1
|
Li S, Zou M, Wang Y, Guo Q, Lv S, Zhao W, Kabir MA, Peng X. Matrix metalloproteinase 7 (MMP7) as a molecular target for Mycoplasma gallisepticum (MG) resistance in chickens. Int J Biol Macromol 2025; 298:140110. [PMID: 39842573 DOI: 10.1016/j.ijbiomac.2025.140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Mycoplasma gallisepticum (MG) causes chronic respiratory disease (CRD), posing a significant threat to global poultry production. Current preventive strategies face limitations, emphasizing the need for alternative approaches such as breeding for disease resistance. This study identifies the matrix metalloproteinase 7 (MMP7) gene as a key factor in CRD resistance. Analysis of high-throughput sequencing data revealed MMP7's association with MG infection at tissue and cellular levels. Overexpression of MMP7 in avian type II alveolar epithelial cells (AECII) and macrophages (HD11) inhibited MG adhesion, modulated immune responses, and suppressed MG-induced cell proliferation and apoptosis, though MG replication remained unaffected. Conversely, MMP7 inhibition enhanced MG infection. Experimental infections in commercial (Jingfen Layer No.6, Hy-Line White) and local Chinese chicken breeds (Guangxi Indigenous, Tianlu Partridge, Cyan Shank Partridge) validated Tianlu Partridge chickens' relative resistance and Jingfen Layers' susceptibility. MMP7 expression levels correlated positively with reduced chick weight, air sac damage, tracheal mucosal thickness, and MG lung loads. These findings highlight MMP7 as a molecular target for assessing MG susceptibility and breeding resistant chickens while demonstrating the utility of local Chinese breeds in resistance-focused breeding programs.
Collapse
Affiliation(s)
- Shiying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Institute of animal husbandry and veterinary medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi poultry Engineering Technology Research Center, Jiangxi poultry breeding Engineering Laboratory, Nanchang, Jiangxi, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, China
| | - Qiao Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqing Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Md Ahsanul Kabir
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Cambon A, Guervilly C, Delteil C, Potere N, Bachelier R, Tellier E, Abdili E, Leprince M, Giani M, Polidoro I, Albanese V, Ferrante P, Coffin L, Schiffrin M, Arnaud L, Lacroix R, Roque S, Forel JM, Hraiech S, Daniel L, Papazian L, Dignat-George F, Kaplanski G. Caspase-1 activation, IL-1/IL-6 signature and IFNγ-induced chemokines in lungs of COVID-19 patients. Front Immunol 2025; 15:1493306. [PMID: 39882243 PMCID: PMC11774885 DOI: 10.3389/fimmu.2024.1493306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Rationale COVID-19-associated acute-respiratory distress syndrome (C-ARDS) results from a direct viral injury associated with host excessive innate immune response mainly affecting the lungs. However, cytokine profile in the lung compartment of C-ARDS patients has not been widely studied, nor compared to non-COVID related ARDS (NC-ARDS). Objectives To evaluate caspase-1 activation, IL-1 signature, and other inflammatory cytokine pathways associated with tissue damage using post-mortem lung tissues, bronchoalveolar lavage fluids (BALF), and serum across the spectrum of COVID-19 severity. Methods Histological features were described and activated-caspase-1 labeling was performed in 40 post-mortem biopsies. Inflammatory cytokines were quantified in BALF and serum from 19 steroid-treated-C-ARDSand compared to 19 NC-ARDS. Cytokine concentrations were also measured in serum from 128 COVID-19 patients at different severity stages. Measurements and main results Typical "diffuse alveolar damage" in lung biopsies were associated with activated caspase-1 expression and vascular lesions. Soluble Caspase-1p20, IL-1β, IL-1Ra, IL-6 and at lower level IFNγ and CXCL-10, were highly elevated in BALF from steroid-treated-C-ARDS as well as in NC-ARDS. IL-1β appeared concentrated in BALF, whereas circulating IL-6 and IL-1Ra concentrations were comparable to those in BALF and correlated with severity. TNFα, TNFR1 and CXCL8 however, were significantly higher in NC-ARDS compared to C-ARDS, treated by steroid. Conclusions In the lungs of C-ARDS, both caspase-1 activation with a predominant IL-1β/IL-6 signature and IFNγ -associated chemokines are elevated despite steroid treatment. These pathways may be specifically targeted in ARDS to improve response to treatment and to limit alveolar and vascular lung damage.
Collapse
Affiliation(s)
- Audrey Cambon
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Christophe Guervilly
- Centre d’Etudes et de Recherches sur les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, Marseille, France
- Service de Médecine Intensive Réanimation, Hôpital Nord, Assistance Publique- Hôpitaux de Marseille, Chemin des Bourrely, Marseille, France
| | - Clémence Delteil
- Département de Médecine légale, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille University, Marseille, France
| | - Nicola Potere
- School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | | | - Edwige Tellier
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Evelyne Abdili
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Service d’Hématologie et de Biologie vasculaire, CHU La Timone, APHM, Marseille, France
| | - Marine Leprince
- Service de Médecine interne et d’Immunologie clinique, Assistance Publique - Hôpitaux de Marseille, Hôpital La Conception, Marseille, France
| | - Marco Giani
- School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Ildo Polidoro
- Unit of Legal Medicine, “Santo Spirito” Hospital, Local Health Authority of Pescara, Pescara, Italy
| | - Valentina Albanese
- Unit of Legal Medicine, “Santo Spirito” Hospital, Local Health Authority of Pescara, Pescara, Italy
| | - Paolo Ferrante
- Unit of Legal Medicine, “Santo Spirito” Hospital, Local Health Authority of Pescara, Pescara, Italy
| | | | | | - Laurent Arnaud
- Service d’Hématologie et de Biologie vasculaire, CHU La Timone, APHM, Marseille, France
| | - Romaric Lacroix
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Service d’Hématologie et de Biologie vasculaire, CHU La Timone, APHM, Marseille, France
| | - Sandrine Roque
- Service de Médecine interne et d’Immunologie clinique, Assistance Publique - Hôpitaux de Marseille, Hôpital La Conception, Marseille, France
| | - Jean-Marie Forel
- Centre d’Etudes et de Recherches sur les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, Marseille, France
- Service de Médecine Intensive Réanimation, Hôpital Nord, Assistance Publique- Hôpitaux de Marseille, Chemin des Bourrely, Marseille, France
| | - Sami Hraiech
- Centre d’Etudes et de Recherches sur les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, Marseille, France
- Service de Médecine Intensive Réanimation, Hôpital Nord, Assistance Publique- Hôpitaux de Marseille, Chemin des Bourrely, Marseille, France
| | - Laurent Daniel
- Service d’Anatomopathologie, APHM, Aix Marseille University, Marseille, France
| | - Laurent Papazian
- Service de Réanimation, Centre Hospitalier de Bastia, Bastia, France
| | - Françoise Dignat-George
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Service d’Hématologie et de Biologie vasculaire, CHU La Timone, APHM, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Service de Médecine interne et d’Immunologie clinique, Assistance Publique - Hôpitaux de Marseille, Hôpital La Conception, Marseille, France
| |
Collapse
|
3
|
Niayesh-Mehr R, Kalantar M, Bontempi G, Montaldo C, Ebrahimi S, Allameh A, Babaei G, Seif F, Strippoli R. The role of epithelial-mesenchymal transition in pulmonary fibrosis: lessons from idiopathic pulmonary fibrosis and COVID-19. Cell Commun Signal 2024; 22:542. [PMID: 39538298 PMCID: PMC11558984 DOI: 10.1186/s12964-024-01925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the tremendous advancements in the knowledge of the pathophysiology and clinical aspects of SARS-CoV-2 infection, still many issues remain unanswered, especially in the long-term effects. Mounting evidence suggests that pulmonary fibrosis (PF) is one of the most severe complications associated with COVID-19. Therefore, understanding the molecular mechanisms behind its development is helpful to develop successful therapeutic strategies. Epithelial to mesenchymal transition (EMT) and its cell specific variants endothelial to mesenchymal transition (EndMT) and mesothelial to mesenchymal transition (MMT) are physio-pathologic cellular reprogramming processes induced by several infectious, inflammatory and biomechanical stimuli. Cells undergoing EMT acquire invasive, profibrogenic and proinflammatory activities by secreting several extracellular mediators. Their activity has been implicated in the pathogenesis of PF in a variety of lung disorders, including idiopathic pulmonary fibrosis (IPF) and COVID-19. Aim of this article is to provide an updated survey of the cellular and molecular mechanisms, with emphasis on EMT-related processes, implicated in the genesis of PF in IFP and COVID-19.
Collapse
Affiliation(s)
- Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Kalantar
- Department of Occupational Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Saeedeh Ebrahimi
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy.
| |
Collapse
|
4
|
Bustos IG, Wiscovitch-Russo R, Singh H, Sievers BL, Matsuoka M, Freire M, Tan GS, Cala MP, Guerrero JL, Martin-Loeches I, Gonzalez-Juarbe N, Reyes LF. Major alteration of lung microbiome and the host responses in critically ill COVID-19 patients with high viral load. Sci Rep 2024; 14:27637. [PMID: 39532981 PMCID: PMC11557576 DOI: 10.1038/s41598-024-78992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Patients with COVID-19 under invasive mechanical ventilation are at higher risk of developing ventilator-associated pneumonia (VAP), associated with increased healthcare costs, and unfavorable prognosis. The underlying mechanisms of this phenomenon have not been thoroughly dissected. Therefore, this study attempted to bridge this gap by performing a lung microbiota analysis and evaluating the host immune responses that could drive the development of VAP. In this prospective cohort study, mechanically ventilated patients with confirmed SARS-CoV-2 infection were enrolled. Nasal swabs (NS), endotracheal aspirates (ETA), and blood samples were collected initially within 12 h of intubation and again at 72 h post-intubation. Plasma samples underwent cytokine and metabolomic analyses, while NS and ETA samples were sequenced for lung microbiome examination. The cohort was categorized based on the development of VAP. Data analysis was conducted using RStudio version 4.3.1. In a study of 36 COVID-19 patients on mechanical ventilation, significant differences were found in the nasal and pulmonary microbiome, notably in Staphylococcus and Enterobacteriaceae, linked to VAP. Patients with VAP showed a higher SARS-CoV-2 viral load in respiratory samples, elevated neutralizing antibodies, and reduced inflammatory cytokines, including IFN-δ, IL-1β, IL-12p70, IL-18, IL-6, TNF-α, and CCL4. Metabolomic analysis revealed changes in 22 metabolites in non-VAP patients and 27 in VAP patients, highlighting D-Maltose-Lactose, Histidinyl-Glycine, and various phosphatidylcholines, indicating a metabolic predisposition to VAP. This study reveals a critical link between respiratory microbiome alterations and ventilator-associated pneumonia in COVID-19 patients with higher SARS-CoV-2 viral loads in respiratory samples, elevated neutralizing antibodies, and reduced inflammatory cytokines, including IFN-δ, IL-1β, IL-12p70, IL-18, IL-6, TNF-α, and CCL4. These findings provide novel insights into the underlying mechanisms of VAP, with potential implications for management and prevention.
Collapse
Affiliation(s)
- Ingrid G Bustos
- Unisabana Center of Translational Science, Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia
- Bioscience Ph.D., Engineering Faculty, Universidad de La Sabana, Chia, Colombia
| | - Rosana Wiscovitch-Russo
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Harinder Singh
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Benjamín L Sievers
- Infectious Disease Group, J Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA, USA
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michele Matsuoka
- Infectious Disease Group, J Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA, USA
| | - Marcelo Freire
- Infectious Disease Group, J Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA, USA
| | - Gene S Tan
- Infectious Disease Group, J Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, 9203, USA
| | - Mónica P Cala
- MetCore-Metabolomics Core Facility, Vice-Presidency of Research and Knowledge Creation, Universidad de Los Andes, Bogotá, Colombia
| | - Jose L Guerrero
- MetCore-Metabolomics Core Facility, Vice-Presidency of Research and Knowledge Creation, Universidad de Los Andes, Bogotá, Colombia
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Dublin, Ireland
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - Luis Felipe Reyes
- Unisabana Center of Translational Science, Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia.
- Clinica Universidad de La Sabana, Chia, Colombia.
- Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Deus MDC, Gadotti AC, Dias ES, Monte Alegre JB, Van Spitzenbergen BAK, Andrade GB, Tozoni SS, Stocco RB, Olandoski M, Tuon FFB, Pinho RA, de Noronha L, Baena CP, Moreno-Amaral AN. Prospective Variation of Cytokine Trends during COVID-19: A Progressive Approach from Disease Onset until Outcome. Int J Mol Sci 2024; 25:10578. [PMID: 39408907 PMCID: PMC11477561 DOI: 10.3390/ijms251910578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
COVID-19 is characterized by pronounced hypercytokinemia. The cytokine switch, marked by an imbalance between pro-inflammatory and anti-inflammatory cytokines, emerged as a focal point of investigation throughout the COVID-19 pandemic. However, the kinetics and temporal dynamics of cytokine release remain contradictory, making the development of new therapeutics difficult, especially in severe cases. This study collected serum samples from SARS-CoV-2 infected patients at 72 h intervals and monitored them for various cytokines at each timepoint until hospital discharge or death. Cytokine levels were analyzed based on time since symptom onset and patient outcomes. All cytokines studied prospectively were strong predictors of mortality, particularly IL-4 (AUC = 0.98) and IL-1β (AUC = 0.96). First-timepoint evaluations showed elevated cytokine levels in the mortality group (p < 0.001). Interestingly, IFN-γ levels decreased over time in the death group but increased in the survival group. Patients who died exhibited sustained levels of IL-1β and IL-4 and increased IL-6 levels over time. These findings suggest cytokine elevation is crucial in predicting COVID-19 mortality. The dynamic interplay between IFN-γ and IL-4 highlights the balance between Th1/Th2 immune responses and underscores IFN-γ as a powerful indicator of immune dysregulation throughout the infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea Novais Moreno-Amaral
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Escola de Medicina, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (M.d.C.D.); (A.C.G.); (E.S.D.); (J.B.M.A.); (B.A.K.V.S.); (G.B.A.); (S.S.T.); (R.B.S.); (M.O.); (F.F.B.T.); (R.A.P.); (L.d.N.); (C.P.B.)
| |
Collapse
|
6
|
Cîrjaliu RE, Tofolean IT, Tofolean DE, Chisoi A, Oancea C, Vastag E, Marc M, Bratosin F, Rosca O, Fildan AP. Predictive Value and Diagnostic Potential of IL-10, IL-17A, IL1-β, IL-6, CXCL, and MCP for Severe COVID-19 and COVID-19 Mortality. Biomedicines 2024; 12:1532. [PMID: 39062105 PMCID: PMC11274648 DOI: 10.3390/biomedicines12071532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates advanced prognostic tools to anticipate disease progression and optimize patient outcomes. This study evaluates the predictive value and diagnostic potential of interleukins interleukin (IL) IL-10, IL-17A, IL1-β, IL-6, chemokine ligand (CXCL), and Monocyte Chemotactic Protein (MCP) for severe coronavirus disease 2019 (COVID-19) and COVID-19 mortality, aiming to correlate cytokine levels with disease severity. Conducted from January 2023 to January 2024, this prospective cohort study involved patients hospitalized with moderate and severe COVID-19 from Romania. This study analyzed statistically significant predictors of severe COVID-19 outcomes. IL-6 and MCP emerged as significant, with hazard ratios (HRs) of 2.35 (95% confidence interval (CI): 1.54-3.59, p = 0.014) and 2.05 (95% CI: 1.22-3.45, p = 0.007), respectively. Compound scores integrating multiple inflammatory markers also demonstrated predictive value; Compound Score 2 had an HR of 2.23 (95% CI: 1.35-3.68, p = 0.002), surpassing most single markers in association with severe disease. Notably, interleukins IL-10 and IL-1β did not show significant associations with disease severity. This study underscores the importance of IL-6 and MCP as robust predictors of severe COVID-19, substantiating their role in clinical assessments to foresee patient deterioration. The utility of compound scores in enhancing predictive accuracy suggests a composite approach may be more effective in clinical settings.
Collapse
Affiliation(s)
- Roxana-Elena Cîrjaliu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (R.-E.C.); (I.-T.T.); (D.-E.T.); (A.-P.F.)
| | - Ioan-Tiberiu Tofolean
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (R.-E.C.); (I.-T.T.); (D.-E.T.); (A.-P.F.)
| | - Doina-Ecaterina Tofolean
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (R.-E.C.); (I.-T.T.); (D.-E.T.); (A.-P.F.)
| | - Anca Chisoi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania;
| | - Cristian Oancea
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (C.O.); (E.V.)
| | - Emanuela Vastag
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (C.O.); (E.V.)
| | - Monica Marc
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (C.O.); (E.V.)
| | - Felix Bratosin
- Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (O.R.)
| | - Ovidiu Rosca
- Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (O.R.)
| | - Ariadna-Petronela Fildan
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (R.-E.C.); (I.-T.T.); (D.-E.T.); (A.-P.F.)
| |
Collapse
|
7
|
Saleki K, Aram C, Alijanizadeh P, Khanmirzaei MH, Vaziri Z, Ramzankhah M, Azadmehr A. Matrix metalloproteinase/Fas ligand (MMP/FasL) interaction dynamics in COVID-19: An in silico study and neuroimmune perspective. Heliyon 2024; 10:e30898. [PMID: 38803919 PMCID: PMC11128882 DOI: 10.1016/j.heliyon.2024.e30898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Background The initiator of cytokine storm in Coronavirus disease (COVID-19) is still unknown. We recently suggested a complex interaction of matrix metalloproteinases (MMPs), Fas ligand (FasL), and viral entry factors could be responsible for the cytokine outrage In COVID-19. We explored the molecular dynamics of FasL/MMP7-9 in COVID-19 conditions in silico and provide neuroimmune insights for future. Methods We enrolled and analyzed a clinical cohort of COVID-19 patients, and recorded their blood Na + levels and temperature at admission. A blood-like molecular dynamics simulation (MDS) box was then built. Four conditions were studied; MMP7/FasL (healthy), MMP7/FasL (COVID-19), MMP9-FasL (healthy), and MMP9/FasL (COVID-19). MDS was performed by GROningen MAchine for Chemical Simulation (GROMACS). We analyzed bonds, short-range energies, and free binding energies to draw conclusions on the interaction of MMP7/MMP9 and FasL to gain insights into COVID-19 immunopathology. Genevestigator was used study RNA-seq/microarray expression data of MMPs in the cells of immune and nervous systems. Finally, epitopes of MMP/FasL complexes were identified as drug targets by machine learning (ML) tools. Results MMP7-FasL (Healthy), MMP7-FasL (COVID-19), MMP9-FasL (Healthy), and MMP9-FasL (COVID-19) systems showed 0, 1, 4, and 2 salt bridges, indicating MMP9 had more salt bridges. Moreover, in both COVID-19 and normal conditions, the number of interacting residues and surface area was higher for MMP9 compared to MMP7 group. The COVID-19 MMP9-FasL group had more H-bonds compared to MMP7-FasL group (12 vs. 7). 15 epitopes for FasL-MMP9 and 10 epitopes for FasL-MMP7 were detected. Extended MD simulation for 100 ns confirmed stronger binding of MMP9 based on Molecular Mechanics Generalized Borne Surface analysis (MM-GBSA) and Coul and Leonard-Jones (LJ) short-range energies. Conclusions MMP9 interacts stronger than MMP7 with FasL, however, both molecules maintained strong interaction through the MDS. We suggested epitopes for MMP-FasL complexes as valuable therapeutic targets in COVID-19. These data could be utilized in future immune drug and protein design and repurposing efforts.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hossein Khanmirzaei
- School of Medicine, Tehran University of Medical Sciences, Babol, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ramzankhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
- Department of Immunology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Elsaghir A, El-Sabaa EMW, Zahran AM, Mandour SA, Salama EH, Aboulfotuh S, El-Morshedy RM, Tocci S, Mandour AM, Ali WE, Abdel-Wahid L, Sayed IM, El-Mokhtar MA. Elevated CD39+T-Regulatory Cells and Reduced Levels of Adenosine Indicate a Role for Tolerogenic Signals in the Progression from Moderate to Severe COVID-19. Int J Mol Sci 2023; 24:17614. [PMID: 38139439 PMCID: PMC10744088 DOI: 10.3390/ijms242417614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Viral infections trigger inflammation by controlling ATP release. CD39 ectoenzymes hydrolyze ATP/ADP to AMP, which is converted by CD73 into anti-inflammatory adenosine (ADO). ADO is an anti-inflammatory and immunosuppressant molecule which can enhance viral persistence and severity. The CD39-CD73-adenosine axis contributes to the immunosuppressive T-reg microenvironment and may affect COVID-19 disease progression. Here, we investigated the link between CD39 expression, mostly on T-regs, and levels of CD73, adenosine, and adenosine receptors with COVID-19 severity and progression. Our study included 73 hospitalized COVID-19 patients, of which 33 were moderately affected and 40 suffered from severe infection. A flow cytometric analysis was used to analyze the frequency of T-regulatory cells (T-regs), CD39+ T-regs, and CD39+CD4+ T-cells. Plasma concentrations of adenosine, IL-10, and TGF-β were quantified via an ELISA. An RT-qPCR was used to analyze the gene expression of CD73 and adenosine receptors (A1, A2A, A2B, and A3). T-reg cells were higher in COVID-19 patients compared to healthy controls (7.4 ± 0.79 vs. 2.4 ± 0.28; p < 0.0001). Patients also had a higher frequency of the CD39+ T-reg subset. In addition, patients who suffered from a severe form of the disease had higher CD39+ T-regs compared with moderately infected patients. CD39+CD4+ T cells were increased in patients compared to the control group. An analysis of serum adenosine levels showed a marked decrease in their levels in patients, particularly those suffering from severe illness. However, this was paralleled with a marked decline in the expression levels of CD73. IL-10 and TGF-β levels were higher in COVID-19; in addition, their values were also higher in the severe group. In conclusion, there are distinct immunological alterations in CD39+ lymphocyte subsets and a dysregulation in the adenosine signaling pathway in COVID-19 patients which may contribute to immune dysfunction and disease progression. Understanding these immunological alterations in the different immune cell subsets and adenosine signaling provides valuable insights into the pathogenesis of the disease and may contribute to the development of novel therapeutic approaches targeting specific immune mechanisms.
Collapse
Affiliation(s)
- Alaa Elsaghir
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ehsan M. W. El-Sabaa
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt
| | - Sahar A. Mandour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Eman H. Salama
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Sahar Aboulfotuh
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Reham M. El-Morshedy
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Stefania Tocci
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ahmed Mohamed Mandour
- Department of Anesthesia and ICU, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Wael Esmat Ali
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Lobna Abdel-Wahid
- Gastroenterology and Hepatology Unit, Internal Medicine Department, Assiut University, Assiut 71515, Egypt
| | - Ibrahim M. Sayed
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Mohamed A. El-Mokhtar
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
9
|
Gómez-Carballa A, Albericio G, Montoto-Louzao J, Pérez P, Astorgano D, Rivero-Calle I, Martinón-Torres F, Esteban M, Salas A, García-Arriaza J. Lung transcriptomics of K18-hACE2 mice highlights mechanisms and genes involved in the MVA-S vaccine-mediated immune response and protection against SARS-CoV-2 infection. Antiviral Res 2023; 220:105760. [PMID: 37992765 DOI: 10.1016/j.antiviral.2023.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Unravelling the molecular mechanism of COVID-19 vaccines through transcriptomic pathways involved in the host response to SARS-CoV-2 infection is key to understand how vaccines work, and for the development of optimized COVID-19 vaccines that can prevent the emergence of SARS-CoV-2 variants of concern (VoCs) and future outbreaks. In this study, we investigated the effects of vaccination with a modified vaccinia virus Ankara (MVA)-based vector expressing the full-length SARS-CoV-2 spike protein (MVA-S) on the lung transcriptome from susceptible K18-hACE2 mice after SARS-CoV-2 infection. One dose of MVA-S regulated genes related to viral infection control, inflammation processes, T-cell response, cytokine production and IFN-γ signalling. Down-regulation of Rhcg and Tnfsf18 genes post-vaccination with one and two doses of MVA-S may represent a mechanism for controlling infection immunity and vaccine-induced protection. One dose of MVA-S provided partial protection with a distinct lung transcriptomic profile to healthy animals, while two doses of MVA-S fully protected against infection with a transcriptomic profile comparable to that of non-vaccinated healthy animals. This suggests that the MVA-S booster generates a robust and rapid antigen-specific immune response preventing virus infection. Notably, down-regulation of Atf3 and Zbtb16 genes in mice vaccinated with two doses of MVA-S may contribute to vaccine control of innate immune system and inflammation processes in the lungs during SARS-CoV-2 infection. This study shows host transcriptomic mechanisms likely involved in the MVA-S vaccine-mediated immune response against SARS-CoV-2 infection, which could help in improving vaccine dose assessment and developing novel, well-optimized SARS-CoV-2 vaccine candidates against prevalent or emerging VoCs.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Julián Montoto-Louzao
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| |
Collapse
|
10
|
Saal M, Loeffler-Wirth H, Gruenewald T, Doxiadis I, Lehmann C. Genetic Predisposition to SARS-CoV-2 Infection: Cytokine Polymorphism and Disease Transmission within Households. BIOLOGY 2023; 12:1385. [PMID: 37997984 PMCID: PMC10669642 DOI: 10.3390/biology12111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
We addressed the question of the influence of the molecular polymorphism of cytokines from different T helper subsets on the susceptibility to SARS-CoV-2 infection. From a cohort of 527 samples (collected from 26 May 2020 to 31 March 2022), we focused on individuals living in the same household (n = 58) with the SARS-CoV-2-infected person. We divided them into households with all individuals SARS-CoV-2 PCR positive (n = 29, households, 61 individuals), households with mixed PCR pattern (n = 24, 62) and negative households (n = 5, 15), respectively. TGF-β1 and IL-6 were the only cytokines tested with a significant difference between the cohorts. We observed a shift toward Th2 and the regulatory Th17 and Treg subset regulation for households with all members infected compared to those without infection. These data indicate that the genetically determined balance between the cytokines acting on different T helper cell subsets may play a pivotal role in transmission of and susceptibility to SARS-CoV-2 infection. Contacts infected by their index persons were more likely to highly express TGF-β1, indicating a reduced inflammatory response. Those not infected after contact had a polymorphism leading to a higher IL-6 expression. IL-6 acts in innate immunity, allergy and on the T helper cell differentiation, explaining the reduced susceptibility to SARS-CoV-2.
Collapse
Affiliation(s)
- Marius Saal
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany; (M.S.); (I.D.)
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, IZBI, Leipzig University, Haertelstr. 16–18, 04107 Leipzig, Germany;
| | - Thomas Gruenewald
- Clinic for Infectious Diseases and Tropical Medicine, Klinikum Chemnitz, Flemmingstraße 2, 09116 Chemnitz, Germany;
| | - Ilias Doxiadis
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany; (M.S.); (I.D.)
| | - Claudia Lehmann
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany; (M.S.); (I.D.)
| |
Collapse
|
11
|
Leśnik P, Janc J, Mierzchala-Pasierb M, Tański W, Wierciński J, Łysenko L. Interleukin-7 and interleukin-15 as prognostic biomarkers in sepsis and septic shock: Correlation with inflammatory markers and mortality. Cytokine 2023; 169:156277. [PMID: 37348189 DOI: 10.1016/j.cyto.2023.156277] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and a syndrome shaped by pathogen and host factors evolving over time. During sepsis, the absolute number of lymphocytes decreases. CD4+ and CD8+ T cells, B cells, and NK cells are reduced. Lymphocytes are an essential element of the body's defence against pathogens. Interleukin 7 has strong anti-apoptotic properties and induces the proliferation of CD4+ and CD8+ T lymphocytes. IL-15 prompts the generation of mature NK cells in the bone marrow, plays an important role in the generation, cytotoxicity, and survival of CD8+ T lymphocytes, and is essential for the survival of natural killer T (NKT) and intestinal intraepithelial lymphocytes (IELs). The study highlights the importance of monitoring IL-7 levels in patients with sepsis and septic shock, as low levels of this cytokine were associated with an increased risk of mortality. Physicians should consider using IL-7 levels as a biomarker to identify patients who are at higher risk of mortality and may require more aggressive treatment.
Collapse
Affiliation(s)
- Patrycja Leśnik
- Department of Anaesthesiology and Intensive Therapy, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland.
| | - Jarosław Janc
- Department of Anaesthesiology and Intensive Therapy, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland.
| | | | - Wojciech Tański
- Department of Internal Medicine, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland.
| | - Jan Wierciński
- Department of Anaesthesiology and Intensive Therapy, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland.
| | - Lidia Łysenko
- Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| |
Collapse
|
12
|
Ndoricyimpaye EL, Van Snick J, Robert R, Bikorimana E, Majyambere O, Mukantwari E, Nshimiyimana T, Mbonigaba V, Coutelier JP, Rujeni N. Cytokine Kinetics during Progression of COVID-19 in Rwanda Patients: Could IL-9/IFNγ Ratio Predict Disease Severity? Int J Mol Sci 2023; 24:12272. [PMID: 37569646 PMCID: PMC10418469 DOI: 10.3390/ijms241512272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
For effective treatments and preventive measures against severe COVID-19, it is essential to determine early markers of disease severity in different populations. We analysed the cytokine kinetics of 129 COVID-19 patients with mild symptoms, 68 severe cases, and 20 healthy controls for the first time in Rwanda. Pro-inflammatory (IFNγ, IL-6, TNFα), Treg (IL-10, TGFβ1, TGFβ3), Th9 (IL-9), Th17 (IL-17), and Th2 (IL-4, IL-13) cytokines, total IgM and IgG, as well as gene expressions of FoxP3, STAT5+, IFNγ-R1, and ROR alpha+, were measured at day 1, day 7, day 14, day 21, and day 28 post-infection. Severe cases showed a significantly stronger increase than mild patients in levels of all cytokines (except IL-9) and all gene expression on day 1 of infection. Some cytokine levels dropped to levels comparable to mild cases at later time points. Further analysis identified IFNγ as a marker of severity throughout the disease course, while TGFβ1, IL-6, and IL-17 were markers of severity only at an early phase. Importantly, this study revealed a striking low IL-9 level and high IFNγ/IL-9 ratio in the plasma of patients who later died compared to mild and severe cases who recovered, suggesting that this could be an important biomarker for predicting the severity of COVID-19 and post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Ella Larissa Ndoricyimpaye
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
- de Duve Institute, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Jacques Van Snick
- Ludwig Institute for Cancer Research, Universite Catholique de Louvain, 1348 Brussels, Belgium;
| | - Rutayisire Robert
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
- National Reference Laboratory, Rwanda Biomedical Center, Kigali P.O. Box 4285, Rwanda; (E.M.); (V.M.)
| | - Emmanuel Bikorimana
- Department of General Nursing, School of Nursing, College of Medicine and Health Science, University of Rwanda, Kigali P.O. Box 3248, Rwanda;
| | - Onesphore Majyambere
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
| | - Enatha Mukantwari
- National Reference Laboratory, Rwanda Biomedical Center, Kigali P.O. Box 4285, Rwanda; (E.M.); (V.M.)
| | - Thaddée Nshimiyimana
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
| | - Valens Mbonigaba
- National Reference Laboratory, Rwanda Biomedical Center, Kigali P.O. Box 4285, Rwanda; (E.M.); (V.M.)
| | - Jean Paul Coutelier
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
- de Duve Institute, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Nadine Rujeni
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
| |
Collapse
|
13
|
Golec M, Zembala-John J, Fronczek M, Konka A, Bochenek A, Wystyrk K, Botor H, Zalewska M, Chrapiec M, Kasperczyk S, Brzoza Z, Bułdak RJ. Relationship between anthropometric and body composition parameters and anti-SARS-CoV-2 specific IgG titers in females vaccinated against COVID-19 according to the heterologous vaccination course: A cohort study. PLoS One 2023; 18:e0287128. [PMID: 37310975 DOI: 10.1371/journal.pone.0287128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
INTRODUCTION The aim of this cohort study was to evaluate the relationship between anthropometric and body composition parameters and anti-SARS-CoV-2 IgG titers in a group of females who were vaccinated against COVID-19 with two doses of ChAdOx1 vaccine and then boosted with the BNT162b2 vaccine. MATERIALS AND METHODS The study group consisted of 63 women. Basic demographic and clinical data were collected. To assess the anti-SARS-CoV-2 immunoglobulin G titers following the vaccination, five blood draws were performed: 1) before the first dose, 2) before the second dose, 3) 14-21 days after the primary vaccination, 4) before the booster, and 5) 21 days after the booster. Blood samples were analyzed using a two-step enzymatic chemiluminescent assay. Body mass index and body composition were evaluated using bioelectrical impedance analysis. To select the most distinguishing parameters and correlations between anthropometric and body composition parameters and anti-SARS-CoV-2 IgG titers, factor analysis using the Principal Component Analysis was conducted. RESULTS Sixty-three females (mean age: 46.52 years) who met the inclusion criteria were enrolled. 40 of them (63.50%) participated in the post-booster follow-up. After receiving two doses of the ChAdOx1 vaccine, the study group's anti-SARS-CoV-2 IgG titers were 67.19 ± 77.44 AU/mL (mean ± SD), whereas after receiving a heterologous mRNA booster, the level of anti-SARS-CoV-2 IgG titers was about three-times higher and amounted to 212.64 ± 146.40 AU/mL (mean ± SD). Our data shows that seropositivity, obesity, non-fat-related, and fat-related body composition parameters all had a significant effect on the level of IgG titer after a two-dose vaccination of ChAdOx1. However, only non-fat-related and fat-related body composition parameters had a significant effect on the IgG titer after booster vaccination. CONCLUSION COVID-19 infection before the first dose of vaccination is not related to IgG titer after booster administration. Body composition has a significant effect on the production of anti-SARS-CoV-2 IgG after booster vaccination in females.
Collapse
Affiliation(s)
- Marlena Golec
- Silesian Park of Medical Technology Kardio-Med Silesia, Zabrze, Poland
| | - Joanna Zembala-John
- Silesian Park of Medical Technology Kardio-Med Silesia, Zabrze, Poland
- Department of Medicine and Environmental Epidemiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
- Silesian Center for Heart Diseases, Zabrze, Poland
| | - Martyna Fronczek
- Silesian Park of Medical Technology Kardio-Med Silesia, Zabrze, Poland
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Adam Konka
- Silesian Park of Medical Technology Kardio-Med Silesia, Zabrze, Poland
| | - Aneta Bochenek
- Silesian Park of Medical Technology Kardio-Med Silesia, Zabrze, Poland
| | - Karolina Wystyrk
- Silesian Park of Medical Technology Kardio-Med Silesia, Zabrze, Poland
| | | | - Marzena Zalewska
- Silesian Park of Medical Technology Kardio-Med Silesia, Zabrze, Poland
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom, Poland
| | - Martyna Chrapiec
- Silesian Park of Medical Technology Kardio-Med Silesia, Zabrze, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Zenon Brzoza
- Department of Internal Diseases, Allergology, Endocrinology and Gastroenterology, Institute of Medical Sciences, University of Opole, Opole, Poland
| | - Rafał J Bułdak
- Silesian Park of Medical Technology Kardio-Med Silesia, Zabrze, Poland
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Opole, Poland
| |
Collapse
|
14
|
Noitz M, Meier J. [Risk Factors for COVID-19 Mortality]. Anasthesiol Intensivmed Notfallmed Schmerzther 2023; 58:362-372. [PMID: 37385242 DOI: 10.1055/a-1971-5095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The COVID-19 pandemic has changed the world significantly within the last two years and has put a major burden on health care systems worldwide. Due to the imbalance between the number of patients requiring treatment and the shortage of necessary healthcare resources, a new mode of triage had to be established. The allocation of resources and definition of treatment priorities could be supported by taking the actual short-term mortality risk of patients with COVID-19 into account. We therefore analyzed the current literature for criteria to predict mortality in COVID-19.
Collapse
|
15
|
Rizzi M, D'Onghia D, Tonello S, Minisini R, Colangelo D, Bellan M, Castello LM, Gavelli F, Avanzi GC, Pirisi M, Sainaghi PP. COVID-19 Biomarkers at the Crossroad between Patient Stratification and Targeted Therapy: The Role of Validated and Proposed Parameters. Int J Mol Sci 2023; 24:ijms24087099. [PMID: 37108262 PMCID: PMC10138390 DOI: 10.3390/ijms24087099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Clinical knowledge about SARS-CoV-2 infection mechanisms and COVID-19 pathophysiology have enormously increased during the pandemic. Nevertheless, because of the great heterogeneity of disease manifestations, a precise patient stratification at admission is still difficult, thus rendering a rational allocation of limited medical resources as well as a tailored therapeutic approach challenging. To date, many hematologic biomarkers have been validated to support the early triage of SARS-CoV-2-positive patients and to monitor their disease progression. Among them, some indices have proven to be not only predictive parameters, but also direct or indirect pharmacological targets, thus allowing for a more tailored approach to single-patient symptoms, especially in those with severe progressive disease. While many blood test-derived parameters quickly entered routine clinical practice, other circulating biomarkers have been proposed by several researchers who have investigated their reliability in specific patient cohorts. Despite their usefulness in specific contexts as well as their potential interest as therapeutic targets, such experimental markers have not been implemented in routine clinical practice, mainly due to their higher costs and low availability in general hospital settings. This narrative review will present an overview of the most commonly adopted biomarkers in clinical practice and of the most promising ones emerging from specific population studies. Considering that each of the validated markers reflects a specific aspect of COVID-19 evolution, embedding new highly informative markers into routine clinical testing could help not only in early patient stratification, but also in guiding a timely and tailored method of therapeutic intervention.
Collapse
Affiliation(s)
- Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Davide D'Onghia
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Francesco Gavelli
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Gian Carlo Avanzi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
16
|
Petito E, Franco L, Falcinelli E, Guglielmini G, Conti C, Vaudo G, Paliani U, Becattini C, Mencacci A, Tondi F, Gresele P. COVID-19 infection-associated platelet and neutrophil activation is blunted by previous anti-SARS-CoV-2 vaccination. Br J Haematol 2023; 201:851-856. [PMID: 36883298 DOI: 10.1111/bjh.18726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 03/09/2023]
Abstract
The effectiveness of vaccination against SARS-CoV-2 in preventing COVID-19 or in reducing severe illness in subjects hospitalized for COVID-19 despite vaccination has been unequivocally shown. However, no studies so far have assessed if subjects who get COVID-19 despite vaccination are protected from SARS-CoV-2-induced platelet, neutrophil and endothelial activation, biomarkers associated with thrombosis and worse outcome. In this pilot study, we show that previous vaccination blunts COVID-19-associated platelet activation, assessed by circulating platelet-derived microvesicles and soluble P-selectin, and neutrophil activation, assessed by circulating neutrophil extracellular trap (NET) biomarkers and matrix metalloproteinase-9, and reduces COVID-19-associated thrombotic events, hospitalization in intensive-care units and death.
Collapse
Affiliation(s)
- Eleonora Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Laura Franco
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Guglielmini
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Chiara Conti
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Gaetano Vaudo
- Unit of Internal Medicine, Terni University Hospital, Terni, Italy
| | - Ugo Paliani
- Division of Internal Medicine, USL Umbria 1, Pantalla, Italy
| | - Cecilia Becattini
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Antonella Mencacci
- Department of Medicine and Surgery, Microbiology and Clinical Microbiology, University of Perugia, Perugia, Italy
| | - Francesca Tondi
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
17
|
Inflammation as Prognostic Hallmark of Clinical Outcome in Patients with SARS-CoV-2 Infection. Life (Basel) 2023; 13:life13020322. [PMID: 36836679 PMCID: PMC9966655 DOI: 10.3390/life13020322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often characterized by a life-threatening interstitial pneumonia requiring hospitalization. The aim of this retrospective cohort study is to identify hallmarks of in-hospital mortality in patients affected by Coronavirus Disease 19 (COVID-19). A total of 150 patients admitted for COVID-19 from March to June 2021 to "F. Perinei" Murgia Hospital in Altamura, Italy, were divided into survivors (n = 100) and non-survivors groups (n = 50). Blood counts, inflammation-related biomarkers and lymphocyte subsets were analyzed into two groups in the first 24 h after admission and compared by Student's t-test. A multivariable logistic analysis was performed to identify independent risk factors associated with in-hospital mortality. Total lymphocyte count and CD3+ and CD4+ CD8+ T lymphocyte subsets were significantly lower in non-survivors. Serum levels of interleukin-6 (IL-6), lactate dehydrogenase (LDH), C-reactive protein (CRP) and procalcitonin (PCT) were significantly higher in non-survivors. Age > 65 years and presence of comorbidities were identified as independent risk factors associated with in-hospital mortality, while IL-6 and LDH showed a borderline significance. According to our results, markers of inflammation and lymphocytopenia predict in-hospital mortality in COVID-19.
Collapse
|
18
|
Clinical Investigation of Leukocyte DNA Damage in COVID-19 Patients. Curr Issues Mol Biol 2023; 45:963-974. [PMID: 36826007 PMCID: PMC9955698 DOI: 10.3390/cimb45020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
This prospective cross-sectional study aimed to evaluate leukocyte DNA damage in coronavirus disease (COVID-19) patients. In this study, 50 COVID-19-positive patients attending the Erzurum City Hospital Internal Medicine Outpatient Clinic and 42 control group patients were included. DNA damage was detected in living cells through leukocyte isolation in 50 COVID-19-positive patients using the comet assay method. DNA tail/head (olive) moments were evaluated and compared. White blood cells (WBC), red blood cells (RBC), hemoglobin (HGB), neutrophils (NEU), lymphocytes (LYM), eosinophils (EO), monocytes (MONO), basophils (BASO), platelets (PLT), and the neutrophil/lymphocyte ratio (NLR) were analyzed. The RBC, lymphocyte, eosinophil, and monocyte means were significantly higher in the control group (p < 0.05), whereas the HGB and neutrophile means were significantly higher in the study group (p < 0.05). There were significant negative correlations between COVID-19 and RBC (r = -0.863), LYM (r = -0.542), EO (r = -0.686), and MONO (r = -0.385). Meanwhile, there were significant positive correlations between COVID-19 and HGB (r = 0.863), NEU (r = 0.307), tail moment (r = 0.598), and olive moment (r = 0.582). Both the tail and olive moment mean differences were significantly higher in the study group, with higher ranges (p < 0.05). COVID-19 infection caused statistically significant increases in both the tail and olive damage percentage in patients, causing DNA damage. Lastly, the NLR rate was associated with the presence and progression of COVID-19.
Collapse
|
19
|
Mayne ES, George JA, Louw S. Assessing Biomarkers in Viral Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:159-173. [PMID: 37378766 DOI: 10.1007/978-3-031-28012-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Current biomarkers to assess the risk of complications of both acute and chronic viral infection are suboptimal. Prevalent viral infections like human immunodeficiency virus (HIV), hepatitis B and C virus, herpes viruses, and, more recently, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) may be associated with significant sequelae including the risk of cardiovascular disease, other end-organ diseases, and malignancies. This review considers some biomarkers which have been investigated in diagnosis and prognosis of key viral infections including inflammatory cytokines, markers of endothelial dysfunction and activation and coagulation, and the role that more conventional diagnostic markers, such as C-reactive protein and procalcitonin, can play in predicting these secondary complications, as markers of severity and to distinguish viral and bacterial infection. Although many of these are still only available in the research setting, these markers show promise for incorporation in diagnostic algorithms which may assist to predict adverse outcomes and to guide therapy.
Collapse
Affiliation(s)
- Elizabeth S Mayne
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa.
| | - Jaya A George
- National Health Laboratory Service and Wits Diagnostic Innovation Hub, University of Witwatersrand, Johannesburg, South Africa
| | - Susan Louw
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|