1
|
Naseri M, Niazi A, Yazdanipour A, Bagherzadeh K. Recent Advances in Electrochemical Aptasensors for Detection of Clinical and Veterinary Drugs. Crit Rev Anal Chem 2025:1-15. [PMID: 40099928 DOI: 10.1080/10408347.2025.2469781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nowadays, aptamer-based biosensors and electrochemical measurements represent one of the efficient tools for the detection of drugs in both medical and veterinary. Precise trace values analysis of chemicals, especially drugs, plays a crucial role in food and therapeutic safety evaluations that are often time-consuming and costly. Ultimately, accurate determination of therapeutic medications like antibiotics in food, environmental resources, and biological matrices is very important for protecting public health and drug monitoring (TDM) for effective treatment. This review highlights recent advancements in electrochemical aptasensors as an innovative approach offering high sensitivity, specificity, and rapid detection of clinical and veterinary drugs at lower costs. We provide a comprehensive overview of the advancements and discuss the challenges and prospects of electrochemical aptasensing in drug residue detection across various samples.
Collapse
Affiliation(s)
- Masoomeh Naseri
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Niazi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Atisa Yazdanipour
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hu J, Gao D. Recent Advances in Aptamer-Based Microfluidic Biosensors for the Isolation, Signal Amplification and Detection of Exosomes. SENSORS (BASEL, SWITZERLAND) 2025; 25:848. [PMID: 39943486 PMCID: PMC11820184 DOI: 10.3390/s25030848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
Exosomes carry diverse tumor-associated molecular information that can reflect real-time tumor progression, making them a promising tool for liquid biopsy. However, traditional methods for exosome isolation and detection often rely on large, expensive equipment and are time-consuming, limiting their practical applicability in clinical settings. Microfluidic technology offers a versatile platform for exosome analysis, with advantages such as seamless integration, portability and reduced sample volumes. Aptamers, which are single-stranded oligonucleotides with high affinity and specificity for target molecules, have been frequently employed in the development of aptamer-based microfluidics for the isolation, signal amplification, and quantitative detection of exosomes. This review summarizes recent advances in aptamer-based microfluidic strategies for exosome analysis, including (1) strategies for on-chip exosome capture mediated by aptamers combined with nanomaterials or nanointerfaces; (2) aptamer-based on-chip signal amplification techniques, such as enzyme-free hybridization chain reaction (HCR), rolling circle amplification (RCA), and DNA machine-assisted amplification; and (3) various aptamer-assisted detection methods, such as fluorescence, electrochemistry, surface-enhanced Raman scattering (SERS), and magnetism. The limitations and advantages of these methods are also summarized. Finally, future challenges and directions for the clinical analysis of exosomes based on aptamer-based microfluidics are discussed.
Collapse
Affiliation(s)
- Jessica Hu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School and Open FIESTA, Tsinghua University, Shenzhen 518055, China;
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School and Open FIESTA, Tsinghua University, Shenzhen 518055, China;
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China
| |
Collapse
|
3
|
Ansari MA, Verma D, Hamizan MA, Mukherjee MD, Mohd-Naim NF, Ahmed MU. Trends in Aptasensing and the Enhancement of Diagnostic Efficiency and Accuracy. ACS Synth Biol 2025; 14:21-40. [PMID: 39761351 DOI: 10.1021/acssynbio.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The field of healthcare diagnostics is navigating complex challenges driven by evolving patient demographics and the rapid advancement of new technologies worldwide. In response to these challenges, these biosensors offer distinctive advantages over traditional diagnostic methods, such as cost-effectiveness, enhanced specificity, and adaptability, making their integration with point-of-care (POC) platforms more feasible. In recent years, aptasensors have significantly evolved in diagnostic capabilities through the integration of emerging technologies such as microfluidics, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems, wearable devices, and machine learning (ML), driving progress in precision medicine and global healthcare solutions. Moreover, these advancements not only improve diagnostic accuracy but also hold the potential to revolutionize early detection, reduce healthcare costs, and improve patient outcomes, especially in resource-limited settings. This Account examines key advancements, focusing on how scientific breakthroughs, including artificial intelligence (AI), have improved sensitivity and precision. Additionally, the integration of aptasensors with these technologies has enabled real-time monitoring and data analysis, fostering advances in personalized healthcare. Furthermore, the potential commercialization of aptasensor technologies could increase their availability in clinical settings and support their use as widespread solutions for global health challenges. Hence, this review discusses technological improvements, practical uses, and prospects while also focusing on the challenges surrounding standardization, clinical validation, and interdisciplinary collaboration for widespread application. Finally, ongoing efforts to address these challenges are key to ensure that aptasensors can be effectively implemented in diverse healthcare systems.
Collapse
Affiliation(s)
- Mohd Afaque Ansari
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Damini Verma
- Centre For Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Mohd-Akmal Hamizan
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, BE 1410, Brunei Darussalam
| | - Maumita Das Mukherjee
- Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Noor Faizah Mohd-Naim
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, BE 1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| |
Collapse
|
4
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Lafi Z, Gharaibeh L, Nsairat H, Asha N, Alshaer W. Aptasensors: employing molecular probes for precise medical diagnostics and drug monitoring. Bioanalysis 2023; 15:1439-1460. [PMID: 37847048 DOI: 10.4155/bio-2023-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Accurate detection and monitoring of therapeutic drug levels are vital for effective patient care and treatment management. Aptamers, composed of single-stranded DNA or RNA molecules, are integral components of biosensors designed for both qualitative and quantitative detection of biological samples. Aptasensors play crucial roles in target identification, validation, detection of drug-target interactions and screening potential of drug candidates. This review focuses on the pivotal role of aptasensors in early disease detection, particularly in identifying biomarkers associated with various diseases such as cancer, infectious diseases and cardiovascular disorders. Aptasensors have demonstrated exceptional potential in enhancing disease diagnostics and monitoring therapeutic drug levels. Aptamer-based biosensors represent a transformative technology in the field of healthcare, enabling precise diagnostics, drug monitoring and disease detection.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nisreen Asha
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
6
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
7
|
Kizilkurtlu AA, Demirbas E, Agel HE. Electrochemical aptasensors for pathogenic detection toward point-of-care diagnostics. Biotechnol Appl Biochem 2023; 70:1460-1479. [PMID: 37277950 DOI: 10.1002/bab.2485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/20/2023] [Indexed: 06/07/2023]
Abstract
A biosensor system refers to a biomedical device, which detects biological, chemical, or biochemical components by converting those signals to an electrical signal by utilizing and uniting physical or chemical transducer with biorecognition elements. An electrochemical biosensor is generally based on the reaction of either production or consumption of electrons under a three-electrode system. Biosensor systems are exploited in a wide range of areas, such as medicine, agriculture, husbandry, food, industry, environment protection, quality control, waste disposal, and the military. Pathogenic infections are the third leading cause of death worldwide after cardiovascular diseases and cancer. Therefore, there is an urgent need for effective diagnostic tools to control food, water, and soil contamination result in protecting human life and health. Aptamers are peptide or oligonucleotide-based molecules that show very high affinity to their targets that are produced from large pools of random amino acid or oligonucleotide sequences. Generally, aptamers have been utilized for fundamental sciences and clinical implementations for their target-specific affinity and have been intensely exploited for different kinds of biosensor applications for approximately 30 years. The convergence of aptamers with biosensor systems enabled the construction of voltammetric, amperometric, and impedimetric biosensors for the detection of specific pathogens. In this review, electrochemical aptamer biosensors were evaluated by discussing the definition, types, and production techniques of aptamers, the advantages of aptamers as a biological recognition element against their alternatives, and a wide range of aptasensor examples from literature in the detection of specific pathogens.
Collapse
Affiliation(s)
| | - Erhan Demirbas
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hatice Esra Agel
- BioNano Functional Materials Technologies Research Group TÜBİTAK - Marmara Research Center, Gebze, Kocaeli, Turkey
| |
Collapse
|
8
|
Kara N, Ayoub N, Ilgu H, Fotiadis D, Ilgu M. Aptamers Targeting Membrane Proteins for Sensor and Diagnostic Applications. Molecules 2023; 28:molecules28093728. [PMID: 37175137 PMCID: PMC10180177 DOI: 10.3390/molecules28093728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Many biological processes (physiological or pathological) are relevant to membrane proteins (MPs), which account for almost 30% of the total of human proteins. As such, MPs can serve as predictive molecular biomarkers for disease diagnosis and prognosis. Indeed, cell surface MPs are an important class of attractive targets of the currently prescribed therapeutic drugs and diagnostic molecules used in disease detection. The oligonucleotides known as aptamers can be selected against a particular target with high affinity and selectivity by iterative rounds of in vitro library evolution, known as Systematic Evolution of Ligands by EXponential Enrichment (SELEX). As an alternative to antibodies, aptamers offer unique features like thermal stability, low-cost, reuse, ease of chemical modification, and compatibility with various detection techniques. Particularly, immobilized-aptamer sensing platforms have been under investigation for diagnostics and have demonstrated significant value compared to other analytical techniques. These "aptasensors" can be classified into several types based on their working principle, which are commonly electrochemical, optical, or mass-sensitive. In this review, we review the studies on aptamer-based MP-sensing technologies for diagnostic applications and have included new methodological variations undertaken in recent years.
Collapse
Affiliation(s)
- Nilufer Kara
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Nooraldeen Ayoub
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Huseyin Ilgu
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Muslum Ilgu
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
9
|
Mehrannia L, Khalilzadeh B, Rahbarghazi R, Milani M, Saydan Kanberoglu G, Yousefi H, Erk N. Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection. BIOSENSORS 2023; 13:216. [PMID: 36831982 PMCID: PMC9954029 DOI: 10.3390/bios13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Listeria monocytogenes (L.M.) is a gram-positive bacillus with wide distribution in the environment. This bacterium contaminates water sources and food products and can be transmitted to the human population. The infection caused by L.M. is called listeriosis and is common in pregnant women, immune-deficient patients, and older adults. Based on the released statistics, listeriosis has a high rate of hospitalization and mortality; thus, rapid and timely detection of food contamination and listeriosis cases is necessary. During the last few decades, biosensors have been used for the detection and monitoring of varied bacteria species. These devices are detection platforms with great sensitivity and low detection limits. Among different types of biosensors, electrochemical biosensors have a high capability to circumvent several drawbacks associated with the application of conventional laboratory techniques. In this review article, different electrochemical biosensor types used for the detection of listeriosis were discussed in terms of actuators, bioreceptors, specific working electrodes, and signal amplification. We hope that this review will facilitate researchers to access a complete and comprehensive template for pathogen detection based on the different formats of electrochemical biosensors.
Collapse
Affiliation(s)
- Leila Mehrannia
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | | | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy 58167-53464, Iran
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| |
Collapse
|
10
|
Waifalkar PP, Noh D, Derashri P, Barage S, Oh E. Role of Estradiol Hormone in Human Life and Electrochemical Aptasensing of 17β-Estradiol: A Review. BIOSENSORS 2022; 12:1117. [PMID: 36551086 PMCID: PMC9776368 DOI: 10.3390/bios12121117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Estradiol is known as one of the most potent estrogenic endocrine-disrupting chemicals (EDCs) that may cause various health implications on human growth, metabolism regulation, the reproduction system, and possibly cancers. The detection of these EDCs in our surroundings, such as in foods and beverages, is important to prevent such harmful effects on humans. Aptamers are a promising class of bio-receptors for estradiol detection due to their chemical stability and high affinity. With the development of aptamer technology, electrochemical aptasensing became an important tool for estradiol detection. This review provides detailed information on various technological interventions in electrochemical estradiol detection in solutions and categorized the aptasensing mechanisms, aptamer immobilization strategies, and electrode materials. Moreover, we also discussed the role of estradiol in human physiology and signaling mechanisms. The level of estradiol in circulation is associated with normal and diseased conditions. The aptamer-based electrochemical sensing techniques are powerful and sensitive for estradiol detection.
Collapse
Affiliation(s)
- P. P. Waifalkar
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daegwon Noh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Poorva Derashri
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
| | - Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
- Centre for Computational Biology and Translational Research, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
| | - Eunsoon Oh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
11
|
Murugappan K, Sundaramoorthy U, Damry AM, Nisbet DR, Jackson CJ, Tricoli A. Electrodetection of Small Molecules by Conformation-Mediated Signal Enhancement. JACS AU 2022; 2:2481-2490. [PMID: 36465535 PMCID: PMC9709943 DOI: 10.1021/jacsau.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical biosensors allow the rapid, selective, and sensitive transduction of critical biological parameters into measurable signals. However, current electrochemical biosensors often fail to selectively and sensitively detect small molecules because of their small size and low molecular complexity. We have developed an electrochemical biosensing platform that harnesses the analyte-dependent conformational change of highly selective solute-binding proteins to amplify the redox signal generated by analyte binding. Using this platform, we constructed and characterized two biosensors that can sense leucine and glycine, respectively. We show that these biosensors can selectively and sensitively detect their targets over a wide range of concentrations-up to 7 orders of magnitude-and that the selectivity of these sensors can be readily altered by switching the bioreceptor's binding domain. Our work represents a new paradigm for the design of a family of modular electrochemical biosensors, where access to electrode surfaces can be controlled by protein conformational changes.
Collapse
Affiliation(s)
- Krishnan Murugappan
- Nanotechnology
Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT2601, Australia
- CSIRO,
Mineral Resources, Private
Bag 10, Clayton South, VIC3169, Australia
| | | | - Adam M. Damry
- Research
School of Chemistry, The Australian National
University, Canberra, ACT2601, Australia
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ONK1N 6N5, Canada
| | - David R. Nisbet
- Laboratory
of Advanced Biomaterials, Research School of Chemistry and the John
Curtin School of Medical Research, The Australian
National University, Canberra, ACT2601, Australia
- The Graeme
Clark Institute, The University of Melbourne, Melbourne, VIC3010, Australia
- Department
of Biomedical Engineering, Faculty of Engineering and Information
Technology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Colin J. Jackson
- Research
School of Chemistry, The Australian National
University, Canberra, ACT2601, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Research School of Chemistry, The Australian National University, Canberra, ACT2601, Australia
- Australian
Research Council Centre of Excellence in Synthetic Biology, Research
School of Chemistry, The Australian National
University, Canberra, ACT2601, Australia
| | - Antonio Tricoli
- Nanotechnology
Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT2601, Australia
- Nanotechnology
Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW2006, Australia
| |
Collapse
|
12
|
Onaş AM, Dascălu C, Raicopol MD, Pilan L. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. BIOSENSORS 2022; 12:816. [PMID: 36290952 PMCID: PMC9599214 DOI: 10.3390/bios12100816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nucleic-acid aptamers consisting in single-stranded DNA oligonucleotides emerged as very promising biorecognition elements for electrochemical biosensors applied in various fields such as medicine, environmental, and food safety. Despite their outstanding features, such as high-binding affinity for a broad range of targets, high stability, low cost and ease of modification, numerous challenges had to be overcome from the aptamer selection process on the design of functioning biosensing devices. Moreover, in the case of small molecules such as metabolites, toxins, drugs, etc., obtaining efficient binding aptamer sequences proved a challenging task given their small molecular surface and limited interactions between their functional groups and aptamer sequences. Thus, establishing consistent evaluation standards for aptamer affinity is crucial for the success of these aptamers in biosensing applications. In this context, this article will give an overview on the thermodynamic and structural aspects of the aptamer-target interaction, its specificity and selectivity, and will also highlight the current methods employed for determining the aptamer-binding affinity and the structural characterization of the aptamer-target complex. The critical aspects regarding the generation of aptamer-modified electrodes suitable for electrochemical sensing, such as appropriate bioreceptor immobilization strategy and experimental conditions which facilitate a convenient anchoring and stability of the aptamer, are also discussed. The review also summarizes some effective small molecule aptasensing platforms from the recent literature.
Collapse
Affiliation(s)
- Andra Mihaela Onaş
- Advanced Polymer Materials Group, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Constanţa Dascălu
- Faculty of Applied Sciences, University ‘Politehnica’ of Bucharest, 313 Splaiul Independenţei, District 6, 060042 Bucharest, Romania
| | - Matei D. Raicopol
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Luisa Pilan
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| |
Collapse
|
13
|
Yousef H, Liu Y, Zheng L. Nanomaterial-Based Label-Free Electrochemical Aptasensors for the Detection of Thrombin. BIOSENSORS 2022; 12:bios12040253. [PMID: 35448312 PMCID: PMC9025199 DOI: 10.3390/bios12040253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 05/06/2023]
Abstract
Thrombin plays a central role in hemostasis and its imbalances in coagulation can lead to various pathologies. It is of clinical significance to develop a fast and accurate method for the quantitative detection of thrombin. Electrochemical aptasensors have the capability of combining the specific selectivity from aptamers with the extraordinary sensitivity from electrochemical techniques and thus have attracted considerable attention for the trace-level detection of thrombin. Nanomaterials and nanostructures can further enhance the performance of thrombin aptasensors to achieve high sensitivity, selectivity, and antifouling functions. In highlighting these material merits and their impacts on sensor performance, this paper reviews the most recent advances in label-free electrochemical aptasensors for thrombin detection, with an emphasis on nanomaterials and nanostructures utilized in sensor design and fabrication. The performance, advantages, and limitations of those aptasensors are summarized and compared according to their material structures and compositions.
Collapse
Affiliation(s)
- Hibba Yousef
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Lianxi Zheng
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
14
|
Biosensors as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188726. [DOI: 10.1016/j.bbcan.2022.188726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
15
|
Divya, Dkhar DS, Kumari R, Mahapatra S, Kumar R, Chandra P. Ultrasensitive Aptasensors for the Detection of Viruses Based on Opto-Electrochemical Readout Systems. BIOSENSORS 2022; 12:81. [PMID: 35200341 PMCID: PMC8869721 DOI: 10.3390/bios12020081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 05/14/2023]
Abstract
Viral infections are becoming the foremost driver of morbidity, mortality and economic loss all around the world. Treatment for diseases associated to some deadly viruses are challenging tasks, due to lack of infrastructure, finance and availability of rapid, accurate and easy-to-use detection methods or devices. The emergence of biosensors has proven to be a success in the field of diagnosis to overcome the challenges associated with traditional methods. Furthermore, the incorporation of aptamers as bio-recognition elements in the design of biosensors has paved a way towards rapid, cost-effective, and specific detection devices which are insensitive to changes in the environment. In the last decade, aptamers have emerged to be suitable and efficient biorecognition elements for the detection of different kinds of analytes, such as metal ions, small and macro molecules, and even cells. The signal generation in the detection process depends on different parameters; one such parameter is whether the labelled molecule is incorporated or not for monitoring the sensing process. Based on the labelling, biosensors are classified as label or label-free; both have their significant advantages and disadvantages. Here, we have primarily reviewed the advantages for using aptamers in the transduction system of sensing devices. Furthermore, the labelled and label-free opto-electrochemical aptasensors for the detection of various kinds of viruses have been discussed. Moreover, numerous globally developed aptasensors for the sensing of different types of viruses have been illustrated and explained in tabulated form.
Collapse
Affiliation(s)
| | | | | | | | | | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; (D.); (D.S.D.); (R.K.); (S.M.); (R.K.)
| |
Collapse
|
16
|
Hasandka A, Singh AR, Prabhu A, Singhal HR, Nandagopal MSG, Mani NK. Paper and thread as media for the frugal detection of urinary tract infections (UTIs). Anal Bioanal Chem 2022; 414:847-865. [PMID: 34668042 PMCID: PMC8724062 DOI: 10.1007/s00216-021-03671-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Urinary tract infections (UTIs) make up a significant proportion of the global burden of disease in vulnerable groups and tend to substantially impair the quality of life of those affected, making timely detection of UTIs a priority for public health. However, economic and societal barriers drastically reduce accessibility of traditional lab-based testing methods for critical patient groups in low-resource areas, negatively affecting their overall healthcare outcomes. As a result, cellulose-based materials such as paper and thread have garnered significant interest among researchers as substrates for so-called frugal analytical devices which leverage the material's portability and adaptability for facile and reproducible diagnoses of UTIs. Although the field may be only in its infancy, strategies aimed at commercial penetration can appreciably increase access to more healthcare options for at-risk people. In this review, we catalogue recent advances in devices that use cellulose-based materials as the primary housing or medium for UTI detection and chart out trends in the field. We also explore different modalities employed for detection, with particular emphasis on their ability to be ported onto discreet casings such as sanitary products.
Collapse
Affiliation(s)
- Amrutha Hasandka
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ankita Ramchandran Singh
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anusha Prabhu
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Hardik Ramesh Singhal
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - M S Giri Nandagopal
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
17
|
Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Sagadevan S, Shahnavaz Z, Simarani K, Johan MR. Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: Advances, challenges, and opportunities. Crit Rev Clin Lab Sci 2021; 59:156-177. [PMID: 34851806 DOI: 10.1080/10408363.2021.1997898] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Clinical diagnostic tests should be quick, reliable, simple to perform, and affordable for diagnosis and treatment of diseases. In this regard, owing to their novel properties, biosensors have attracted the attention of scientists as well as end-users. They are efficient, stable, and relatively cheap. Biosensors have broad applications in medical diagnosis, including point-of-care (POC) monitoring, forensics, and biomedical research. The electrochemical nucleic acid (NA) biosensor, the latest invention in this field, combines the sensitivity of electroanalytical methods with the inherent bioselectivity of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The NA biosensor exploits the affinity of single-stranded DNA/RNA for its complementary strand and is used to detect complementary sequences of NA based on hybridization. After the NA component in the sensor detects the analyte, a catalytic reaction or binding event that generates an electrical signal in the transducer ensues. Since 2000, much progress has been made in this field, but there are still numerous challenges. This critical review describes the advances, challenges, and prospects of NA-based electrochemical biosensors for clinical diagnosis. It includes the basic principles, classification, sensing enhancement strategies, and applications of biosensors as well as their advantages, limitations, and future prospects, and thus it should be useful to academics as well as industry in the improvement and application of EC NA biosensors.
Collapse
Affiliation(s)
- Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia.,Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Ab Rahman Marlinda
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia.,Department of Chemistry, Jagannath University, Dhaka, Bangladesh
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Zohreh Shahnavaz
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Department of Microbiology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Rahimpour E, Lotfipour F, Jouyban A. A minireview on nanoparticle-based sensors for the detection of coronaviruses. Bioanalysis 2021; 13:1837-1850. [PMID: 34463130 PMCID: PMC8407278 DOI: 10.4155/bio-2021-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoVs) are a class of viruses that cause respiratory tract infections in birds and mammals. Severe acute respiratory syndrome and Middle East respiratory syndrome are pathogenic human viruses. The ongoing coronavirus causing a pandemic of COVID-19 is a recently identified virus from this group. The first step in the control of spreading the disease is to detect and quarantine infected subjects. Consequently, the introduction of rapid and reliable detection methods for CoVs is crucial. To date, several methods were reported for the detection of coronaviruses. Nanoparticles play an important role in detection tools, thanks to their high surface-to-volume ratio and exclusive optical property enables the development of susceptible analytical nanoparticle-based sensors. The studies performed on using nanoparticles-based (mainly gold) sensors to detect CoVs in two categories of optical and electrochemical were reviewed here. Details of each reported sensor and its relevant analytical parameters are carefully provided and explained.
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Food & Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Farzaneh Lotfipour
- Food & Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Biotecnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Faculty of Pharmacy, Near East University, PO box 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
19
|
Tanaka Y, Khoo EH, Salleh NABM, Teo SL, Ow SY, Sutarlie L, Su X. A portable SERS sensor for pyocyanin detection in simulated wound fluid and through swab sampling. Analyst 2021; 146:6924-6934. [PMID: 34647550 DOI: 10.1039/d1an01360b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A portable surface-enhanced Raman spectroscopy (SERS) sensor for detecting pyocyanin (PYO) in simulated wound fluid and from bacteria samples was developed. Solution-phase SERS detection protocols are designed to be compatible with two different clinical practices for wound exudate collection, namely negative pressure liquid collection and swabbing. For citrate-coated metal nanoparticles of three different compositions, i.e. gold (AuNPs), alloyed silver/gold (AgAuNPs), and silver (AgNPs), we firstly confirmed their interaction with PYO in the complex wound fluid, using fluorescence quenching experiments, which rationalized the Raman enhancement effects. We then demonstrated the Raman enhancement effects of the metal nanoparticles in the order of AgNPs > AgAuNPs > AuNPs. The limit of detection (LOD) achieved for PYO is 1.1 μM (in a linear range of 0.1-25 μM by the AgNPs), 10.9 μM (in a linear range of 5-100 μM, by the AgAuNPs), and 17.7 μM (in a linear range of 10-100 μM by the AuNPs). The AgNP and AgAuNP sensors together cover the sensitivity and dynamic range requirements for the clinical detection of wound infection, where PYO is present at a concentration of 1-50 μM. In addition, sterilized cotton swabs were used to collect wound fluid and transfer samples into AgNP solution for SERS measurements. This detection protocol was completed within 5 minutes with a LOD of 23.1 μM (in a linear range of 15-100 μM). The SERS sensing protocol was validated by its successful detection of PYO in cultured Pseudomonas aeruginosa bacteria. The findings presented in this work pave the way towards point-of-care diagnostics of wound infections.
Collapse
Affiliation(s)
- Yuki Tanaka
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | - Eng Huat Khoo
- Institute of High Performance Computing, Electronics and Photonics Department, 1 Fusionopolis Way, Connexis North, #16-16, Singapore 138632
| | - Nur Asinah Binte Mohamed Salleh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | - Siew Lang Teo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | - Sian Yang Ow
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | - Laura Sutarlie
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | - Xiaodi Su
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634. .,Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore 117543.
| |
Collapse
|
20
|
Vandghanooni S, Sanaat Z, Farahzadi R, Eskandani M, Omidian H, Omidi Y. Recent progress in the development of aptasensors for cancer diagnosis: Focusing on aptamers against cancer biomarkers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Subjakova V, Oravczova V, Tatarko M, Hianik T. Advances in electrochemical aptasensors and immunosensors for detection of bacterial pathogens in food. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Thakur A, Ke X, Chen YW, Motallebnejad P, Zhang K, Lian Q, Chen HJ. The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics. Protein Cell 2021; 13:631-654. [PMID: 34374936 PMCID: PMC9233731 DOI: 10.1007/s13238-021-00863-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) are tiny biological nanovesicles ranging from approximately 30-1000 nm in diameter that are released into the extracellular matrix of most cell types and in biofluids. The classification of EVs includes exosomes, microvesicles, and apoptotic bodies, dependent on various factors such as size, markers, and biogenesis pathways. The transition of EV relevance from that of being assumed as a trash bag to be a key player in critical physiological and pathological conditions has been revolutionary in many ways. EVs have been recently revealed to play a crucial role in stem cell biology and cancer progression via intercellular communication, contributing to organ development and the progression of cancer. This review focuses on the significant research progress made so far in the role of the crosstalk between EVs and stem cells and their niche, and cellular communication among different germ layers in developmental biology. In addition, it discusses the role of EVs in cancer progression and their application as therapeutic agents or drug delivery vehicles. All such discoveries have been facilitated by tremendous technological advancements in EV-associated research, especially the microfluidics systems. Their pros and cons in the context of characterization of EVs are also extensively discussed in this review. This review also deliberates the role of EVs in normal cell processes and disease conditions, and their application as a diagnostic and therapeutic tool. Finally, we propose future perspectives for EV-related research in stem cell and cancer biology.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Xiaoshan Ke
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Ya-Wen Chen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Stem Cell Biology and Regenerative Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pedram Motallebnejad
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Kui Zhang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. .,HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA. .,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
23
|
Khalil I, Hashem A, Nath AR, Muhd Julkapli N, Yehye WA, Basirun WJ. DNA/Nano based advanced genetic detection tools for authentication of species: Strategies, prospects and limitations. Mol Cell Probes 2021; 59:101758. [PMID: 34252563 DOI: 10.1016/j.mcp.2021.101758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Authentication, detection and quantification of ingredients, and adulterants in food, meat, and meat products are of high importance these days. The conventional techniques for the detection of meat species based on lipid, protein and DNA biomarkers are facing challenges due to the poor selectivity, sensitivity and unsuitability for processed food products or complex food matrices. On the other hand, DNA based molecular techniques and nanoparticle based DNA biosensing strategies are gathering huge attention from the scientific communities, researchers and are considered as one of the best alternatives to the conventional strategies. Though nucleic acid based molecular techniques such as PCR and DNA sequencing are getting greater successes in species detection, they are still facing problems from its point-of-care applications. In this context, nanoparticle based DNA biosensors have gathered successes in some extent but not to a satisfactory stage to mark with. In recent years, many articles have been published in the area of progressive nucleic acid-based technologies, however there are very few review articles on DNA nanobiosensors in food science and technology. In this review, we present the fundamentals of DNA based molecular techniques such as PCR, DNA sequencing and their applications in food science. Moreover, the in-depth discussions of different DNA biosensing strategies or more specifically electrochemical and optical DNA nanobiosensors are presented. In addition, the significance of DNA nanobiosensors over other advanced detection technologies is discussed, focusing on the deficiencies, advantages as well as current challenges to ameliorate with the direction for future development.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Healthcare Pharmaceuticals Ltd., Rajendrapur, Gazipur, Bangladesh
| | - Abu Hashem
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Amit R Nath
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, China
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wageeh A Yehye
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Jeffrey Basirun
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Chemistry, Universiti Malaya, Malaysia
| |
Collapse
|
24
|
Pankratova N, Jović M, Pfeifer ME. Electrochemical sensing of blood proteins for mild traumatic brain injury (mTBI) diagnostics and prognostics: towards a point-of-care application. RSC Adv 2021; 11:17301-17319. [PMID: 34094508 PMCID: PMC8114542 DOI: 10.1039/d1ra00589h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic Brain Injury (TBI) being one of the principal causes of death and acquired disability in the world imposes a large burden on the global economy. Mild TBI (mTBI) is particularly challenging to assess due to the frequent lack of well-pronounced post-injury symptoms. However, if left untreated mTBI (especially when repetitive) can lead to serious long-term implications such as cognitive and neuropathological disorders. Computer tomography and magnetic resonance imaging commonly used for TBI diagnostics require well-trained personnel, are costly, difficult to adapt for on-site measurements and are not always reliable in identifying small brain lesions. Thus, there is an increasing demand for sensitive point-of-care (POC) testing tools in order to aid mTBI diagnostics and prediction of long-term effects. Biomarker quantification in body fluids is a promising basis for POC measurements, even though establishing a clinically relevant mTBI biomarker panel remains a challenge. Actually, a minimally invasive, rapid and reliable multianalyte detection device would allow the efficient determination of injury biomarker release kinetics and thus support the preclinical evaluation and clinical validation of a proposed biomarker panel for future decentralized in vitro diagnostics. In this respect electrochemical biosensors have recently attracted great attention and the present article provides a critical study on the electrochemical protocols suggested in the literature for detection of mTBI-relevant protein biomarkers. The authors give an overview of the analytical approaches for transduction element functionalization, review recent technological advances and highlight the key challenges remaining in view of an eventual integration of the proposed concepts into POC diagnostic solutions.
Collapse
Affiliation(s)
- Nadezda Pankratova
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Milica Jović
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Marc E Pfeifer
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| |
Collapse
|
25
|
Melinte G, Selvolini G, Cristea C, Marrazza G. Aptasensors for lysozyme detection: Recent advances. Talanta 2021; 226:122169. [PMID: 33676711 DOI: 10.1016/j.talanta.2021.122169] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Lysozyme is an enzyme existing in multiple organisms where it plays various vital roles. The most important role is its antibacterial activity in the human body; in fact, it is also called "the body's own antibiotic". Despite its proven utility, lysozyme can potentially trigger allergic reactions in sensitive individuals, even in trace amounts. Therefore, lysozyme determination in foods is becoming of paramount importance. Traditional detection methods are expensive, time-consuming and they cannot be applied for fast in-situ quantification. Electrochemical and optical sensors have attracted an increasing attention due to their versatility and ability to reduce the disadvantages of traditional methods. Using an aptamer as the bioreceptor, the sensor selectivity is amplified due to the specific recognition of the analyte. This review is presenting the progresses made in lysozyme determination by means of electrochemical and optical aptasensors in the last five years. A critical overview on the methodologies employed for aptamer immobilization and on the strategies for signal amplification of the assays will be described. Different optical and electrochemical aptasensors will be discussed and compared in terms of analytical performances, versatility and real samples applications.
Collapse
Affiliation(s)
- Gheorghe Melinte
- "Ugo Schiff" Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI), 50019, Italy; Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Strada Louis Pasteur 4, Cluj-Napoca, 400349, Romania
| | - Giulia Selvolini
- "Ugo Schiff" Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI), 50019, Italy
| | - Cecilia Cristea
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Strada Louis Pasteur 4, Cluj-Napoca, 400349, Romania.
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI), 50019, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale Delle Medaglie D'Oro 305, 00136 Roma, Italy.
| |
Collapse
|
26
|
Ziółkowski R, Jarczewska M, Górski Ł, Malinowska E. From Small Molecules Toward Whole Cells Detection: Application of Electrochemical Aptasensors in Modern Medical Diagnostics. SENSORS (BASEL, SWITZERLAND) 2021; 21:724. [PMID: 33494499 PMCID: PMC7866209 DOI: 10.3390/s21030724] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
This paper focuses on the current state of art as well as on future trends in electrochemical aptasensors application in medical diagnostics. The origin of aptamers is presented along with the description of the process known as SELEX. This is followed by the description of the broad spectrum of aptamer-based sensors for the electrochemical detection of various diagnostically relevant analytes, including metal cations, abused drugs, neurotransmitters, cancer, cardiac and coagulation biomarkers, circulating tumor cells, and viruses. We described also possible future perspectives of aptasensors development. This concerns (i) the approaches to lowering the detection limit and improvement of the electrochemical aptasensors selectivity by application of the hybrid aptamer-antibody receptor layers and/or nanomaterials; and (ii) electrochemical aptasensors integration with more advanced microfluidic devices as user-friendly medical instruments for medical diagnostic of the future.
Collapse
Affiliation(s)
- Robert Ziółkowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Marta Jarczewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Łukasz Górski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Elżbieta Malinowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
27
|
Vishwakarma A, Lal R, Ramya M. Aptamer-based approaches for the detection of waterborne pathogens. Int Microbiol 2021; 24:125-140. [PMID: 33404933 DOI: 10.1007/s10123-020-00154-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Waterborne ailments pose a serious threat to public health and are a huge economic burden. Lack of hygiene in drinking and recreational water is the chief source of microbial pathogens in developing countries. Poor water quality and sanitation account for more than 3.4 million deaths a year worldwide. This has urged authorities and researchers to explore different avenues of pathogen detection. There is a growing demand for rapid and reliable sensor technologies, in particular those that can detect in situ and perform in harsh conditions. Some of the major waterborne pathogens include Vibrio cholerae, Leptospira interrogans, Campylobacter jejuni, Shigella spp., enterotoxigenic Escherichia coli, Clostridium difficile, Cryptosporidium parvum, Entamoeba histolytica, and Hepatitis A virus. While conventional methods of pathogen detection like serodiagnosis and microbiological methods have been superseded by nucleic acid amplification methods, there is still potential for improvement. This review provides an insight into aptamers and their utility in the form of aptasensors. It discusses how aptamer-based approaches have emerged as a novel strategy and its advantages over more resource-intensive and complex biochemical approaches.
Collapse
Affiliation(s)
- Archana Vishwakarma
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Roshni Lal
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India.
| |
Collapse
|
28
|
Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Personal biosensors and bioelectronics have been demonstrated for use in out-of-clinic biomedical devices. Such modern devices have the potential to transform traditional clinical analysis into a new approach, allowing patients or users to screen their own health or warning of diseases. Researchers aim to explore the opportunities of easy-to-wear and easy-to-carry sensors that would empower users to detect biomarkers, electrolytes, or pathogens at home in a rapid and easy way. This mobility would open the door for early diagnosis and personalized healthcare management to a wide audience. In this review, we focus on the recent progress made in modern electrochemical sensors, which holds promising potential to support point-of-care technologies. Key original research articles covered in this review are mainly experimental reports published from 2018 to 2020. Strategies for the detection of metabolites, ions, and viruses are updated in this article. The relevant challenges and opportunities of applying nanomaterials to support the fabrication of new electrochemical biosensors are also discussed. Finally, perspectives regarding potential benefits and current challenges of the technology are included. The growing area of personal biosensors is expected to push their application closer to a new phase of biomedical advancement.
Collapse
|
29
|
Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of Hepatitis B virus. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01292-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 2020; 8:5808-5825. [PMID: 32538399 DOI: 10.1039/d0tb00705f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toxins are one of the major threatening factors to human and animal health, as well as economic growth. There is therefore an urgent demand from various communities to develop novel analytical methods for the sensitive detection of toxins in complex matrixes. Among the as-developed toxin detection strategies, nanocomposite-based aptamer sensors (termed as aptasensors) show tremendous potential for combating toxin pollution; in particular electrochemical (EC) aptasensors have received significant attention because of their unique advantages, including simplicity, rapidness, high sensitivity, low cost and suitability for field-testing. This paper reviewed the recently published approaches for the development of nanocomposite-/nanomaterial-based EC aptasensors for the detection of toxins with high assaying performance, and their potential applications in environmental monitoring, clinical diagnostics, and food safety control by summarizing the detection of different types of toxins, including fungal mycotoxins, algal toxins and bacterial enterotoxins. The effects of nanocomposite properties on the detection performance of EC aptasensors have been fully addressed for supplying readers with a comprehensive understanding of their improvement. The current technical challenges and future prospects of this subject have also been discussed.
Collapse
Affiliation(s)
- Hongyan Shan
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | | | |
Collapse
|