Future research should focus on improving effector function modeling and deepening our understanding of the factors influencing immune tolerance, with the goal of providing novel treatment options and improving patient care.
Collapse
Affiliation(s)
- Yahel Segal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - John Soltys
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin D S Clarkson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Division of Experimental Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sarosh R Irani
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Li Y, Ye R, Dai H, Lin J, Cheng Y, Zhou Y, Lu Y. Exploring TNFR1: from discovery to targeted therapy development. J Transl Med 2025; 23:71. [PMID: 39815286 PMCID: PMC11734553 DOI: 10.1186/s12967-025-06122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
This review seeks to elucidate the therapeutic potential of tumor necrosis factor receptor 1 (TNFR1) and enhance our comprehension of its role in disease mechanisms. As a critical cell-surface receptor, TNFR1 regulates key signaling pathways, such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK), which are associated with pro-inflammatory responses and cell death. The intricate regulatory mechanisms of TNFR1 signaling and its involvement in various diseases, including inflammatory disorders, infectious diseases, cancer, and metabolic syndromes, have attracted increasing scholarly attention. Given the potential risks associated with targeting tumor necrosis factor-alpha (TNF-α), selective inhibition of the TNFR1 signaling pathway has been proposed as a promising strategy to reduce side effects and enhance therapeutic efficacy. This review emphasizes the emerging field of targeted therapies aimed at selectively modulating TNFR1 activity, identifying promising therapeutic strategies that exploit TNFR1 as a drug target through an evaluation of current clinical trials and preclinical studies. In conclusion, this study contributes novel insights into the biological functions of TNFR1 and presents potential therapeutic strategies for clinical application, thereby having substantial scientific and clinical significance.
Collapse
Affiliation(s)
- Yingying Li
- School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ruiwei Ye
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Haorui Dai
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiayi Lin
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yue Cheng
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yonghong Zhou
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Yiming Lu
- School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China.
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
Alam MZ, Bagabir HA, Zaher MAF, Alqurashi TMA, Alghamdi BS, Kazi M, Ashraf GM, Alshahrany GA, Alzahrani NA, Bakhalgi RM, Juweiriya, Al-Thepyani M, AboTaleb HA, Aldhahri RS, El-Aziz GSA, Al-Abbasi FA, Eibani LK, Alzahrani FJ, Khan MSA. Black Seed Oil-Based Curcumin Nanoformulations Ameliorated Cuprizone-Induced Demyelination in the Mouse Hippocampus. Mol Neurobiol 2025; 62:604-625. [PMID: 38890237 DOI: 10.1007/s12035-024-04310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease characterized by the demyelination of nerves, axonal damage, and neuroinflammation. Cognition impairment, pain, and loss of mobility are some of the usual complications of MS. It has been postulated that the overproduction of proinflammatory cytokines and reactive oxygen species (ROS) are the main factors that contribute to MS pathology. Among various animal models, the cuprizone model is the most widely used model for investigating MS-related pathology. We assessed the effects of cuprizone along with the protective effects of some black seed oil-based nanoformulations of curcumin with and without piperine, in mice hippocampus in terms of the changes in antioxidant enzymes, transcription factors, and cytokines during demyelination and remyelination processes. The results of behavioral studies point toward impairment in working memory following the feeding of cuprizone for 5 weeks. However, in treatment groups, mice seemed to prevent the toxic effects of cuprizone. Nanoformulations used in this study were found to be highly effective in lowering the amount of ROS as indicated by the levels of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione peroxidase. Moreover, nanoformulations CCF and CCPF were observed resisting the toxic effects of cuprizone. We observed greater expression of NFκB-p65 in the CPZ group than in the control group. CCF nanoformulation had a better inhibitory effect on NFκB-p65 than other formulations. Histological examination of the hippocampus was also conducted. Nanoformulations used here were found effective in reversing MS-related pathophysiology and hence have the potential to be applied as adjuvant therapy for MS treatment.
Collapse
Affiliation(s)
- Mohammad Zubair Alam
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh Campus, Jeddah, Saudi Arabia
| | | | - Thamer M A Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badrah S Alghamdi
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, 22252, Jeddah, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. BOX-2457, 11451, Riyadh, Saudi Arabia
| | - Ghulam Md Ashraf
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gadah Ali Alshahrany
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmed Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rafal Mohammed Bakhalgi
- Department of Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Juweiriya
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, India
| | - Mona Al-Thepyani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh Campus, Jeddah, Saudi Arabia
| | | | - Rahaf Saeed Aldhahri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Gamal Said Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loay Khaled Eibani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Jaman Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Maleki N, Rezapour Kalkhoran M, Emami Aleagha MS, Allameh A. Enhanced Therapeutic Effects of Human Mesenchymal stem Cells Transduced with Secreted Klotho in a Murine Experimental Autoimmune Encephalomyelitis Model. Mol Neurobiol 2024; 61:10381-10397. [PMID: 38727977 DOI: 10.1007/s12035-024-04211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/01/2024] [Indexed: 11/24/2024]
Abstract
Treatment of multiple sclerosis (MS) remains a major challenge. The aim of this study was to evaluate the therapeutic potential of mesenchymal stem cells (MSCs) engineered with secreted Klotho (SKL) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. EAE was induced in mice. MSCs or MSCs engineered with SKL (SKL-MSCs) were administered to EAE mice at the onset of disease. Hematoxylin-eosin and luxol fast blue staining were performed to evaluate histopathological changes. Expression of pro-inflammatory (TNF-α, IFN-γ, and IL-17) and anti-inflammatory (IL-10) cytokines was determined in the spinal cord using real-time PCR. Spinal cords were then processed for immunohistochemistry of the aforementioned cytokines. The frequencies of Th1, Th17, and regulatory T (Treg) cells were evaluated by flow cytometry of the spleen. The results showed that SKL-MSCs decreased clinical scores and reduced demyelination and inflammatory infiltration in the spinal cord more significantly than MSCs. Compared to MSCs, SKL-MSCs also exhibited a more profound capability of decreasing expression of TNF-α, IFN-γ, and IL-17 and increasing expression of IL-10 in the spinal cord with an enhanced homing to the inflamed tissue. Moreover, SKL-MSCs decreased the frequencies of Th1 and Th17 cells and increased the frequency of Treg cells in the spleen more potently than MSCs. Taken together, these findings demonstrate that SKL overexpression enhances the therapeutic potential of MSCs, as evidenced by significantly improved disease severity, decreased inflammation and tissue damage in the spinal cord, and a promoted shift in the Th17/Treg balance towards the anti-inflammatory Treg side in the EAE mice.
Collapse
Affiliation(s)
- Narges Maleki
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Rezapour Kalkhoran
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sajad Emami Aleagha
- Department of Clinical Biochemistry, School of Medical Sciences, Kermanshah University of Medical, Kermanshah, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Hijal N, Fouani M, Awada B. Unveiling the fate and potential neuroprotective role of neural stem/progenitor cells in multiple sclerosis. Front Neurol 2024; 15:1438404. [PMID: 39634777 PMCID: PMC11614735 DOI: 10.3389/fneur.2024.1438404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic pathological conditions often induce persistent systemic inflammation, contributing to neuroinflammatory diseases like Multiple Sclerosis (MS). MS is known for its autoimmune-mediated damage to myelin, axonal injury, and neuronal loss which drive disability accumulation and disease progression, often manifesting as cognitive impairments. Understanding the involvement of neural stem cells (NSCs) and neural progenitor cells (NPCs) in the remediation of MS through adult neurogenesis (ANG) and gliogenesis-the generation of new neurons and glial cells, respectively is of great importance. Hence, these phenomena, respectively, termed ANG and gliogenesis, involve significant structural and functional changes in neural networks. Thus, the proper integration of these newly generated cells into existing circuits is not only key to understanding the CNS's development but also its remodeling in adulthood and recovery from diseases such as MS. Understanding how MS influences the fate of NSCs/NPCs and their possible neuroprotective role, provides insights into potential therapeutic interventions to alleviate the impact of MS on cognitive function and disease progression. This review explores MS, its pathogenesis, clinical manifestations, and its association with ANG and gliogenesis. It highlights the impact of altered NSCs and NPCs' fate during MS and delves into the potential benefits of its modifications. It also evaluates treatment regimens that influence the fate of NSCS/NPCs to counteract the pathology subsequently.
Collapse
Affiliation(s)
- Nora Hijal
- Department of Nursing, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Fouani
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Bassel Awada
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Ou H, Csuth TI, Czompoly T, Kvell K. Dairy: Friend or Foe? Bovine Milk-Derived Extracellular Vesicles and Autoimmune Diseases. Int J Mol Sci 2024; 25:11499. [PMID: 39519052 PMCID: PMC11546213 DOI: 10.3390/ijms252111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Due to the availability, scalability, and low immunogenicity, bovine milk-derived extracellular vesicles (MEVs) are increasingly considered to be a promising carrier of nanomedicines for future therapy. However, considering that extracellular vesicles (EVs) are of biological origin, different sources of EVs, including the host origin and the specific cells that produce the EVs, may have different effects on the structure and function of EVs. Additionally, MEVs play an important role in immune regulation, due to their evolutionary conserved cargo, such as cytokines and miRNAs. Their potential effects on different organs, as well as their accumulation in the human body, should not be overlooked. In this review, we have summarized current impacts and research progress brought about by utilizing MEVs as nano-drug carriers. Nevertheless, we also aim to explore the possible connections between the molecules involved in cellular immunity, cytokines and miRNAs of MEVs produced under different health conditions, and autoimmune diseases.
Collapse
Affiliation(s)
- Hairui Ou
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (H.O.); (T.I.C.); (K.K.)
| | - Tamas Imre Csuth
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (H.O.); (T.I.C.); (K.K.)
- Soft Flow Ltd., 7634 Pecs, Hungary
| | | | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (H.O.); (T.I.C.); (K.K.)
| |
Collapse
|
11
|
Mallardo M, Mazzeo F, Lus G, Signoriello E, Daniele A, Nigro E. Impact of Lifestyle Interventions on Multiple Sclerosis: Focus on Adipose Tissue. Nutrients 2024; 16:3100. [PMID: 39339700 PMCID: PMC11434938 DOI: 10.3390/nu16183100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination in the central nervous system (CNS), affecting individuals globally. The pathological mechanisms underlying MS remain unclear, but current evidence suggests that inflammation and immune dysfunction play a critical role in the pathogenesis of MS disease. Adipose tissue (AT) is a dynamic multifunctional organ involved in various immune diseases, including MS, due to its endocrine function and the secretion of adipokines, which can influence inflammation and immune responses. Physical activity represents an efficacious non-pharmacological strategy for the management of a spectrum of conditions that not only improves inflammatory and immune functions but also directly affects the status and function of AT. Additionally, the exploration of nutritional supplementation represents an important field of MS research aimed at enhancing clinical symptoms and is closely tied to the regulation of metabolic responses, including adipokine secretion. This review, therefore, aims to elucidate the intricate relationship between lifestyle and MS by providing an overview of the latest published data about the involvement of AT and the main adipokines, such as adiponectin, leptin, and tumor necrosis factor α (TNFα) in the pathogenesis of MS. Furthermore, we explore whether physical activity and dietary management could serve as useful strategies to improve the quality of life of MS patients.
Collapse
Affiliation(s)
- Marta Mallardo
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences (DiSEGIM), University of Naples "Parthenope", 80035 Naples, Italy
| | - Giacomo Lus
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Elisabetta Signoriello
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Aurora Daniele
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Ersilia Nigro
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
- Department of Pharmaceutical, Biological, Environmental Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy
| |
Collapse
|
12
|
Emam MM, Abiyarghamsari M, Kazempour M, Haghighi-Morad M, Farsad F. Multiple sclerosis in a patient with Takayasu's Arteritis: A case report. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:729-734. [PMID: 39359445 PMCID: PMC11444114 DOI: 10.22088/cjim.15.4.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 11/11/2023] [Indexed: 10/04/2024]
Abstract
Background Multiple sclerosis (MS) and Takayasu's arteritis (TAK) are two autoimmune diseases that affect the Central nervous system (CNS), but the relationship between them has not been established. Case Presentation Here we report the emergence of MS during treatment. Takayasu's arteritis in a 24-year-old Iranian woman with a severe presentation. She was treated aggressively with IV methylprednisolone 1 g/day for 3 days and continued with oral prednisolone, also IV cyclophosphamide monthly. After 2 months, loss of vision led to a diagnosis of Optic neuritis (ON) caused by concomitant MS. Conclusion Differentiating CNS vasculitis associated with Takayasu's arthritis from coexisting MS affecting the CNS is challenging and what is important is to avoid giving a TNF inhibitor.
Collapse
Affiliation(s)
- Mohammad Mehdi Emam
- Mohammad Mehdi Emam and Mahdiye Abiyarghamsari contributed equally in this article
- Department of Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdiye Abiyarghamsari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Mohammad Mehdi Emam and Mahdiye Abiyarghamsari contributed equally in this article
| | - Muhanna Kazempour
- Department of Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Haghighi-Morad
- Department of Radiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farane Farsad
- Department of Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
15
|
Mazziotti V, Crescenzo F, Turano E, Guandalini M, Bertolazzo M, Ziccardi S, Virla F, Camera V, Marastoni D, Tamanti A, Calabrese M. The contribution of tumor necrosis factor to multiple sclerosis: a possible role in progression independent of relapse? J Neuroinflammation 2024; 21:209. [PMID: 39169320 PMCID: PMC11340196 DOI: 10.1186/s12974-024-03193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine regulating many physiological and pathological immune-mediated processes. Specifically, it has been recognized as an essential pro-inflammatory cytokine implicated in multiple sclerosis (MS) pathogenesis and progression. MS is a chronic immune-mediated disease of the central nervous system, characterized by multifocal acute and chronic inflammatory demyelination in white and grey matter, along with neuroaxonal loss. A recent concept in the field of MS research is disability resulting from Progression Independent of Relapse Activity (PIRA). PIRA recognizes that disability accumulation since the early phase of the disease can occur independently of relapse activity overcoming the traditional dualistic view of MS as either a relapsing-inflammatory or a progressive-neurodegenerative disease. Several studies have demonstrated an upregulation in TNF expression in both acute and chronic active MS brain lesions. Additionally, elevated TNF levels have been observed in the serum and cerebrospinal fluid of MS patients. TNF appears to play a significant role in maintaining chronic intrathecal inflammation, promoting axonal damage neurodegeneration, and consequently contributing to disease progression and disability accumulation. In summary, this review highlights the current understanding of TNF and its receptors in MS progression, specifically focusing on the relatively unexplored PIRA condition. Further research in this area holds promise for potential therapeutic interventions targeting TNF to mitigate disability in MS patients.
Collapse
Affiliation(s)
- Valentina Mazziotti
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Francesco Crescenzo
- Neurology Unit - Multiple Sclerosis Center, Scaligera Local Unit of Health and Social Services 9, Mater Salutis Hospital, 37045, Legnago, Verona, Italy
| | - Ermanna Turano
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maddalena Guandalini
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maddalena Bertolazzo
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Stefano Ziccardi
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Federica Virla
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Valentina Camera
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Damiano Marastoni
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Agnese Tamanti
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
16
|
Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front Neurol 2024; 15:1385042. [PMID: 39148705 PMCID: PMC11325594 DOI: 10.3389/fneur.2024.1385042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Background Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
17
|
Kalvaitis L, Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Balnyte R, Liutkeviciene R. TNF-alfa Gene Polymorphism Associations with Multiple Sclerosis. J Clin Med 2024; 13:3693. [PMID: 38999258 PMCID: PMC11242879 DOI: 10.3390/jcm13133693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Background:TNF-α has a dual role in multiple sclerosis (MS), contributing to both protective and harmful effects. It activates immune cells, promotes the formation of inflammatory lesions in the central nervous system, and stimulates the production of other pro-inflammatory cytokines and chemokines, leading to myelin destruction and neuronal damage. Our research focused on investigating the relationship between TNF-alpha (rs1800630, rs1800629, and rs361525) gene polymorphisms and MS. Methods: 250 healthy controls and 250 multiple sclerosis (MS) patients were included in the study. DNA was extracted from leucocytes from peripheral venous blood by salt precipitation. Single nucleotide polymorphisms (SNPs) were tested using RT-PCR. Statistical analysis of the data was performed using IBM SPSS Statistics 29.0 data analysis software. Results: The analysis revealed that the rs361525 AG genotype was significantly less frequent in the MS group compared to the control group (4.0% vs. 7.2%, p = 0.042). Sex-specific analysis showed a significant difference in genotype distribution (GG, AG, AA) among males between the MS group and the control group (97.7%, 0%, 2.3% vs. 90.6%, 9.4%, 0%, p = 0.005). For the rs1800629 polymorphism, significant results were also found. In subjects younger than 39 years, the A allele was significantly less frequent in the MS group than in the control group (8.6% vs. 15.0%, p = 0.030). The most robust model indicated that the AA genotype reduced the odds of MS by approximately 2 fold compared to the AG + GG genotype (p = 0.044), and each A allele reduced the odds of MS by approximately 2 fold (p = 0.028). The rs1800630 A allele was significantly more common in males in the MS group than in the control group (21.0% vs. 12.9%, p = 0.046). Conclusions: In conclusion, our study identifies significant associations between TNF-alpha gene variants and MS. Specifically, the rs631525 AG genotype was less common in the MS group, with notable sex-specific differences observed. The rs1800629 A allele was statistically significantly less frequent in the MS group than in the control group, and the AA genotype reduced the odds of MS occurrence by ~2 fold compared with the AG + GG genotypes. Additionally, each A allele of rs1800629 was linked to a 2-fold decreased odds of MS occurrence. In males, the rs1800630 A allele was more frequent in the MS group. These findings highlight the relevance of TNF-alpha genetic variations in MS susceptibility, suggesting potential avenues for further research and therapeutic exploration.
Collapse
Affiliation(s)
- Lukas Kalvaitis
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, LT-50161 Kaunas, Lithuania
| | - Greta Gedvilaite-Vaicechauskiene
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, LT-50161 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, LT-50161 Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, LT-50161 Kaunas, Lithuania
| | - Renata Balnyte
- Department of Neurology, Lithuanian University of Health Sciences, Medical Academy, LT-50161 Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, LT-50161 Kaunas, Lithuania
| |
Collapse
|
18
|
Misicka E, Huang Y, Loomis S, Sadhu N, Fisher E, Gafson A, Runz H, Tsai E, Jia X, Herman A, Bronson PG, Bhangale T, Briggs FB. Adaptive and Innate Immunity Are Key Drivers of Age at Onset of Multiple Sclerosis. Neurol Genet 2024; 10:e200159. [PMID: 38817245 PMCID: PMC11139017 DOI: 10.1212/nxg.0000000000200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Background and Objectives Multiple sclerosis (MS) age at onset (AAO) is a clinical predictor of long-term disease outcomes, independent of disease duration. Little is known about the genetic and biological mechanisms underlying age of first symptoms. We conducted a genome-wide association study (GWAS) to investigate associations between individual genetic variation and the MS AAO phenotype. Methods The study population was comprised participants with MS in 6 clinical trials: ADVANCE (N = 655; relapsing-remitting [RR] MS), ASCEND (N = 555; secondary-progressive [SP] MS), DECIDE (N = 1,017; RRMS), OPERA1 (N = 581; RRMS), OPERA2 (N = 577; RRMS), and ORATORIO (N = 529; primary-progressive [PP] MS). Altogether, 3,905 persons with MS of European ancestry were analyzed. GWAS were conducted for MS AAO in each trial using linear additive models controlling for sex and 10 principal components. Resultant summary statistics across the 6 trials were then meta-analyzed, for a total of 8.3 × 10-6 single nucleotide polymorphisms (SNPs) across all trials after quality control and filtering for heterogeneity. Gene-based tests of associations, pathway enrichment analyses, and Mendelian randomization analyses for select exposures were also performed. Results Four lead SNPs within 2 loci were identified (p < 5 × 10-8), including a) 3 SNPs in the major histocompatibility complex and their effects were independent of HLA-DRB1*15:01 and b) a LOC105375167 variant on chromosome 7. At the gene level, the top association was HLA-C (p = 1.2 × 10-7), which plays an important role in antiviral immunity. Functional annotation revealed the enrichment of pathways related to T-cell receptor signaling, autoimmunity, and the complement cascade. Mendelian randomization analyses suggested a link between both earlier age at puberty and shorter telomere length and earlier AAO, while there was no evidence for a role for either body mass index or vitamin D levels. Discussion Two genetic loci associated with MS AAO were identified, and functional annotation demonstrated an enrichment of genes involved in adaptive and complement immunity. There was also evidence supporting a link with age at puberty and telomere length. The findings suggest that AAO in MS is multifactorial, and the factors driving onset of symptoms overlap with those influencing MS risk.
Collapse
Affiliation(s)
- Elina Misicka
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Yunfeng Huang
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Stephanie Loomis
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Nilanjana Sadhu
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Elizabeth Fisher
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Arie Gafson
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Heiko Runz
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Ellen Tsai
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Xiaoming Jia
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Ann Herman
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Paola G Bronson
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Tushar Bhangale
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Farren B Briggs
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| |
Collapse
|
19
|
Khan Z, Mehan S, Gupta GD, Narula AS. Immune System Dysregulation in the Progression of Multiple Sclerosis: Molecular Insights and Therapeutic Implications. Neuroscience 2024; 548:9-26. [PMID: 38692349 DOI: 10.1016/j.neuroscience.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Multiple sclerosis (MS), a prevalent neurological disorder, predominantly affects young adults and is characterized by chronic autoimmune activity. The study explores the immune system dysregulation in MS, highlighting the crucial roles of immune and non-neuronal cells in the disease's progression. This review examines the dual role of cytokines, with some like IL-6, TNF-α, and interferon-gamma (IFN-γ) promoting inflammation and CNS tissue injury, and others such as IL-4, IL-10, IL-37, and TGF-β fostering remyelination and protecting against MS. Elevated chemokine levels in the cerebrospinal fluid (CSF), including CCL2, CCL5, CXCL10, CXCL13, and fractalkine, are analyzed for their role in facilitating immune cell migration across the blood-brain barrier (BBB), worsening inflammation and neurodegeneration. The study also delves into the impact of auto-antibodies targeting myelin components like MOG and AQP4, which activate complement cascades leading to further myelin destruction. The article discusses how compromised BBB integrity allows immune cells and inflammatory mediators to infiltrate the CNS, intensifying MS symptoms. It also examines the involvement of astrocytes, microglia, and oligodendrocytes in the disease's progression. Additionally, the effectiveness of immunomodulatory drugs such as IFN-β and CD20-targeting monoclonal antibodies (e.g., rituximab) in modulating immune responses is reviewed, highlighting their potential to reduce relapse rates and delaying MS progression. These insights emphasize the importance of immune system dysfunction in MS development and progression, guiding the development of new therapeutic strategies. The study underscores recent advancements in understanding MS's molecular pathways, opening avenues for more targeted and effective treatments.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
20
|
Zhang H, Qiao W, Liu R, Shi Z, Sun J, Dong S. Development and validation of a novel biomarker panel for Crohn's disease and rheumatoid arthritis diagnosis and treatment. Aging (Albany NY) 2024; 16:5224-5248. [PMID: 38462694 PMCID: PMC11006481 DOI: 10.18632/aging.205644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Crohn's disease (CD) and rheumatoid arthritis (RA) are immune-mediated inflammatory diseases. However, the molecular mechanisms linking these two diseases remain unclear. METHODS To identify shared core genes between CD and RA, we employed differential gene analysis and the least absolute shrinkage and selection operator (LASSO) algorithm. Functional annotation of these core biomarkers was performed using consensus clustering and gene set enrichment analysis. We also constructed a protein-protein network and a miRNA-mRNA network using multiple databases, and potential therapeutic agents targeting the core biomarkers were predicted. Finally, we confirmed the expression of the genes in the biomarker panel in both CD and RA using quantitative PCR. RESULTS A total of five shared core genes, namely C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif chemokine ligand 9 (CXCL9), aquaporin 9 (AQP9), secreted phosphoprotein 1 (SPP1), and metallothionein 1M (MT1M), were identified as core biomarkers. These biomarkers activate classical pro-inflammatory and immune signaling pathways, influencing immune cell aggregation. Additionally, testosterone was identified as a potential therapeutic agent targeting the biomarkers identified in this study. The expression of genes in the biomarker panel in CD and RA was confirmed through quantitative PCR. CONCLUSION Our study revealed some core genes shared between CD and RA and established a novel biomarker panel with potential implications for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| | - Wenhao Qiao
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| | - Ran Liu
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| | - Zuoxiu Shi
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| | - Jie Sun
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| | - Shuxiao Dong
- Department of Gastroenterology Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250013, China
| |
Collapse
|
21
|
Anika, Singh S, Rimpi. Neuroprotective effects of Embelin in an ethidium bromide-induced multiple sclerosis in rats: Modulation of p38 MAPK signaling pathway. Int Immunopharmacol 2024; 129:111639. [PMID: 38335654 DOI: 10.1016/j.intimp.2024.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a debilitating inflammatory disease characterized by demyelination, varied remyelination conservation, and partial axonal retention in central nervous system (CNS) lesions. The p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in the pathophysiology of MS. Embelin (EMB), derived from the Embelia ribes plant, possesses diverse biological activities, including anti-inflammatory properties. OBJECTIVE This study aimed to investigate the neuroprotective effects of EMB in an ethidium bromide (EB)-induced model of MS in Wistar rats. METHODS Wistar rats were randomly divided into five groups (n = 8). MS-like manifestations were induced by injecting EB (0.1 %/10 µl) into the intracerebropeduncle (ICP) region of the rat brain for seven consecutive days. EMB was administered at doses of 1.25, 2.5, and 5 mg/kg. Behavioral assessments, neuroinflammatory cytokine analysis like tumor necrosis factor-α, interleukin-1-β, interleukin-6 (TNF-α, IL-1β, IL-6), oxidative stress marker measurements malondialdehyde, reduced glutathione, superoxide dismutase (MDA, GSH, SOD), and nitrite (NO), Acetylcholinesterase enzyme (AchE), and neurotransmitter level analysis, dopamine, serotonin, and norepinephrine (DA, 5-HT, and NE) were conducted. RESULTS The study assessed behavioral, neurochemical, biochemical, and neuroinflammatory parameters, along with the modulation of p38 MAPK signaling. EMB administration significantly ameliorated neurological consequences induced by EB, improving motor coordination and gait abnormalities in rats. Furthermore, EMB effectively reduced neuroinflammatory cytokines (TNF-α, IL-1β, IL-6) and oxidative stress markers (AchE, SOD, MDA, GSH, nitrite). Notably, EMB exhibited a modulatory effect on neurotransmitter levels, increasing GABA, DA, and 5-HT, while reducing glutamate in EB-treated groups. CONCLUSION This study demonstrates the neuroprotective potential of EMB against the EB-induced model of MS in rats. EMB administration mitigated neurological impairments, attenuated neuroinflammation, alleviated oxidative stress, and restored neurotransmitter balance. These findings highlight the promise of EMB as a therapeutic candidate for MS treatment, providing insights into its potential mechanism of action involving the modulation of p38 MAPK signaling.
Collapse
Affiliation(s)
- Anika
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Rimpi
- Pharma Innovation Lab, Dept. of Pharmaceutical Sciences &Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India.
| |
Collapse
|
22
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
23
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Plantone D, Pardini M, Righi D, Manco C, Colombo BM, De Stefano N. The Role of TNF-α in Alzheimer's Disease: A Narrative Review. Cells 2023; 13:54. [PMID: 38201258 PMCID: PMC10778385 DOI: 10.3390/cells13010054] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This review analyzes the role of TNF-α and its increase in biological fluids in mild cognitive impairment, and Alzheimer's disease (AD). The potential inhibition of TNF-α with pharmacological strategies paves the way for preventing AD and improving cognitive function in people at risk for dementia. We conducted a narrative review to characterize the evidence in relation to the involvement of TNF-α in AD and its possible therapeutic inhibition. Several studies report that patients with RA and systemic inflammatory diseases treated with TNF-α blocking agents reduce the probability of emerging dementia compared with the general population. Animal model studies also showed interesting results and are discussed. An increasing amount of basic scientific data and clinical studies underscore the importance of inflammatory processes and subsequent glial activation in the pathogenesis of AD. TNF-α targeted therapy is a biologically plausible approach for cognition preservation and further trials are necessary to investigate the potential benefits of therapy in populations at risk of developing AD.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, L.go P. Daneo 3, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Barbara Maria Colombo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| |
Collapse
|
25
|
Barriola S, Delgado-García LM, Cartas-Cejudo P, Iñigo-Marco I, Fernández-Irigoyen J, Santamaría E, López-Mascaraque L. Orosomucoid-1 Arises as a Shared Altered Protein in Two Models of Multiple Sclerosis. Neuroscience 2023; 535:203-217. [PMID: 37949310 DOI: 10.1016/j.neuroscience.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune and neurodegenerative disorder that affects the central nervous system (CNS). It is characterized by a heterogeneous disease course involving demyelination and inflammation. In this study, we utilized two distinct animal models, cuprizone (CPZ)-induced demyelination and experimental autoimmune encephalomyelitis (EAE), to replicate various aspects of the disease. We aimed to investigate the differential CNS responses by examining the proteomic profiles of EAE mice during the peak disease (15 days post-induction) and cuprizone-fed mice during the acute phase (38 days). Specifically, we focused on two different regions of the CNS: the dorsal cortex (Cx) and the entire spinal cord (SC). Our findings revealed varied glial, synaptic, dendritic, mitochondrial, and inflammatory responses within these regions for each model. Notably, we identified a single protein, Orosomucoid-1 (Orm1), also known as Alpha-1-acid glycoprotein 1 (AGP1), that consistently exhibited alterations in both models and regions. This study provides insights into the similarities and differences in the responses of these regions in two distinct demyelinating models.
Collapse
Affiliation(s)
- Sonsoles Barriola
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Ph.D. Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Lina María Delgado-García
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo UNIFESP, São Paulo 04039032, Brazil
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Ignacio Iñigo-Marco
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain.
| |
Collapse
|
26
|
Riaz B, Sohn S. Neutrophils in Inflammatory Diseases: Unraveling the Impact of Their Derived Molecules and Heterogeneity. Cells 2023; 12:2621. [PMID: 37998356 PMCID: PMC10670008 DOI: 10.3390/cells12222621] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Inflammatory diseases involve numerous disorders and medical conditions defined by an insufficient level of self-tolerance. These diseases evolve over the course of a multi-step process through which environmental variables play a crucial role in the emergence of aberrant innate and adaptive immunological responses. According to experimental data accumulated over the past decade, neutrophils play a significant role as effector cells in innate immunity. However, neutrophils are also involved in the progression of numerous diseases through participation in the onset and maintenance of immune-mediated dysregulation by releasing neutrophil-derived molecules and forming neutrophil extracellular traps, ultimately causing destruction of tissues. Additionally, neutrophils have a wide variety of functional heterogeneity with adverse effects on inflammatory diseases. However, the complicated role of neutrophil biology and its heterogeneity in inflammatory diseases remains unclear. Moreover, neutrophils are considered an intriguing target of interventional therapies due to their multifaceted role in a number of diseases. Several approaches have been developed to therapeutically target neutrophils, involving strategies to improve neutrophil function, with various compounds and inhibitors currently undergoing clinical trials, although challenges and contradictions in the field persist. This review outlines the current literature on roles of neutrophils, neutrophil-derived molecules, and neutrophil heterogeneity in the pathogenesis of autoimmune and inflammatory diseases with potential future therapeutic strategies.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
27
|
Doghish AS, Elazazy O, Mohamed HH, Mansour RM, Ghanem A, Faraag AHI, Elballal MS, Elrebehy MA, Elesawy AE, Abdel Mageed SS, Mohammed OA, Nassar YA, Abulsoud AI, Raouf AA, Abdel-Reheim MA, Rashad AA, Elawady AS, Elsisi AM, Alsalme A, Ali MA. The role of miRNAs in multiple sclerosis pathogenesis, diagnosis, and therapeutic resistance. Pathol Res Pract 2023; 251:154880. [PMID: 37832353 DOI: 10.1016/j.prp.2023.154880] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
In recent years, microRNAs (miRNAs) have gained increased attention from researchers around the globe. Although it is twenty nucleotides long, it can modulate several gene targets simultaneously. Their mal expression is a signature of various pathologies, and they provide the foundation to elucidate the molecular mechanisms of each pathology. Among the debilitating central nervous system (CNS) disorders with a growing prevalence globally is the multiple sclerosis (MS). Moreover, the diagnosis of MS is challenging due to the lack of disease-specific biomarkers, and the diagnosis mainly depends on ruling out other disabilities. MS could adversely affect patients' lives through its progression, and only symptomatic treatments are available as therapeutic options, but an exact cure is yet unavailable. Consequently, this review hopes to further the study of the biological features of miRNAs in MS and explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alaa S Elawady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohammed Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Al-Arish, Egypt
| | - Ali Alsalme
- Chemistry Department, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
28
|
Martin SJ, Schneider R. Multiple sclerosis and exercise-A disease-modifying intervention of mice or men? Front Neurol 2023; 14:1190208. [PMID: 37885474 PMCID: PMC10598461 DOI: 10.3389/fneur.2023.1190208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Research suggests that physical exercise can promote an anti-inflammatory and neuroprotective state. If so, increasing or optimizing exercise could be considered a 'disease-modifying intervention' in neuroinflammatory diseases, such as multiple sclerosis (MS). Exercise intervention studies conducted in animal models of MS are promising. Various aerobic and strength training regimes have been shown to delay disease onset and to reduce both the clinical and pathological disease severity in mice. However, fundamental differences between the physiology of animals and humans, the disease states studied, and the timing of exercise intervention are significant. In animal models of MS, most exercise interventions begin before disease initiation and before any clinical sign of disease. In contrast, studies in humans recruit participants on average nearly a decade after diagnosis and often once disability is established. If, as is thought to be the case for disease-modifying treatments, the immunomodulatory effect of exercise decreases with advancing disease duration, current studies may therefore fail to detect the true disease-modifying potential. Clinical studies in early disease cohorts are needed to determine the role of exercise as a disease-modifying intervention for people with MS.
Collapse
Affiliation(s)
- Sarah-Jane Martin
- BARLO MS Center, St. Michael's Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Infection & Immunity, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Raphael Schneider
- BARLO MS Center, St. Michael's Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Fitzsimons S, Muñoz-San Martín M, Nally F, Dillon E, Fashina IA, Strowitzki MJ, Ramió-Torrentà L, Dowling JK, De Santi C, McCoy CE. Inhibition of pro-inflammatory signaling in human primary macrophages by enhancing arginase-2 via target site blockers. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:941-959. [PMID: 37701067 PMCID: PMC10494319 DOI: 10.1016/j.omtn.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
The modulation of macrophage phenotype from a pro-inflammatory to an anti-inflammatory state holds therapeutic potential in the treatment of inflammatory disease. We have previously shown that arginase-2 (Arg2), a mitochondrial enzyme, is a key regulator of the macrophage anti-inflammatory response. Here, we investigate the therapeutic potential of Arg2 enhancement via target site blockers (TSBs) in human macrophages. TSBs are locked nucleic acid antisense oligonucleotides that were specifically designed to protect specific microRNA recognition elements (MREs) in human ARG2 3' UTR mRNA. TSBs targeting miR-155 (TSB-155) and miR-3202 (TSB-3202) MREs increased ARG2 expression in human monocyte-derived macrophages. This resulted in decreased gene expression and cytokine production of TNF-α and CCL2 and, for TSB-3202, in an increase in the anti-inflammatory macrophage marker, CD206. Proteomic analysis demonstrated that a network of pro-inflammatory responsive proteins was modulated by TSBs. In silico bioinformatic analysis predicted that TSB-3202 suppressed upstream pro-inflammatory regulators including STAT-1 while enhancing anti-inflammatory associated proteins. Proteomic data were validated by confirming increased levels of sequestosome-1 and decreased levels of phosphorylated STAT-1 and STAT-1 upon TSB treatment. In conclusion, upregulation of Arg2 by TSBs inhibits pro-inflammatory signaling and is a promising novel therapeutic strategy to modulate inflammatory signaling in human macrophages.
Collapse
Affiliation(s)
- Stephen Fitzsimons
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - María Muñoz-San Martín
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Frances Nally
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Eugene Dillon
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ifeolutembi A. Fashina
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Moritz J. Strowitzki
- Department of General, Visceral & Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Lluís Ramió-Torrentà
- Neuroinflammation and Neurodegeneration Group, Girona Biomedical Research Institute (IDIBGI), CERCA Programme/Generalitat de Catalunya, Salt, Girona, Spain
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| |
Collapse
|
30
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
31
|
Tokarska N, Naniong JMA, Johnston JM, Salapa HE, Muir GD, Levin MC, Popescu BF, Verge VMK. Acute intermittent hypoxia alters disease course and promotes CNS repair including resolution of inflammation and remyelination in the experimental autoimmune encephalomyelitis model of MS. Glia 2023; 71:2045-2066. [PMID: 37132422 DOI: 10.1002/glia.24381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
Remyelination and neurodegeneration prevention mitigate disability in Multiple Sclerosis (MS). We have shown acute intermittent hypoxia (AIH) is a novel, non-invasive and effective therapy for peripheral nerve repair, including remyelination. Thus, we posited AIH would improve repair following CNS demyelination and address the paucity of MS repair treatments. AIH's capacity to enhance intrinsic repair, functional recovery and alter disease course in the experimental autoimmune encephalomyelitis (EAE) model of MS was assessed. EAE was induced by MOG35-55 immunization in C57BL/6 female mice. EAE mice received either AIH (10 cycles-5 min 11% oxygen alternating with 5 min 21% oxygen) or Normoxia (control; 21% oxygen for same duration) once daily for 7d beginning at near peak EAE disease score of 2.5. Mice were followed post-treatment for an additional 7d before assessing histopathology or 14d to examine maintenance of AIH effects. Alterations in histopathological correlates of multiple repair indices were analyzed quantitatively in focally demyelinated ventral lumbar spinal cord areas to assess AIH impacts. AIH begun at near peak disease significantly improved daily clinical scores/functional recovery and associated histopathology relative to Normoxia controls and the former were maintained for at least 14d post-treatment. AIH enhanced correlates of myelination, axon protection and oligodendrocyte precursor cell recruitment to demyelinated areas. AIH also effected a dramatic reduction in inflammation, while polarizing remaining macrophages/microglia toward a pro-repair state. Collectively, this supports a role for AIH as a novel non-invasive therapy to enhance CNS repair and alter disease course following demyelination and holds promise as a neuroregenerative MS strategy.
Collapse
Affiliation(s)
- Nataliya Tokarska
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Justin M A Naniong
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jayne M Johnston
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hannah E Salapa
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gillian D Muir
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael C Levin
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bogdan F Popescu
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
32
|
Gonzalez Caldito N. Role of tumor necrosis factor-alpha in the central nervous system: a focus on autoimmune disorders. Front Immunol 2023; 14:1213448. [PMID: 37483590 PMCID: PMC10360935 DOI: 10.3389/fimmu.2023.1213448] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic immune cytokine that belongs to the TNF superfamily of receptor ligands. The cytokine exists as either a transmembrane or a soluble molecule, and targets two distinct receptors, TNF-α receptor 1 (TNFR1) and TNF-α receptor 2 (TNFR2), which activate different signaling cascades and downstream genes. TNF-α cellular responses depend on its molecular form, targeted receptor, and concentration levels. TNF-α plays a multifaceted role in normal physiology that is highly relevant to human health and disease. In the central nervous system (CNS), this cytokine regulates homeostatic functions, such as neurogenesis, myelination, blood-brain barrier permeability and synaptic plasticity. However, it can also potentiate neuronal excitotoxicity and CNS inflammation. The pleiotropism of TNF-α and its various roles in the CNS, whether homeostatic or deleterious, only emphasizes the functional complexity of this cytokine. Anti-TNF-α therapy has demonstrated effectiveness in treating various autoimmune inflammatory diseases and has emerged as a significant treatment option for CNS autoimmune diseases. Nevertheless, it is crucial to recognize that the effects of this therapeutic target are diverse and complex. Contrary to initial expectations, anti-TNF-α therapy has been found to have detrimental effects in multiple sclerosis. This article focuses on describing the various roles, both physiological and pathological, of TNF-α in the CNS. Additionally, it discusses the specific disease processes that are dependent or regulated by TNF-α and the rationale of its use as a therapeutic target.
Collapse
Affiliation(s)
- Natalia Gonzalez Caldito
- Department of Neurology, Northwestern Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
33
|
Alghibiwi H, Ansari MA, Nadeem A, Algonaiah MA, Attia SM, Bakheet SA, Albekairi TH, Almudimeegh S, Alhamed AS, Shahid M, Alwetaid MY, Alassmrry YA, Ahmad SF. DAPTA, a C-C Chemokine Receptor 5 (CCR5), Leads to the Downregulation of Notch/NF-κB Signaling and Proinflammatory Mediators in CD40 + Cells in Experimental Autoimmune Encephalomyelitis Model in SJL/J Mice. Biomedicines 2023; 11:1511. [PMID: 37371605 DOI: 10.3390/biomedicines11061511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by motor deficits, cognitive impairment, fatigue, pain, and sensory and visual dysfunction. CD40, highly expressed in B cells, plays a significant role in MS pathogenesis. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS has been well established, as well as its relevance in MS patients. This study aimed to evaluate the therapeutic potential of DAPTA, a selective C-C chemokine receptor 5 (CCR5) antagonist in the murine model of MS, and to expand the knowledge of its mechanism of action. Following the induction of EAE, DAPTA was administrated (0.01 mg/kg, i.p.) daily from day 14 to day 42. We investigated the effects of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α in CD40+ spleen B cells using flow cytometry. Furthermore, we also analyzed the effect of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α mRNA expression levels using qRT-PCR in brain tissue. EAE mice treated with DAPTA showed substantial reductions in NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α but an increase in the IκBα of CD40+ B lymphocytes. Moreover, EAE mice treated with DAPTA displayed decreased NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α and but showed increased IκBα mRNA expression levels. This study showed that DAPTA has significant neuroprotective potential in EAE via the downregulation of inflammatory mediators and NF-κB/Notch signaling. Collectively, DAPTA might have potential therapeutic targets for use in MS treatment.
Collapse
Affiliation(s)
- Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed Ali Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
34
|
Fargnoli MC, Bardazzi F, Bianchi L, Dapavo P, Fabbrocini G, Gisondi P, Micali G, Offidani AM, Pellacani G, Skroza N, Angileri RG, Burlando M, Campanati A, Carrera CG, Chiricozzi A, Conti A, Simone CD, Di Lernia V, Errichetti E, Galluzzo M, Guarneri C, Lasagni C, Lembo S, Loconsole F, Megna M, Musumeci ML, Prignano F, Richetta AG, Trovato E, Venturini M, Peris K, Pinton PC. Brodalumab for the Treatment of Moderate-to-Severe Psoriasis: An Expert Delphi Consensus Statement. J Clin Med 2023; 12:jcm12103545. [PMID: 37240650 DOI: 10.3390/jcm12103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Brodalumab is a recombinant, fully human immunoglobulin IgG2 monoclonal antibody specifically targeted against interleukin-17RA that has been approved for the treatment of moderate-to-severe psoriasis in Europe. We developed a Delphi consensus document focused on brodalumab for the treatment of moderate-to-severe psoriasis. Based on published literature and their clinical experience a steering committee drafted 17 statements covering 7 domains specific to the treatment of moderate-to-severe psoriasis with brodalumab. A panel of 32 Italian dermatologists indicated their level of agreement using a 5-point Likert scale (from 1 = "strongly disagree" to 5 = "strongly agree") using an online modified Delphi method. After the first round of voting (32 participants), positive consensus was reached for 15/17 (88.2%) of the proposed statements. Following a face-to-face virtual meeting, the steering committee decided that 5 statements would form "main principles" and 10 statements formed the final list. After a second round of voting, consensus was reached in 4/5 (80%) of the main principles and 8/10 (80%) for consensus statements. The final list of 5 main principles and 10 consensus statements identify key indications specific to the use of brodalumab in the treatment of moderate-to-severe psoriasis in Italy. These statements aid dermatologists in the management of patients with moderate-to-severe psoriasis.
Collapse
Affiliation(s)
- Maria Concetta Fargnoli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- Dermatology Unit, Ospedale San Salvatore, 67100 L'Aquila, Italy
| | - Federico Bardazzi
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola Malpighi, 40126 Bologna, Italy
| | - Luca Bianchi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Dermatology Unit, Azienda Ospedaliera Universitaria "Policlinico Tor Vergata", 00133 Rome, Italy
| | - Paolo Dapavo
- Dermatology Clinic, Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology, Department of Clinical, Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Paolo Gisondi
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37129 Verona, Italy
| | - Giuseppe Micali
- Department of Dermatology, University of Catania, 95123 Catania, Italy
| | - Anna Maria Offidani
- Department of Clinical and Molecular Sciences, Dermatology Unit, Polytechnic Marche University, 60121 Ancona, Italy
| | - Giovanni Pellacani
- Dermatology Clinic, Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza Medical School, Sapienza University of Rome, 00185 Rome, Italy
| | - Nevena Skroza
- Dermatology Unit "D. Innocenzi", Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | | | - Martina Burlando
- Clinica Dermatologica, DissaL, Ospedale Policlinico San Martino-IRCCS, 16132 Genova, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | - Carlo Giovanni Carrera
- Dermatology Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Chiricozzi
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Andrea Conti
- Dermatologic Unit, Department of Surgery, Infermi Hospital, AUSL Romagna, 47923 Rimini, Italy
| | - Clara De Simone
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Vito Di Lernia
- Dermatology Unit, Arcispedale S. Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Enzo Errichetti
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), University of Udine, 33100 Udine, Italy
| | - Marco Galluzzo
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Dermatology Unit, Azienda Ospedaliera Universitaria "Policlinico Tor Vergata", 00133 Rome, Italy
| | - Claudio Guarneri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy
| | - Claudia Lasagni
- Clinica Dermatologica, Dipartimento delle Medicine Specialistiche AOU Policlinico di Modena, 41121 Modena, Italy
| | - Serena Lembo
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84084 Fisciano, Italy
| | - Francesco Loconsole
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy
| | - Matteo Megna
- Section of Dermatology, Department of Clinical, Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | | | - Francesca Prignano
- Department of Health Sciences, Section of Dermatology, University of Florence, 50125 Florence, Italy
| | - Antonio Giovanni Richetta
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00185 Rome, Italy
| | - Emanuele Trovato
- Section of Dermatology, Department of Medical, Surgical and Neurological Science, S. Maria alle Scotte Hospital, University of Siena, 53100 Siena, Italy
| | - Marina Venturini
- Dermatology Department, University of Brescia, 25121 Brescia, Italy
| | - Ketty Peris
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | | |
Collapse
|
35
|
Sanseverino I, Rinaldi AO, Purificato C, Cortese A, Millefiorini E, Gauzzi MC. 1,25(OH) 2D3 Differently Modulates the Secretory Activity of IFN-DC and IL4-DC: A Study in Cells from Healthy Donors and MS Patients. Int J Mol Sci 2023; 24:ijms24076717. [PMID: 37047690 PMCID: PMC10094841 DOI: 10.3390/ijms24076717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Immune mechanisms play an essential role in driving multiple sclerosis (MS) and altered trafficking and/or activation of dendritic cells (DC) were observed in the central nervous system and cerebrospinal fluid of MS patients. Interferon β (IFNβ) has been used as a first-line therapy in MS for almost three decades and vitamin D deficiency is a recognized environmental risk factor for MS. Both IFNβ and vitamin D modulate DC functions. Here, we studied the response to 1,25-dihydoxyvitamin D3 (1,25(OH)2D3) of DC obtained with IFNβ/GM-CSF (IFN-DC) compared to classically derived IL4-DC, in three donor groups: MS patients free of therapy, MS patients undergoing IFNβ therapy, and healthy donors. Except for a decreased CCL2 secretion by IL4-DC from the MS group, no major defects were observed in the 1,25(OH)2D3 response of either IFN-DC or IL4-DC from MS donors compared to healthy donors. However, the two cell models strongly differed for vitamin D receptor level of expression as well as for basal and 1,25(OH)2D3-induced cytokine/chemokine secretion. 1,25(OH)2D3 up-modulated IL6, its soluble receptor sIL6R, and CCL5 in IL4-DC, and down-modulated IL10 in IFN-DC. IFN-DC, but not IL4-DC, constitutively secreted high levels of IL8 and of matrix-metalloproteinase-9, both down-modulated by 1,25(OH)2D3. DC may contribute to MS pathogenesis, but also provide an avenue for therapeutic intervention. 1,25(OH)2D3-induced tolerogenic DC are in clinical trial for MS. We show that the protocol of in vitro DC differentiation qualitatively and quantitatively affects secretion of cytokines and chemokines deeply involved in MS pathogenesis.
Collapse
Affiliation(s)
- Isabella Sanseverino
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Cristina Purificato
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Cortese
- Multiple Sclerosis Center, Sapienza University of Rome, 00161 Rome, Italy
| | | | | |
Collapse
|
36
|
Manjili MH. The adaptation model of immunity: A new insight into aetiology and treatment of multiple sclerosis. Scand J Immunol 2023; 97:e13255. [PMID: 36680379 DOI: 10.1111/sji.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/04/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Current research and drug development for multiple sclerosis (MS) is fully influenced by the self-nonself (SNS) model of immunity, suggesting that breakage of immunological tolerance towards self-antigens expressed in the central nervous system (CNS) is responsible for pathogenesis of MS; thus, immune suppressive drugs are recommended for the management of the disease. However, this model provides incomplete understanding of the causes and pathways involved in the onset and progression of MS and limits our ability to effectively treat this neurological disease. Some pre-clinical and clinical reports have been misunderstood; some others have been underappreciated because of the lack of a theoretical model that can explain them. Also, current immunotherapies are guided according to the models that are not designed to explain the functional outcomes of an immune response. The adaptation model of immunity is proposed to offer a new understanding of the existing data and galvanize a new direction for the treatment of MS. According to this model, the immune system continuously communicates with the CNS through the adaptation receptors (AdRs) and adaptation ligands (AdLs) or co-receptors, signal IV, to support cell growth and neuroplasticity. Alterations in the expression of the neuronal AdRs results in MS by shifting the cerebral inflammatory immune responses from remyelination to demyelination. Therefore, novel therapeutics for MS should be focused on the discovery and targeting of the AdR/AdL axis in the CNS rather than carrying on with immune suppressive interventions.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
37
|
Senol H, Ozgun-Acar O, Dağ A, Eken A, Guner H, Aykut ZG, Topcu G, Sen A. Synthesis and Comprehensive in Vivo Activity Profiling of Olean-12-en-28-ol, 3β-Pentacosanoate in Experimental Autoimmune Encephalomyelitis: A Natural Remyelinating and Anti-Inflammatory Agent. JOURNAL OF NATURAL PRODUCTS 2023; 86:103-118. [PMID: 36598820 PMCID: PMC9887603 DOI: 10.1021/acs.jnatprod.2c00798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Multiple sclerosis (MS) treatment has received much attention, yet there is still no certain cure. We herein investigate the therapeutic effect of olean-12-en-28-ol, 3β-pentacosanoate (OPCA) on a preclinical model of MS. First, OPCA was synthesized semisynthetically and characterized. Then, the mice with MOG35-55-induced experimental autoimmune/allergic encephalomyelitis (EAE) were given OPCA along with a reference drug (FTY720). Biochemical, cellular, and molecular analyses were performed in serum and brain tissues to measure anti-inflammatory and neuroprotective responses. OPCA treatment protected EAE-induced changes in mouse brains maintaining blood-brain barrier integrity and preventing inflammation. Moreover, the protein and mRNA levels of MS-related genes such as HLD-DR1, CCL5, TNF-α, IL6, and TGFB1 were significantly reduced in OPCA-treated mouse brains. Notably, the expression of genes, including PLP, MBP, and MAG, involved in the development and structure of myelin was significantly elevated in OPCA-treated EAE. Furthermore, therapeutic OPCA effects included a substantial reduction in pro-inflammatory cytokines in the serum of treated EAE animals. Lastly, following OPCA treatment, the promoter regions for most inflammatory regulators were hypermethylated. These data support that OPCA is a valuable and appealing candidate for human MS treatment since OPCA not only normalizes the pro- and anti-inflammatory immunological bias but also stimulates remyelination in EAE.
Collapse
Affiliation(s)
- Halil Senol
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ozden Ozgun-Acar
- Seed
Breeding & Genetics Application Research Center, Pamukkale University, 20070 Denizli, Turkey
| | - Aydan Dağ
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ahmet Eken
- Department
of Basic Medical Sciences, Faculty of Medicine, Medical Biology Erciyes University, 38039 Kayseri, Turkey
| | - Hüseyin Guner
- Department
of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul 38080 Kayseri, Turkey
| | | | - Gulacti Topcu
- Department
of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Alaattin Sen
- Department
of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul 38080 Kayseri, Turkey
- Department
of Biology, Faculty of Arts & Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| |
Collapse
|
38
|
De Vito F, Balletta S, Caioli S, Musella A, Guadalupi L, Vanni V, Fresegna D, Bassi MS, Gilio L, Sanna K, Gentile A, Bruno A, Dolcetti E, Buttari F, Pavone L, Furlan R, Finardi A, Perlas E, Hornstein E, Centonze D, Mandolesi G. MiR-142-3p is a Critical Modulator of TNF-mediated Neuronal Toxicity in Multiple Sclerosis. Curr Neuropharmacol 2023; 21:2567-2582. [PMID: 37021418 PMCID: PMC10616916 DOI: 10.2174/1570159x21666230404103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND TNF-dependent synaptotoxicity contributes to the neuronal damage occurring in patients with Multiple Sclerosis (pwMS) and its mouse model Experimental Autoimmune Encephalomyelitis (EAE). Here, we investigated miR-142-3p, a synaptotoxic microRNA induced by inflammation in EAE and MS, as a potential downstream effector of TNF signalling. METHODS Electrophysiological recordings, supported by molecular, biochemical and histochemical analyses, were performed to explore TNF-synaptotoxicity in the striatum of EAE and healthy mice. MiR-142 heterozygous (miR-142 HE) mice and/or LNA-anti miR-142-3p strategy were used to verify the TNF-miR-142-3p axis hypothesis. The cerebrospinal fluid (CSF) of 151 pwMS was analysed to evaluate possible correlation between TNF and miR-142-3p levels and their impact on clinical parameters (e.g. progression index (PI), age-related clinical severity (gARMSS)) and MRI measurements at diagnosis (T0). RESULTS High levels of TNF and miR-142-3p were detected in both EAE striatum and MS-CSF. The TNF-dependent glutamatergic alterations were prevented in the inflamed striatum of EAE miR-142 HE mice. Accordingly, TNF was ineffective in healthy striatal slices incubated with LNA-anti miR- 142-3p. However, both preclinical and clinical data did not validate the TNF-miR-142-3p axis hypothesis, suggesting a permissive neuronal role of miR-142-3p on TNF-signalling. Clinical data showed a negative impact of each molecule on disease course and/or brain lesions and unveiled that their high levels exert a detrimental synergistic effect on disease activity, PI and white matter lesion volume. CONCLUSION We propose miR-142-3p as a critical modulator of TNF-mediated neuronal toxicity and suggest a detrimental synergistic action of these molecules on MS pathology.
Collapse
Affiliation(s)
| | - Sara Balletta
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Rome, Italy
| | - Livia Guadalupi
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | | | - Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Krizia Sanna
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Antonio Bruno
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ettore Dolcetti
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Luigi Pavone
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emerald Perlas
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Scalo, Rome, Italy
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Rome, Italy
| |
Collapse
|
39
|
Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022; 163:S79-S98. [DOI: 10.1097/j.pain.0000000000002737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
|
40
|
Clarkson BDS, Grund E, David K, Johnson RK, Howe CL. ISGylation is induced in neurons by demyelination driving ISG15-dependent microglial activation. J Neuroinflammation 2022; 19:258. [PMID: 36261842 PMCID: PMC9583544 DOI: 10.1186/s12974-022-02618-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
The causes of grey matter pathology and diffuse neuron injury in MS remain incompletely understood. Axonal stress signals arising from white matter lesions has been suggested to play a role in initiating this diffuse grey matter pathology. Therefore, to identify the most upstream transcriptional responses in neurons arising from demyelinated axons, we analyzed the transcriptome of actively translating neuronal transcripts in mouse models of demyelinating disease. Among the most upregulated genes, we identified transcripts associated with the ISGylation pathway. ISGylation refers to the covalent attachment of the ubiquitin-like molecule interferon stimulated gene (ISG) 15 to lysine residues on substrates targeted by E1 ISG15-activating enzyme, E2 ISG15-conjugating enzymes and E3 ISG15-protein ligases. We further confirmed that ISG15 expression is increased in MS cortical and deep gray matter. Upon investigating the functional impact of neuronal ISG15 upregulation, we noted that ISG15 expression was associated changes in neuronal extracellular vesicle protein and miRNA cargo. Specifically, extracellular vesicle-associated miRNAs were skewed toward increased frequency of proinflammatory and neurotoxic miRNAs and decreased frequency of anti-inflammatory and neuroprotective miRNAs. Furthermore, we found that ISG15 directly activated microglia in a CD11b-dependent manner and that microglial activation was potentiated by treatment with EVs from neurons expressing ISG15. Further study of the role of ISG15 and ISGylation in neurons in MS and neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Benjamin D. S. Clarkson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN 55905 USA
| | - Ethan Grund
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XMayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and Mayo Clinic Medical Scientist Training Program, MN 55905 Rochester, USA
| | - Kenneth David
- grid.418935.20000 0004 0436 053XConcordia College, Moorhead, MN USA
| | - Renee K. Johnson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Charles L. Howe
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDivision of Experimental Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XCenter for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
41
|
Anderhalten L, Silva RV, Morr A, Wang S, Smorodchenko A, Saatz J, Traub H, Mueller S, Boehm-Sturm P, Rodriguez-Sillke Y, Kunkel D, Hahndorf J, Paul F, Taupitz M, Sack I, Infante-Duarte C. Different Impact of Gadopentetate and Gadobutrol on Inflammation-Promoted Retention and Toxicity of Gadolinium Within the Mouse Brain. Invest Radiol 2022; 57:677-688. [PMID: 35467573 PMCID: PMC9444290 DOI: 10.1097/rli.0000000000000884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo. MATERIALS AND METHODS Mice at peak of experimental autoimmune encephalomyelitis (EAE; n = 29) and healthy control mice (HC; n = 24) were exposed to a cumulative dose of 20 mmol/kg bodyweight of either gadopentetate dimeglumine or gadobutrol (8 injections of 2.5 mmol/kg over 10 days). Magnetic resonance imaging (7 T) was performed at baseline as well as at day 1, 10, and 40 post final injection (pfi) of GBCAs. Mice were sacrificed after magnetic resonance imaging and brain and blood Gd content was assessed by laser ablation-inductively coupled plasma (ICP)-mass spectrometry (MS) and ICP-MS, respectively. In addition, using chronic organotypic hippocampal slice cultures, Gd-induced neurotoxicity was addressed in living brain tissue ex vivo, both under control or inflammatory (tumor necrosis factor α [TNF-α] at 50 ng/μL) conditions. RESULTS Neuroinflammation promoted a significant decrease in T1 relaxation times after multiple injections of both GBCAs as shown by quantitative T1 mapping of EAE brains compared with HC. This corresponded to higher Gd retention within the EAE brains at 1, 10, and 40 days pfi as determined by laser ablation-ICP-MS. In inflamed cerebellum, in particular in the deep cerebellar nuclei (CN), elevated Gd retention was observed until day 40 after last gadopentetate application (CN: EAE vs HC, 55.06 ± 0.16 μM vs 30.44 ± 4.43 μM). In contrast, gadobutrol application led to a rather diffuse Gd content in the inflamed brains, which strongly diminished until day 40 (CN: EAE vs HC, 0.38 ± 0.08 μM vs 0.17 ± 0.03 μM). The analysis of cytotoxic effects of both GBCAs using living brain tissue revealed an elevated cell death rate after incubation with gadopentetate but not gadobutrol at 50 mM. The cytotoxic effect due to gadopentetate increased in the presence of the inflammatory mediator TNF-α (with vs without TNF-α, 3.15% ± 1.18% vs 2.17% ± 1.14%; P = 0.0345). CONCLUSIONS In the EAE model, neuroinflammation promoted increased Gd retention in the brain for both GBCAs. Whereas in the inflamed brains, efficient clearance of macrocyclic gadobutrol during the investigated time period was observed, the Gd retention after application of linear gadopentetate persisted over the entire observational period. Gadopentetate but not gadubutrol appeared to be neurotoxic in an ex vivo paradigm of neuronal inflammation.
Collapse
Affiliation(s)
- Lina Anderhalten
- From the Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin
| | - Rafaela V. Silva
- From the Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin
- Einstein Center for Neurosciences
| | - Anna Morr
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin
| | - Shuangqing Wang
- From the Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin
| | - Alina Smorodchenko
- Institute for Translational Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg
| | - Jessica Saatz
- Bundesanstalt für Materialforschung und -prüfung, Berlin
| | - Heike Traub
- Bundesanstalt für Materialforschung und -prüfung, Berlin
| | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité–Universitätsmedizin Berlin, Berlin
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité–Universitätsmedizin Berlin, Berlin
| | - Yasmina Rodriguez-Sillke
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Désirée Kunkel
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Julia Hahndorf
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin
| | - Friedemann Paul
- From the Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin
| | - Matthias Taupitz
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin
| | - Ingolf Sack
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin
| | - Carmen Infante-Duarte
- From the Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin
| |
Collapse
|
42
|
Hsueh SC, Scerba MT, Tweedie D, Lecca D, Kim DS, Baig AM, Kim YK, Hwang I, Kim S, Selman WR, Hoffer BJ, Greig NH. Activity of a Novel Anti-Inflammatory Agent F-3,6'-dithiopomalidomide as a Treatment for Traumatic Brain Injury. Biomedicines 2022; 10:2449. [PMID: 36289711 PMCID: PMC9598880 DOI: 10.3390/biomedicines10102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for several neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). Neuroinflammation is a cause of later secondary cell death following TBI, has the potential to aggravate the initial impact, and provides a therapeutic target, albeit that has failed to translate into clinical trial success. Thalidomide-like compounds have neuroinflammation reduction properties across cellular and animal models of TBI and neurodegenerative disorders. They lower the generation of proinflammatory cytokines, particularly TNF-α which is pivotal in microglial cell activation. Unfortunately, thalidomide-like drugs possess adverse effects in humans before achieving anti-inflammatory drug levels. We developed F-3,6'-dithiopomalidomide (F-3,6'-DP) as a novel thalidomide-like compound to ameliorate inflammation. F-3,6'-DP binds to cereblon but does not efficiently trigger the degradation of the transcription factors (SALL4, Ikaros, and Aiolos) associated with the teratogenic and anti-proliferative responses of thalidomide-like drugs. We utilized a phenotypic drug discovery approach that employed cellular and animal models in the selection and development of F-3,6'-DP. F-3,6'-DP significantly mitigated LPS-induced inflammatory markers in RAW 264.7 cells, and lowered proinflammatory cytokine/chemokine levels in the plasma and brain of rats challenged with systemic LPS. We subsequently examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) in mice, a model of moderate TBI known to induce inflammation. F-3,6'-DP decreased CCI-induced neuroinflammation, neuronal loss, and behavioral deficits when administered after TBI. F-3,6'-DP represents a novel class of thalidomide-like drugs that do not lower classical cereblon-associated transcription factors but retain anti-inflammatory actions and possess efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michael T. Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD 20878, USA
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | | | | | - Sun Kim
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
43
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
44
|
Balasa R, Maier S, Hutanu A, Voidazan S, Andone S, Oiaga M, Manu D. Cytokine Secretion Dynamics of Isolated PBMC after Cladribine Exposure in RRMS Patients. Int J Mol Sci 2022; 23:ijms231810262. [PMID: 36142168 PMCID: PMC9499495 DOI: 10.3390/ijms231810262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Cladribine (CLD) treats multiple sclerosis (MS) by selectively and transiently depleting B and T cells with a secondary long-term reconstruction of the immune system. This study provides evidence of CLD’s immunomodulatory role in peripheral blood mononuclear cells (PBMCs) harvested from 40 patients with untreated relapsing-remitting MS (RRMS) exposed to CLD. We quantified cytokine secretion from PBMCs isolated by density gradient centrifugation with Ficoll−Paque using xMAP technology on a FlexMap 3D analyzer with a highly sensitive multiplex immunoassay kit. The PBMC secretory profile was evaluated with and without CLD exposure. PBMCs isolated from patients with RRMS for ≤12 months had significantly higher IL-4 but significantly lower IFN-γ and TNF-α secretion after CLD exposure. PBMCs isolated from patients with RRMS for >12 months had altered inflammatory ratios toward an anti-inflammatory profile and increased IL-4 but decreased TNF-α secretion after CLD exposure. CLD induced nonsignificant changes in IL-17 secretion in both RRMS groups. Our findings reaffirm CLD’s immunomodulatory effect that induces an anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Correspondence:
| | - Adina Hutanu
- Department of Laboratory Medicine, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Laboratory Medicine, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Septimiu Voidazan
- Department of Epidemiology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Mirela Oiaga
- Anaesthesiology and Intensive Care Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
45
|
Juvenile Idiopathic Arthritis, Uveitis and Multiple Sclerosis: Description of Two Patients and Literature Review. Biomedicines 2022; 10:biomedicines10082041. [PMID: 36009588 PMCID: PMC9405697 DOI: 10.3390/biomedicines10082041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in childhood, while multiple sclerosis (MS) is a demyelinating disease of the central nervous system, characterized by remission and exacerbation phases. An association between MS and rheumatologic diseases, in particular rheumatoid arthritis, has been described and numerous studies acknowledge anti-TNF-α drugs as MS triggers. Conversely, the association between MS and JIA has been reported merely in five cases in the literature. We describe two cases of adult patients with longstanding JIA and JIA-associated uveitis, who developed MS. The first patient was on methotrexate and adalimumab when she developed dizziness and nausea. Characteristic MRI lesions and oligoclonal bands in cerebrospinal fluid led to MS diagnosis. Adalimumab was discontinued, and she was treated with three pulses of intravenous methylprednisolone. After a few months, rituximab was started. The second patient had been treated with anti-TNF-α and then switched to abatacept. She complained of unilateral arm and facial paraesthesias; brain MRI showed characteristic lesions, and MS was diagnosed. Three pulses of intravenous methylprednisolone were administered; neurological disease remained stable, and abatacept was reintroduced. Further studies are warranted to define if there is an association between JIA and MS, if MS represents JIA comorbidity or if anti-TNF-α underpins MS development.
Collapse
|
46
|
Pérez Gómez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Serum Cytokines Predict Neurological Damage in Genetically Diverse Mouse Models. Cells 2022; 11:2044. [PMID: 35805128 PMCID: PMC9265636 DOI: 10.3390/cells11132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Viral infections contribute to neurological and immunological dysfunction driven by complex genetic networks. Theiler's murine encephalomyelitis virus (TMEV) causes neurological dysfunction in mice and can model human outcomes to viral infections. Here, we used genetically distinct mice from five Collaborative Cross mouse strains and C57BL/6J to demonstrate how TMEV-induced immune responses in serum may predict neurological outcomes in acute infection. To test the hypothesis that serum cytokine levels can provide biomarkers for phenotypic outcomes of acute disease, we compared cytokine levels at pre-injection, 4 days post-injection (d.p.i.), and 14 d.p.i. Each strain produced unique baseline cytokine levels and had distinct immune responses to the injection procedure itself. Thus, we eliminated the baseline responses to the injection procedure itself and identified cytokines and chemokines induced specifically by TMEV infection. Then, we identified strain-specific longitudinal cytokine profiles in serum during acute disease. Using stepwise regression analysis, we identified serum immune markers predictive for TMEV-induced neurological phenotypes of the acute phase, e.g., IL-9 for limb paralysis; and TNF-α, IL-1β, and MIP-1β for limb weakness. These findings indicate how temporal differences in immune responses are influenced by host genetic background and demonstrate the potential of serum biomarkers to track the neurological effects of viral infection.
Collapse
Affiliation(s)
- Aracely A. Pérez Gómez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Molecular and Cellular Medicine, Texas A & M Health Science Center, Texas A & M University, College Station, TX 77843, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| |
Collapse
|
47
|
Marastoni D, Pisani AI, Schiavi G, Mazziotti V, Castellaro M, Tamanti A, Bosello F, Crescenzo F, Ricciardi GK, Montemezzi S, Pizzini FB, Calabrese M. CSF TNF and osteopontin levels correlate with the response to dimethyl fumarate in early multiple sclerosis. Ther Adv Neurol Disord 2022; 15:17562864221092124. [PMID: 35755969 PMCID: PMC9218430 DOI: 10.1177/17562864221092124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Disease activity in the first years after a diagnosis of relapsing-remitting multiple sclerosis (RRMS) is a negative prognostic factor for long-term disability. Markers of both clinical and radiological responses to disease-modifying therapies (DMTs) are advocated. Objective: The objective of this study is to estimate the value of cerebrospinal fluid (CSF) inflammatory markers at the time of diagnosis in predicting the disease activity in treatment-naïve multiple sclerosis (MS) patients exposed to dimethyl fumarate (DMF). Methods: In total, 48 RRMS patients (31 females/17 males) treated with DMF after the diagnosis were included in this 2-year longitudinal study. All patients underwent a CSF examination, regular clinical and 3T magnetic resonance imaging (MRI) scans that included the assessment of white matter (WM) lesions, cortical lesions (CLs) and global cortical thickness. CSF levels of 10 pro-inflammatory markers – CXCL13 [chemokine (C-X-C motif) ligand 13 or B lymphocyte chemoattractant], CXCL12 (stromal cell-derived factor or C-X-C motif chemokine 12), tumour necrosis factor (TNF), APRIL (a proliferation-inducing ligand, or tumour necrosis factor ligand superfamily member 13), LIGHT (tumour necrosis factor ligand superfamily member 14 or tumour necrosis factor superfamily member 14), interferon (IFN) gamma, interleukin 12 (IL-12), osteopontin, sCD163 [soluble-CD163 (cluster of differentiation 163)] and Chitinase3-like1 – were assessed using immune-assay multiplex techniques. The combined three-domain status of ‘no evidence of disease activity’ (NEDA-3) was defined by no relapses, no disability worsening and no MRI activity, including CLs. Results: Twenty patients (42%) reached the NEDA-3 status; patients with disease activity showed higher CSF TNF (p = 0.009), osteopontin (p = 0.005), CXCL12 (p = 0.037), CXCL13 (p = 0.040) and IFN gamma levels (p = 0.019) compared with NEDA-3 patients. After applying a random forest approach, TNF and osteopontin revealed the most important variables associated with the NEDA-3 status. Six molecules that emerged at the random forest approach were added in a multivariate regression model with demographic, clinical and MRI measures of WM and grey matter damage as independent variables. TNF levels confirmed to be associated with the absence of disease activity: odds ratio (OR) = 0.25, CI% = 0.04–0.77. Conclusion: CSF inflammatory markers may provide prognostic information in predicting disease activity in the first years after DMF initiation. CSF TNF levels are a possible candidate in predicting treatment response, in addition to clinical, demographic and MRI variables.
Collapse
Affiliation(s)
- Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna I Pisani
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gianmarco Schiavi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina Mazziotti
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Castellaro
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Bosello
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, Ocular Immunology and Neuroophthalmology Service, AOUI-University of Verona, Verona, Italy
| | - Francesco Crescenzo
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe K Ricciardi
- Neuroradiology & Radiology Units, Integrated University Hospital of Verona, Verona, Italy
| | - Stefania Montemezzi
- Neuroradiology & Radiology Units, Integrated University Hospital of Verona, Verona, Italy
| | - Francesca B Pizzini
- Radiology, Department of Diagnostic and Public Health, Integrated University Hospital of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico 'G.B. Rossi' Borgo Roma, Piazzale L. A. Scuro, 10, 37134 Verona, Italy
| |
Collapse
|
48
|
Molecular Signature of Neuroinflammation Induced in Cytokine-Stimulated Human Cortical Spheroids. Biomedicines 2022; 10:biomedicines10051025. [PMID: 35625761 PMCID: PMC9138619 DOI: 10.3390/biomedicines10051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Crucial in the pathogenesis of neurodegenerative diseases is the process of neuroinflammation that is often linked to the pro-inflammatory cytokines Tumor necrosis factor alpha (TNFα) and Interleukin-1beta (IL-1β). Human cortical spheroids (hCSs) constitute a valuable tool to study the molecular mechanisms underlying neurological diseases in a complex three-dimensional context. We recently designed a protocol to generate hCSs comprising all major brain cell types. Here we stimulate these hCSs for three time periods with TNFα and with IL-1β. Transcriptomic analysis reveals that the main process induced in the TNFα- as well as in the IL-1β-stimulated hCSs is neuroinflammation. Central in the neuroinflammatory response are endothelial cells, microglia and astrocytes, and dysregulated genes encoding cytokines, chemokines and their receptors, and downstream NFκB- and STAT-pathway components. Furthermore, we observe sets of neuroinflammation-related genes that are specifically modulated in the TNFα-stimulated and in the IL-1β-stimulated hCSs. Together, our results help to molecularly understand human neuroinflammation and thus a key mechanism of neurodegeneration.
Collapse
|
49
|
Creswell R, Dombrowski Y. Innate and adaptive immune mechanisms regulating central nervous system remyelination. Curr Opin Pharmacol 2022; 63:102175. [DOI: 10.1016/j.coph.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
|
50
|
Martire S, Valentino P, Marnetto F, Mirabile L, Capobianco M, Bertolotto A. The impact of pre-freezing storage time and temperature on gene expression of blood collected in EDTA tubes. Mol Biol Rep 2022; 49:4709-4718. [PMID: 35279776 PMCID: PMC9262796 DOI: 10.1007/s11033-022-07320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022]
Abstract
Background Blood is a common source of RNA for gene expression studies. However, it is known to be vulnerable to pre-analytical variables. Although RNA stabilization systems have been shown to reduce such influence, traditional EDTA tubes are still widely used since they are less expensive and enable to study specific leukocyte populations. This study aimed to assess the influence of storage time and temperature between blood sampling and handling on RNA from peripheral blood mononuclear cells (PBMCs). Methods and results Nine blood samples were collected in EDTA tubes from 10 healthy donors. One tube from each donor was immediately processed for PBMC isolation, while the others were first incubated at either 4 degrees Celsius (°C) or room temperature for 2, 4, 6 and 24 h. RNA yield and quality and the expression level of fourt housekeeping (B2M, CASC3, GAPDH, HPRT1) and 8 target genes (CD14, CD19, CD20, IL10, MxA, TNF, TNFAIP3, NR4A2) were compared between samples. RNA yield, quality and integrity did not vary significantly with time and temperature. B2M was the most stable housekeeping gene, while the others were increasingly influenced by storing time, especially at 4 °C. Even when normalized to B2M, the expression level of some target genes, particularly TNFAIP3 and NR4A2, was highly affected by delays in blood processing at either temperature, already from 2 h. Conclusion Pre-analytical processing has a great impact on transcript expression from blood collected in EDTA tubes, especially on genes related to inflammation. Standardized procedure of blood handling are needed to obtain reliable results. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07320-5.
Collapse
Affiliation(s)
- Serena Martire
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy.
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10100, Turin, Italy.
| | - Paola Valentino
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10100, Turin, Italy
| | - Fabiana Marnetto
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10100, Turin, Italy
| | - Luca Mirabile
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
| | - Marco Capobianco
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- SCDO Neurologia and CRESM, University Hospital AOU San Luigi Gonzaga, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Antonio Bertolotto
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- Koelliker Hospital, 10100, Turin, Italy
| |
Collapse
|