1
|
Sharmen F, Abu Ahmed AM, Rahman MA. Lasia spinosa Stem Aqueous Extract Potentiates Antidiabetic Effects Exhibiting Antioxidant Genes Upregulation and DNA-Damage Protection. Chem Biodivers 2025; 22:e202401074. [PMID: 39625856 DOI: 10.1002/cbdv.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
This research elucidated the hypoglycemic effect correlated with DNA-protective and antioxidative activity of Lasia spinosa stem aqueous extract (LSSAE) using streptozotocin-induced type 2 diabetic rat models. LSSAE, characterized by phytochemical screening, gas chromatography-mass spectroscopy (GC-MS), and FTIR analyses, was investigated for its DNA-protective activity by exposing PBR322 plasmid DNA to Fenton's reagents. Long Evans rats, treated by LSSAE, were found to be improved for body weight, fasting blood glucose level, and oral glucose load. A 30-day supplement of LSSAE significantly recovered serum biochemical markers, including hepatic (i.e., ALP, AST, ALT, and TB); renal (i.e., creatinine and uric acid); and lipid profiles (i.e., TC, TG, HDLc, LDLc, and VLDLc). An increased level of superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH), and a decreased level of malondialdehyde (MDA) were observed in LSSAE-treated rat liver. Antioxidant enzyme activities were evaluated by mRNA expression level of antioxidant genes (CAT, SOD2, GPX1, PON1, PFK1, GAPDH, using the 2-ΔΔCT method, normalized with housekeeping gene, ß-ACTIN) using qRT-PCR. Additionally, histological examination confirmed the restoration of morphology, and function of pancreatic β-cell, kidney, liver, and spleen. Results reveal that LSSAE exerts an antidiabetic effect through upregulation of antioxidant genes, DNA protection and modulation of biochemical and histological parameters.
Collapse
Affiliation(s)
- Farjana Sharmen
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - A M Abu Ahmed
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
2
|
Obakiro SB, Kiyimba K, Gavamukulya Y, Maseruka R, Nabitandikwa C, Kibuuka R, Lulenzi J, Lukwago TW, Chebijira M, Opio M, Tracy ES, Kibuule D, Oriko RO, Waako P, Makaye A, Shadrack DM, Andima M. Deciphering the the molecular mechanism of aloe-emodin in managing type II diabetes mellitus using network pharmacology, molecular docking, and molecular dynamics simulation approaches. In Silico Pharmacol 2025; 13:45. [PMID: 40098752 PMCID: PMC11910477 DOI: 10.1007/s40203-025-00337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
Aloe-emodin (AE) has drawn interest due to its potential activity against type II diabetes mellitus (T2DM). However, the mechanisms underlying its antidiabetic activity are not well explored. Using network pharmacology, molecular docking and molecular dynamics simulation studies, we investigated its molecular mechanisms in the management of T2DM. Potential target genes of AE were predicted using the Swiss Target Prediction (http://www.swisstargetprediction.ch/) database. The GeneCards, OMIM and DisGeNET databases were used to compile a comprehensive list of genes associated with T2DM. A compound-disease-target network was constructed, and protein-protein interaction networks were analysed to identify hub genes. Finally, molecular docking and interaction analysis between AE and the identified proteins were performed using AutoDock tools. Investigation of AE targets and genes associated with T2DM identified 32 overlapping genes. Gene ontology studies revealed that AE may exert its anti-diabetic effects by modulating glucose metabolism and enhancing cellular response to glucose. Furthermore, KEGG pathway analysis suggested that AE influences these processes by targeting pathways related to apoptosis, insulin resistance, and T2DM signaling. The core target proteins identified were TNF, ALB, TP53, PPARG, BCL2, CASP3, and EGFR. AE interaction with each of these proteins exhibited a binding energy of > - 5 kcal/mol, with TNF showing the lowest binding energy (- 7.75 kcal/mol). Molecular dynamics simulation further validated the molecular docking results with TNF and EGFR exhibiting a strong affinity for AE and forming stable interactions. AE exerts its antidiabetic activity through multiple mechanisms, with the most significant being the amelioration of pancreatic β-cell apoptosis by binding to and inhibiting the actions of TNFα. Further cellular and molecular studies are needed to validate these findings. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00337-1.
Collapse
Affiliation(s)
- Samuel Baker Obakiro
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Kenedy Kiyimba
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Yahaya Gavamukulya
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Richard Maseruka
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Catherine Nabitandikwa
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Ronald Kibuuka
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Jalia Lulenzi
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Tonny Wotoyitide Lukwago
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Mercy Chebijira
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Moses Opio
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Edeya Sharon Tracy
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Dan Kibuule
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Richard Owor Oriko
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Paul Waako
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Angela Makaye
- The University of Dodoma, P.O. Box 259, Dodoma, Tanzania
| | - Daniel M Shadrack
- St John's University of Tanzania, P.O. Box 47, Dodoma, Tanzania
- The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Moses Andima
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
- The University of Dodoma, P.O. Box 259, Dodoma, Tanzania
- St John's University of Tanzania, P.O. Box 47, Dodoma, Tanzania
- The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
3
|
Khatun MH, Sami SA, Mim FS, Kumar P, Islam A, Al Mahamud Rian I, Rahman MA, Riya SI, Lokman M, Mamun A, Haque MA, Yeasmin MS, Rana GMM, Barmon J. Unveiling Pharmacological Promise of Mangifera indica (Haribhanga) Peel Extract: Exploring an Untapped Cultivar Through Biochemical and Computational Approaches. SCIENTIFICA 2025; 2025:6516268. [PMID: 40225279 PMCID: PMC11986926 DOI: 10.1155/sci5/6516268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/22/2025] [Indexed: 04/15/2025]
Abstract
The Haribhanga is one of the most renowned varieties of mango native to the Rangpur region of Bangladesh. The study aimed to explore the in vitro and in vivo pharmacological potentialities of the methanolic extract of Mangifera indica (Haribhanga) (MEMI) peel. The antioxidant, antimicrobial, and antiarthritic activities of MEMI peel were conducted by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, disc diffusion, and protein denaturation assays, respectively. The extract was administered to STZ-induced diabetic mice for 7 days for the observation of blood glucose, body weight, lipid profile, and liver enzyme levels. The gas chromatography-mass spectrometry (GC-MS) analysis was performed to identify phytochemicals in the extract. Subsequently, molecular docking was conducted to predict the binding affinity of the identified compounds. The MEMI peel exhibited notable antioxidant potentiality with an IC50 value of 4.43 ± 0.68 μg/mL and antimicrobial activity against Bacillus cereus with a zone of inhibition of 20.67 ± 1.52 mm. Furthermore, MEMI peel demonstrated substantial antiarthritic activity, with the highest inhibition of denaturation of protein (88%) observed at the highest dose (500 μg/mL). In the in vivo experiments, MEMI peel led to a significant increase in high-density lipoprotein (p < 0.001, p < 0.05), with a significant decrease in blood glucose (p < 0.001), triglycerides, total cholesterol, and low-density lipoprotein (p < 0.0001) in STZ-induced diabetic mice. Comparing the diabetic control mice, the MEMI peel substantially decreased (p < 0.001) the high serum levels of aspartate aminotransferase and alanine aminotransferase. Moreover, the extract significantly improved the body weight (p < 0.001) of diabetic mice after 7 days of treatment. GC-MS analysis identified 28 bioactive compounds, primarily fatty acid esters in the MEMI peel. Di-n-octyl phthalate, terpinen-4-ol, 8,11,14-docosatrienoic acid methyl ester, and phenol, 2-methoxy-4-(2-propenyl)-acetate exhibited the most favorable binding potential in molecular docking studies. The results suggest that MEMI peel possesses antimicrobial, antiarthritic, antidiabetic, antihyperlipidemic, and liver enzyme protective activities as a promising antioxidant.
Collapse
Affiliation(s)
- Mst. Hajera Khatun
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Farhana Sultana Mim
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Pappu Kumar
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Ariful Islam
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Injamam Al Mahamud Rian
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Md. Ashikur Rahman
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Sharmin Islam Riya
- Department of Pharmacy, School of Science and Technology, Varendra University, Rajshahi 6204, Bangladesh
| | - Md. Lokman
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Al Mamun
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Anwarul Haque
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mst. Sarmina Yeasmin
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research, Rajshahi 6206, Bangladesh
| | - G. M. Masud Rana
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research, Rajshahi 6206, Bangladesh
| | - Jaytirmoy Barmon
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research, Rajshahi 6206, Bangladesh
| |
Collapse
|
4
|
Jayasri A, Eswara Prasad P, Kala Kumar BDP, Padmaja K, Shivakumar P, Anil Kumar B, Vidya B. Green synthesis of silver and zinc oxide nanoparticles with Thespesia populnea extract and investigation of their antioxidant potential against mouse mastitis model. Front Vet Sci 2025; 12:1521143. [PMID: 40098888 PMCID: PMC11911465 DOI: 10.3389/fvets.2025.1521143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Bovine mastitis in dairy cattle is often complicated by antibiotic-resistant bacteria such as Staphylococcus aureus. Metal-based nanoparticles, especially plant-mediated nanoparticles have emerged as promising therapeutic tools for treating S. aureus-associated mastitis through the intramammary route. In this study, we synthesized, characterized, and assessed the antioxidant activity of Thespesia populnea nano silver particles (TPNS) and Thespesia populnea nano zinc oxide particles (TPNZ) derived from Thespesia populnea leaf extract (TPE). Silver nitrate and zinc acetate were reduced using TPE to synthesize TPNS and TPNZ, which were characterized by Scanning Electron Microscopy (SEM), UV-Visible Spectroscopy, Dynamic Light Scattering (DLS), and Zeta Potential analysis. The antioxidant activity of green-synthesized nanoparticles was evaluated in mastitis-induced mice. Methods Forty-eight female Swiss albino mice, 10-15 days of lactation, were divided into six groups (number of mice in each group-8). Group I served as the control, while mastitis was induced in groups II, III, IV, V and VI. Group III received T. populnea methanolic leaf extract (TPE); groups IV and V were treated with TPNS and TPNZ respectively; and group VI received Ceftriaxone. Results UV-Visible Spectroscopy confirmed the successful reduction of the metal ions to nanoparticles. SEM and DLS analysis revealed agglomerated morphologies with minimal variations in particle size. TPNS had a higher zeta potential than TPNZ, indicating a greater stability in the suspension. Mastitis-induced group showed significantly increased thiobarbituric acid reacting substances (TBARS) levels (p < 0.01) and significantly decreased Superoxide dismutase (SOD), Glutathione- S- transferase (GST), catalase (CAT), reduced glutathione (GSH), and glutathione peroxidase (GPx) activities (p < 0.01) compared to group I. Improvements were observed in groups IV, VI, V, and III. Conclusion The TPNS-treated group (IV) showed the highest restoration of antioxidant activity, followed by the ceftriaxone (VI), TPNZ (V), and TPE-treated groups (III). These findings suggest that phytogenic nanoparticles exhibit higher antioxidant activity than TPE extract alone.
Collapse
Affiliation(s)
- A Jayasri
- Department of Veterinary Biochemistry, College of Veterinary Science, Hyderabad, PVNRTVU Telangana, India
| | - P Eswara Prasad
- Department of Veterinary Biochemistry, College of Veterinary Science, Tirupati, SVVU, Andhra Pradesh, India
| | - B D P Kala Kumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Hyderabad, PVNRTVU, Telangana, India
| | - K Padmaja
- Department of Veterinary Biochemistry, College of Veterinary Science, Tirupati, SVVU, Andhra Pradesh, India
| | - P Shivakumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Mamnoor, Warangal, PVNRTVU, Telangana, India
| | - B Anil Kumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Korutla, PVNRTVU, Telangana, India
| | - B Vidya
- Department of Livestock Farm Complex, College of Veterinary Science, Hyderabad, PVNRTVU, Telangana, India
| |
Collapse
|
5
|
Mallikarjuna Rao B, Vedavijaya T, Ramani YR, Chowdhury B. Evaluation of Vinca Rosea's Protective Effects on Hepatic Function in Streptozotocin-Induced Diabetic Wistar Albino Rats. Cureus 2024; 16:e74166. [PMID: 39712809 PMCID: PMC11662991 DOI: 10.7759/cureus.74166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Background Diabetes mellitus, characterized by chronic hyperglycemia, often leads to severe hepatic dysfunction, including increased liver enzyme levels and histopathological changes in the liver. Streptozotocin (STZ)-induced diabetic rat models provide a valuable method for evaluating potential therapeutic agents that target hepatic complications. Vinca rosea, a medicinal plant with known anti-diabetic properties, has been used traditionally for its hepatoprotective effects, although scientific evidence is limited. Objective This study aimed to evaluate the protective effects of Vinca rosea leaf extract on hepatic function, including biochemical and histopathological changes, in STZ-induced diabetic Wistar albino rats. Methods Thirty male Wistar albino rats were randomly divided into five groups: Normal control (NC), diabetic control (DC), low-dose Vinca rosea (LD, 200 mg/kg), high-dose Vinca rosea (HD, 400 mg/kg), and positive control (PC, metformin 100 mg/kg). Diabetes was induced by a single intraperitoneal injection of STZ (100 mg/kg). Vinca rosea treatment was administered daily for 30 days. Blood samples were collected at 15 and 30 days to assess blood glucose and liver function, including serum bilirubin, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels. Liver tissue was collected for histopathological examination. Data were analyzed using analysis of variance (ANOVA), with p < 0.05 considered statistically significant. Results The DC group showed significantly elevated blood glucose levels (256 ± 19.8 mg/dL at 15 days and 308.5 ± 13.1 mg/dL at 30 days). Vinca rosea treatment significantly reduced blood glucose in a dose-dependent manner, with the HD group showing the greatest improvement (143 ± 12.7 mg/dL at 15 days and 158.5 ± 10.7 mg/dL at 30 days). Liver function markers, including total and direct bilirubin, AST, and ALT, were significantly elevated in the DC group, indicating hepatic damage. Vinca rosea-treated groups showed significant improvements in all liver function parameters, with the HD group displaying the most substantial reductions in bilirubin, AST, and ALT levels. Histopathological analysis revealed marked hepatocellular damage in the DC group, including necrosis and ballooning degeneration. In contrast, Vinca rosea-treated groups, particularly the HD group, exhibited near-normal liver architecture with minimal damage. Conclusion Vinca rosea demonstrated significant hepatoprotective effects in STZ-induced diabetic rats by reducing blood glucose levels and improving liver function. These results suggest that Vinca rosea could be a promising therapeutic agent for managing diabetes-related hepatic dysfunction.
Collapse
Affiliation(s)
- Balida Mallikarjuna Rao
- Pharmacology and Therapeutics, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - T Vedavijaya
- Pharmacology, Meenakshi Ammal Dental College and Hospital, Chennai, IND
| | - Y Roja Ramani
- Clinical Pharmacology, Orissa University of Health Sciences, Bhubaneswar, Bhubaneswar, IND
| | | |
Collapse
|
6
|
Dong S, Ding L, Zheng X, Wang O, Cai S. Phenolic Compositions of Different Fractions from Coffee Silver Skin and Their Antioxidant Activities and Inhibition towards Carbohydrate-Digesting Enzymes. Foods 2024; 13:3083. [PMID: 39410118 PMCID: PMC11475555 DOI: 10.3390/foods13193083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Seeking food-derived antioxidants and inhibitors of α-glucosidase and α-amylase has been recognized as an effective way for managing diabetes. Coffee silver skin (CSS) is rich in phenolic compounds, which may be potential agents as antioxidants and for α-glucosidase and α-amylase inhibition. But whether phenolics in different forms show similar bioactivity remains unknown. In this study, phenolic compounds in CSS were extracted as free phenolics (FPs), esterified phenolics (EPs), and bound phenolics (BPs). The phenolic profiles and antioxidant activities of them were investigated. Their inhibitory effects on α-glucosidase and α-amylase were analyzed, and the inhibitory mechanisms were elucidated by molecular docking and molecular dynamic simulation. Results showed that FPs exhibited the best antioxidant ability and inhibitory effects on α-glucosidase and α-amylase. A total of 17 compounds were identified in FPs with 3-caffeoylquinic acid, 4-feruloylquinic acid, and dicaffeoylquinic acids as the dominant ones. Typical phenolics in FPs could bind to α-glucosidase and α-amylase through hydrogen bonds and form hydrophobic interaction with several key amino acid residues. In addition, 3,4-dicaffeoylquinic acid and 3-caffeoylquinic acid might be the principal components that account for the inhibitory effect of FPs on α-glucosidase. The results of this study may provide some scientific support for CSS utilization as a health-beneficial component in functional food development for type 2 diabetes mellitus management.
Collapse
Affiliation(s)
- Shiyu Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| | - Xiuqing Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| | - Ou Wang
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| |
Collapse
|
7
|
Sari DK, Ibrahim N, Herlina N, Arrasyid NK, Dharmajaya R, Rachmawati M, Muhammad N, Salazar-Chang I. The Effects of Red Palm Oil, Koja Bay Leaves, and Passion Fruit Seeds Formulation on Antioxidant Activity, Antihyperlipidemia, BDNF, and Lipase Enzyme Activity on Sprague-Dawley Rats. J Exp Pharmacol 2024; 16:271-284. [PMID: 39262571 PMCID: PMC11389710 DOI: 10.2147/jep.s466494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Background Local wisdom food ingredients in North Sumatra, Indonesia, are a source of phenolics which have antioxidant, antihyperlipidemia, neuronal survival, and growth. Administering products with antioxidant properties can provide a supporting effect in preventing inflammation and neurodegenerative process. Objective The main objective of this study was to analyze the formulation of red palm oil (Elaeis guineensis Jacq), koja bay leaves (Murraya koenigii L Spreng), and passion fruit seeds (Passiflora edulis Sims) to improve lipid profile, antioxidant activity, Brain-Derived Neurotrophic Factor (BDNF), and lipase enzyme activity of Sprague-Dawley rats. Methods This study was an in vivo and pre-post experimental study, starting with analyzing flavonoid of the three extract ingredients, then tested by giving it to rats for 14 days and ending with induction administration of lipopolysaccharide (LPS) for two days. This pre-post study on animals involved 36 rats divided into 6 groups. At the end of the study, termination and examination of malondialdehyde, lipid profile, glucose, BDNF, lipase enzyme activity and histopathological examination were carried out. Results The study results showed that there were significant values in several parameters, which were body weight, LDL, LDL/HDL ratio, BDNF, and lipase enzyme activity especially in the group of rats given LPS and the group with high calories-fat-protein. This study showed that there were significant differences in body weight, LDL levels, and LDL/HDL ratio in each group of rats, especially in the group given the formulation of the three extract ingredients, the significant dose showed in 300mg/kg body weight (p < 0.001). Conclusion The formulation of red palm oil, koja bay leaves, and passion fruit seeds showed significant reduction in LDL levels, LDL/HDL ratio, BDNF, and lipase enzyme activity.
Collapse
Affiliation(s)
- Dina Keumala Sari
- Nutrition Department, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Nurhadi Ibrahim
- Physiology and Biophysics Department, Faculty of Medicine, Universitas Indonesia, Jakarta, Center Java, Indonesia
| | - Nina Herlina
- Pharmacy Department, Faculty of Pharmacy, Universitas Pakuan, Bogor, West Java,Indonesia
- Program Study of Pharmacy, Faculty of Math and Science, Pakuan University, Bogor, West Java, Indonesia
| | - Nurfida Khairina Arrasyid
- Parasitology Department, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Ridha Dharmajaya
- Neurosurgery Department, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Meike Rachmawati
- Anatomical Pathology Department, Faculty of Medicine, Bandung Islamic University, Bandung, Indonesia
| | - Noorzaid Muhammad
- Cluster of Integrative Physiology and Molecular Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Ivan Salazar-Chang
- International Relation Department, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
8
|
Abdul MA, Ayele AG, Teka F, Gemchu W, Shibeshi W. Evaluations of the in vitro and in vivo antidiabetic activity of 70 % ethanolic fruit extracts of Rosa abyssinica. Metabol Open 2024; 23:100317. [PMID: 39310665 PMCID: PMC11414676 DOI: 10.1016/j.metop.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Background Diabetes mellitus is becoming major health challenge with continually increasing burden. High costs of conventional medicines and numerous side effects associated with them, on the other hand, easy availability and accessibility of traditional herbal medicines calls upon experimental investigations to validate their effect on lowering blood glucose level. Methods The dried fruit of Rosa abyssinica was macerated with 70 % ethanol and the extract's in vitro antidiabetic activity was investigated using dinitrosalisylic acid method for alpha amylase inhibitory activity. Furthermore, the in vivo hypoglycemic and Antihyperglycemic effects of various doses of the extract (100, 200 and 400 mg/kg) was determined on normoglycemic, glucose loaded (1500 mg/kg) and Streptozotocine (180 mg/kg)-induced diabetic mice models. Results The acute oral toxicity study revealed the plant showed no toxic effect on swiss albino mice at 2000 mg/kg. The in vitro alpha amylase inhibitory activity study showed that the extract has comparable IC50 value of 21.37 ± 4.252 μg/ml with the standard drug acarbose (IC50 value of 26.72 ± 3.59 μg/ml). On the other hand, in normal mice, none of the dose levels except at 400 mg/kg significantly reduces blood glucose level. This is in contrast to the oral glucose tolerance test, which the extract produced significant reduction at 60, 90 and 120 min following glucose challenge. The 70 % ethanolic fruit extracts of Rosa abyssinica also experienced profound antidiabetic activity in streptozotocin-induced diabetic model. In the single-dose study, both RAFE200 and RAFE400 demonstrated a significant (P˂0.05) reduction in blood glucose levels at 1, 2, 3, and 4 h. Similarly, in the repeated-dose study, RAFE200 and RAFE400 not only significantly reduced blood glucose levels but also produced a notable improvement in animal body weight. Conclusion The 70 % ethanolic fruit extracts of Rosa abyssinica have shown significant in vitro alpha amylase inhibition effect and an in vivo blood glucose level lowering effects in diabetic mice.Therefore, this study supports the traditional use of Rosa abyssinica in the management of diabetes mellitus.
Collapse
Affiliation(s)
- Mohammed Ahmed Abdul
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Ethiopia
| | - Frehiwot Teka
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Worku Gemchu
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Ethiopia
| |
Collapse
|
9
|
Indla E, Rajasekar KV, Naveen Kumar B, Kumar SS, P UK, Sayana SB. Modulation of Oxidative Stress and Glycemic Control in Diabetic Wistar Rats: The Therapeutic Potential of Theobroma cacao and Camellia sinensis Diets. Cureus 2024; 16:e55985. [PMID: 38606255 PMCID: PMC11007453 DOI: 10.7759/cureus.55985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background Diabetes mellitus is a complex metabolic disorder characterized by oxidative stress and impaired glycemic control. This study investigates the therapeutic potential of Theobroma cacao and Camellia sinensis diets in diabetic Wistar rats and assesses their impact on oxidative stress markers and blood glucose levels. Methods In this experiment, eight groups of six male Wistar rats (n = 12.5%), aged 8 to 12 weeks, were carefully set up to see how different treatments for diabetes and oxidative stress affected the two conditions. The random selection process was implemented to minimize any potential bias and ensure that the results of the study would be representative of the general population of Wistar rats. The groups were as follows: a nondiabetic control group (NDC) served as the baseline, while diabetes was induced in the alloxan monohydrate group (150 mg/kg). Another group was given the standard drug metformin (M, 100 mg/kg), and two control groups that did not have diabetes were given extracts of Theobroma cacao (TC, 340 mg/kg) and Camellia sinensis (CS, 200 mg/kg). Three groups of diabetic rats were given a mix of these treatments. Theobroma cacao and Camellia sinensis extracts were given at set doses (TC, 340 mg/kg; CS, 200 mg/kg), along with 150 mg/kg of a drug that causes diabetes. Over a 21-day period, oxidative stress parameters such as glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione reductase (GSHrd) levels, and blood glucose were carefully measured to check for signs of oxidative stress and diabetes progression Results Considerable differences in GSH levels were noted across the groups, with the highest GSH concentration found in the group treated with the inducing drug, while the lowest GSH levels were observed in the diabetic group that was administered both Theobroma cacao and Camellia sinensis (p < 0.001). MDA levels also varied, with the diabetic group treated with Theobroma cacao having the highest MDA concentration (3.54 ± 0.29 μmol/L) and the nondiabetic control group treated with Camellia sinensis exhibiting the lowest MDA levels (1.66 ± 0.08 μmol/L; p < 0.001). SOD activity was highest in the standard drug group and lowest in the diabetic group treated with Theobroma cacao. GSH activity was notably higher in the diabetic groups that received dietary interventions (p < 0.001). Blood glucose levels showed diverse responses, with the standard drug group experiencing a substantial reduction, while the inducing drug group exhibited a consistent increase. Conclusion The study highlights the significant impact of dietary interventions with Theobroma cacao and Camellia sinensis on oxidative stress markers and blood glucose regulation in diabetic Wistar rats. These findings suggest a potential role for these dietary components in mitigating oxidative stress and improving glycemic control in diabetes, although further research is warranted to elucidate the underlying mechanisms and clinical implications.
Collapse
Affiliation(s)
- Edward Indla
- Department of Anatomy, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - K V Rajasekar
- Department of Radiology, Meenakshi Medical College Hospital and Research Institute, Chennai, IND
| | | | - S Saravana Kumar
- Department of Anatomy, Meenakshi Medical College Hospital and Research Institute, Chennai, IND
| | - Udaya Kumar P
- Department of Anatomy, Mamata Medical College, Khammam, IND
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College and General Hospital, Suryapet, IND
| |
Collapse
|
10
|
Kavital A, Hiremath MB, Vishwanath Swamy AHM, Patil SB. Hypoglycemic activity of Syzygium cumini (L.) Skeels seed extracts: an approach to in vitro, in vivo, and in silico studies. J Biomol Struct Dyn 2023; 42:12271-12281. [PMID: 37819095 DOI: 10.1080/07391102.2023.2268218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
This research is carried out to explore the hypoglycemic activity of Syzygium cumini seed extracts by in vitro, in vivo, and in silico methods. For in vitro studies the α-amylase and α-glucosidase enzyme inhibition assays were employed. For in vivo studies 30 alloxan induced Wistar rats were used. They were orally administered with glibenclamide and low/high dose of the extracts and were monitored regularly for the change in blood glucose levels for about 28 days. The in silico molecular docking was conducted to evaluate the binding interaction of 1,2,3-Benzenetriol with human pancreatic α-amylase and α-glucosidase. It was found that all the extracts were able to inhibit the α-amylase and α-glucosidase enzymes. Among which the acetone extract showed greater inhibition with 72.52 ± 0.51% and 63.02 ± 0.73% for both the enzymes, respectively. There was significant (p < 0.05) reduction in blood glucose levels in the rats administered with glibenclamide and extracts. In silico docking results revealed that the compound 1,2,3-Benzenetriol exhibited the highest binding affinity for human pancreatic α-amylase with binding energy -7.7 kcal/mol. Thus suggesting the utilization of S. cumini seeds in the management of diabetes mellitus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Apsara Kavital
- Department of Biotechnology & Microbiology, Karnatak University, Dharwad, India
| | - M B Hiremath
- Department of Biotechnology & Microbiology, Karnatak University, Dharwad, India
| | - A H M Vishwanath Swamy
- KLE College of Pharmacy, Hubballi (A constituent Unit of KLE Academy of Higher Education and Research), Belagavi, India
| | - Santosh B Patil
- KLE College of Pharmacy, Hubballi (A constituent Unit of KLE Academy of Higher Education and Research), Belagavi, India
| |
Collapse
|
11
|
Hussain H. Editorial for Special Issue "Natural Products as Potential Source of Antidiabetic Compounds". Curr Issues Mol Biol 2023; 45:2699-2702. [PMID: 37185700 PMCID: PMC10137286 DOI: 10.3390/cimb45040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 05/17/2023] Open
Abstract
Natural products (NPs) are characterized by possessing intriguing scaffold diversity along with structural complexity and have been a comprehensive source of lead compounds for drug discovery [...].
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|