1
|
Purkayastha KD, Bhattacharya SS, Gogoi N. Green synthesized Zn-based mono and bi-metallic nanoparticles for improved micronutrient delivery: A futuristic study in hydroponic crop culture system. CHEMOSPHERE 2025; 380:144427. [PMID: 40347672 DOI: 10.1016/j.chemosphere.2025.144427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 03/30/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025]
Abstract
Hydroponic farming is gaining importance due to the rapid expansion of cities worldwide. However, the significance of nano-enabled nutrient delivery in hydroponic crop culture is still poorly understood. Therefore, ZnO monometallic and Zn-Cu bimetallic nanoparticles (MNP and BNP) were innovatively synthesized through green routes using alcoholic leaf extract (ALE) 1-10 % (w/v) of Chrysalidocarpus lutescens due to its enriched phytochemical profile, prolific radical scavenging efficiency, and reasonably high IC50 values. The structural uniformity and batch-wise yield of MNP and BNP were optimized following response surface methodology. The uniqueness of C. lutescens-derived phytochemicals facilitated the production of anisotropic and crystalline MNP and BNP. It was revealed that structural uniformity and yields were most significant at pH 9 with 3 % ALE for both MNP (Yield/batch -20.54 ± 0.15 g) and BNP (Yield/batch - 18.37 ± 0.30 g). Both nanoparticles were hexagonal 30-85 nm nanocrystals, stable at alkaline pH (∼9) with uniform pore volume, surface area, and surface charge. The hydroponic compatibility of the MNP and BNP were compared with non-nanoscale Zn and Cu by cultivating Cicer arietinum with different doses of MNP, BNP, and other treatments. Among all doses, 250 and 500 mg L-1 doses of MNP and BNP significantly augmented C. arietinum germination by ∼40-45 % and plumule growth by ∼18-22 % and enhanced chlorophyll stability while reducing oxidative stress in the seedlings. The MNP and BNP were ecologically safe for microorganisms (Rhizobium sp. and Salmonella typhi) and were viable within 250 mg L-1 to 2000 mg L-1 of MNP and BNP doses. Overall, the study reveals that the green synthetic routes using C. lutescens phytoextract led to significant yield of productive, biocompatible, and organically rich Zn and Cu-based MNP and BNP that can be easily pursued and sustainably applied in hydroponics or other agriculture platforms.
Collapse
Affiliation(s)
| | | | - Nayanmoni Gogoi
- Department of Environmental Science, Tezpur University, Assam, 784028, India.
| |
Collapse
|
2
|
Jangra N, Singla A, Puri V, Dheer D, Chopra H, Malik T, Sharma A. Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Adv 2025; 15:12402-12442. [PMID: 40248229 PMCID: PMC12005159 DOI: 10.1039/d4ra08604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Recent advancements in wound healing technologies focus on incorporating herbal bioactives into biopolymeric formulations. A biocompatible matrix that promotes healing is provided by biopolymeric wound dressings. These dressings use components such as ulvan, hyaluronic acid, starch, cellulose, chitosan, alginate, gelatin, and pectin. These natural polymers assist in three crucial processes, namely, cell adhesion, proliferation, and moisture retention, all of which are necessary for effective wound repair. Curcumin, quercetin, Aloe vera, Vinca alkaloids, and Centella asiatica are some of the herbal bioactives that are included in biopolymeric formulations. They have powerful anti-inflammatory, antibacterial, and antioxidant activities. Chitosan, cellulose, collagen, alginate, and hyaluronic acid are some of the biopolymers that have shown promise in clinical trials for wound healing. These trials have also confirmed the safety and functional performance of these materials. Their recent advancements in wound care can be understood by the increasing number of patents linked to these formulations. These innovative dressings improve healing outcomes in acute and chronic wounds while minimizing adverse effects by incorporating biopolymers with herbal bioactives in an efficient manner. This review emphasizes that the development of next-generation wound care products can be facilitated via the integration of natural materials and bioactive substances.
Collapse
Affiliation(s)
- Nitin Jangra
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Aakanksha Singla
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai - 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Oromia Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab 144401 India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| |
Collapse
|
3
|
Nemr OT, Abdel-wahab MS, Hamza ZS, Ahmed SA, El-Bassuony AA, Abdel-Gawad OF, Mohamed HS. Investigating the Anticancer and Antioxidant Potentials of a Polymer-Grafted Sodium Alginate Composite Embedded with CuO and TiO2 Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:2713-2728. [DOI: 10.1007/s10924-024-03255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 01/04/2025]
Abstract
AbstractIn this study, we conducted the synthesis of a composite material by grafting an acrylonitrile-co-styrene (AN-co-St) polymer into sodium alginate and incorporating CuO (copper oxide) and TiO2 (titanium dioxide) nanoparticles. The primary objective was to investigate the potential anticancer and antioxidant activities of the composite material. First, CuO and TiO2 nanoparticles were synthesized and characterized for their size, morphology, and surface properties. Subsequently, these nanoparticles were integrated into the sodium alginate matrix, which had been grafted with the AN-co-St polymer, resulting in the formation of the composite material. To confirm successful nanoparticle incorporation and assess the structural integrity of the composite, various techniques such as X-ray diffraction analysis (XRD), scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were employed. The composite material’s anticancer and antioxidant activities were then evaluated. In vitro cell viability assays using the HepG-2 cell line were performed to assess potential cytotoxic effects, while antioxidant (DPPH) assays were conducted to determine the composite’s ability to scavenge free radicals and protect against oxidative stress. Preliminary results indicate that the composite material demonstrated promising anticancer and antioxidant activities. The presence of CuO and TiO2 nanoparticles within the composite contributed to these effects, as these nanoparticles are known to possess anticancer and antioxidant properties. Furthermore, the grafting of the AN-co-St polymer into sodium alginate enhanced the overall performance and stability of the composite material.
Collapse
|
4
|
Maize MS, Alnassar H, Zeid AMA, Eisa WH, Ali ZI. Solid-State Synthesis of Liquorice-Stabilized Copper-Based Nanoparticles: Structural and Catalytic Studies. Chem Biodivers 2024; 21:e202301794. [PMID: 38356385 DOI: 10.1002/cbdv.202301794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
A large-scale quantity of copper oxalate nanoparticles were successfully obtained via a facile and green solid-state chemical reaction. Copper oxalate nanoparticles were obtained by ball-milling between copper chloride, Liquorice (Glycyrrhiza glabra), and ascorbic acid at ambient conditions. The size and morphology of copper oxalate nanoparticles powder were studied by transmission and scanning electron microscopy. The prepared nanoparticles were semi-spherical in shape and ranged from 5 to 15 nm in size. UV/Vis spectroscopy, Fourier transforms infrared spectroscopy, and X-ray photoelectron spectroscopy measurements were carried out to characterize the prepared samples. Copper oxalate nanoparticles were evaluated as a catalyst in the catalytic degradation of 4-nitrophenol, bromophenol blue, reactive yellow, and a mixture of the three pollutants. The present study combined solid-state reaction and green requirements for the mass production of nanomaterials. The proposed reaction is performed in simple steps, inexpensive, low energy consuming, solvent-free, and minimizes the emission of secondary wastes.
Collapse
Affiliation(s)
- Mai S Maize
- Chemistry Department, Faculty of Science, Menoufia University, Egypt
| | - H Alnassar
- Department of laboratories technology, College of technological studies., Public authority of applied education and training., Shuwaikh, Kuwait
| | - A M Abou Zeid
- Chemistry Department, Faculty of Science, Jazan University, Saudi Arabia
| | - W H Eisa
- Spectroscopy Department, Physics Research Institute, National Research Centre (NRC), Dokki, Cairo, Egypt
| | - Z I Ali
- Radiation Chemistry Department, National Center for Radiation Research and Technology, NCRRT), Egyptian Atomic Energy Authority, ( EAEA), 3 Ahmad El-zoned St., Madinat Nasr, Cairo, Egypt
| |
Collapse
|
5
|
Kaur M, Kumar V, Awasthi A, Singh K. Gum arabic-assisted green synthesis of biocompatible MoS 2 nanoparticles for methylene blue photodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112847-112862. [PMID: 37840085 DOI: 10.1007/s11356-023-30116-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
The current work reports the gum arabic-mediated greener synthesis of MoS2 nanoparticles (NPs) and its utilization for the solar light-assisted degradation of methylene blue. Furthermore, the safety analyses were performed on human-beneficial gut bacterium, L. delbrueckii, and human blood cells to confirm the biocompatibility of NPs synthesized. Antioxidant and antimicrobial activities were done to explore their usefulness for biological applications. Sonication and microwave treatment were used to obtain spherical 10-12 nm MoS2 NPs as characterized using high-resolution transmission electron microscopy. FT-IR characterization revealed the occurrence of gum arabic on the NPs surface. The MoS2 NPs exhibited ~ 98% MB degradation within 8 h under direct sunlight exposure. Moreover, the reusability studies have also been evaluated and free radical trapping experiments indicated that superoxide (•O2-) is the dominant active species of the reaction system. Furthermore, 98.89% MB degradation efficiency was observed within 150 min in the case of real textile industry MB effluent samples. Untreated MB inhibited the growth of L. delbrueckii on MRS agar plates, while growth was observed in the case of MoS2 NPs-treated MB samples indicating safety of current MB degradation approach. MoS2 NPs inhibited the growth of E. coli MTCC1698 and S. aureus MTCC 3160 with 26 mm and 21 mm zone of inhibition, respectively. Furthermore, MoS2 NPs have shown antioxidant properties, resulting in 82.3 ± 0.43% of DPPH scavenging activity which was comparable to ascorbic acid (81.6 ± 0.6%), a standard antioxidant molecule. The NPs have not shown any hemolytic activity at 0.0625 and 0.125 mg/mL doses to human blood proving their biocompatible nature. Gum arabic-synthesized biocompatible MoS2 NPs have good potential to treat MB released as waste from the textile industry and other biological applications.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Abhishek Awasthi
- Department of Biotechnology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, Himachal Pradesh, 174103, India
| | - Kulvinder Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh, UT, 160011, India
| |
Collapse
|
6
|
Hassan IU. Diabetes Management by Fourth-Generation Glucose Sensors Based on Lemon-Extract-Supported CuO Nanoporous Materials. Molecules 2023; 28:6763. [PMID: 37836606 PMCID: PMC10574443 DOI: 10.3390/molecules28196763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Diabetes is a major worldwide health issue, impacting millions of people around the globe and putting pressure on healthcare systems. Accurate detection of glucose is critical for efficient diabetes care, because it allows for prompt action to control blood sugar levels and avoid problems. Reliable glucose-sensing devices provide individuals with real-time information, allowing them to make more educated food, medicine, and lifestyle decisions. The progress of glucose sensing holds the key to increasing the quality of life for diabetics and lowering the burden of this prevalent condition. The present investigation addresses the synthesis of a CuO@lemon-extract nanoporous material using the sol-gel process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the morphological properties of the composite, which revealed a homogeneous integration of CuO nanoparticles (NPs) on the surface of the matrix. The existence of primarily oxidized copper species, especially CuO, was confirmed by X-ray diffraction spectroscopy (XRD) investigation in combination with energy-dispersive X-ray (EDX) spectroscopy. The CuO@lemon-extract-modified glassy carbon electrode (CuO@lemon-extract GCE) performed well in non-enzymatic electrochemical sensing applications such as differential pulse voltammetry (DPV) and amperometric glucose detection. The electrode achieved a notable sensitivity of 3293 µA mM-1 cm-2 after careful adjustment, with a noticeable detection limit of 0.01 µM (signal-to-noise ratio of 3). The operational range of the electrode was 0.01 µM to 0.2 µM, with potential applied of 0.53 V vs. Ag/AgCl. These findings underscore the CuO@lemon-extract GCE's promise as a robust and reliable platform for electrochemical glucose sensing, promising advances in non-enzymatic glucose sensing (NEGS) techniques.
Collapse
Affiliation(s)
- Israr U Hassan
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, Salalah PC 211, Oman
| |
Collapse
|
7
|
Both J, Fülöp AP, Szabó GS, Katona G, Ciorîță A, Mureșan LM. Effect of the Preparation Method on the Properties of Eugenol-Doped Titanium Dioxide (TiO 2) Sol-Gel Coating on Titanium (Ti) Substrates. Gels 2023; 9:668. [PMID: 37623123 PMCID: PMC10454635 DOI: 10.3390/gels9080668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The focus of this study was the preparation of sol-gel titanium dioxide (TiO2) coatings, by the dip-coating technique, on Ti6Al4V (TiGr5) and specific Ti implant substrates. In order to confer antibacterial properties to the layers, Eugenol was introduced in the coatings in two separate ways: firstly by introducing the Eugenol in the sol (Eug-TiO2), and secondly by impregnating into the already deposed TiO2 coating (TiO2/Eug). Optimization of Eugenol concentration as well as long term were performed in orderboth short- and long-term Eugenol concentration was performed to investigate the prepared samples thoroughly. The samples were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PDP). To investigate their resistance against Gram-negative Escherichia coli bacteria, microbiological analysis was performed on coatings prepared on glass substrates. Structural studies (FT-IR analysis, Raman spectroscopy) were performed to confirm Eugenol-TiO2 interactions. Coating thicknesses and adhesion were also determined for all samples. The results show that Eug-TiO2 presented with improved anticorrosive effects and significant antibacterial properties, compared to the other investigated samples.
Collapse
Affiliation(s)
- Julia Both
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany J. St., 400028 Cluj-Napoca, Romania
| | - Anita-Petra Fülöp
- Department of Chemistry and Chemical Engineering of Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany J. St., 400028 Cluj-Napoca, Romania
| | - Gabriella Stefania Szabó
- Department of Chemistry and Chemical Engineering of Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany J. St., 400028 Cluj-Napoca, Romania
| | - Gabriel Katona
- Department of Chemistry and Chemical Engineering of Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany J. St., 400028 Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- Department of Molecular Biology and Biotechnology, Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania
| | - Liana Maria Mureșan
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany J. St., 400028 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Gontrani L, Bauer EM, Talone A, Missori M, Imperatori P, Tagliatesta P, Carbone M. CuO Nanoparticles and Microaggregates: An Experimental and Computational Study of Structure and Electronic Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4800. [PMID: 37445114 DOI: 10.3390/ma16134800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The link between morphology and properties is well-established in the nanoparticle literature. In this report, we show that different approaches in the synthesis of copper oxide can lead to nanoparticles (NPs) of different size and morphology. The structure and properties of the synthesized NPs are investigated with powder X-ray diffraction, scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS). Through detailed SEM analyses, we were able to correlate the synthetic pathways with the particles' shape and aggregation, pointing out that bare hydrothermal pathways yield mainly spheroidal dandelion-like aggregates, whereas, if surfactants are added, the growth of the nanostructures along a preferential direction is promoted. The effect of the morphology on the electronic properties was evaluated through DRS, which allowed us to obtain the electron bandgap in every system synthesized, and to find that the rearrangement of threaded particles into more compact structures leads to a reduction in the energy difference. The latter result was compared with Density Functional Theory (DFT) computational models of small centrosymmetric CuO clusters, cut from the tenorite crystal structure. The computed UV-Vis absorption spectra obtained from the clusters are in good agreement with experimental findings.
Collapse
Affiliation(s)
- Lorenzo Gontrani
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Elvira Maria Bauer
- Italian National Research Council-Institute of Structure of Matter (CNR-ISM), Via Salaria km 29.3, 00015 Monterotondo, Italy
| | - Alessandro Talone
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Mauro Missori
- Institute of Complex Systems, National Research Council (CNR-ISC) and Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizia Imperatori
- Italian National Research Council-Institute of Structure of Matter (CNR-ISM), Via Salaria km 29.3, 00015 Monterotondo, Italy
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
- Italian National Research Council-Institute of Structure of Matter (CNR-ISM), Via Salaria km 29.3, 00015 Monterotondo, Italy
| |
Collapse
|
9
|
Tyuryaeva I, Lyublinskaya O. Expected and Unexpected Effects of Pharmacological Antioxidants. Int J Mol Sci 2023; 24:ijms24119303. [PMID: 37298254 DOI: 10.3390/ijms24119303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In this review, we have collected the existing data on the bioactivity of antioxidants (N-acetylcysteine, polyphenols, vitamin C) which are traditionally used in experimental biology and, in some cases, in the clinic. Presented data show that, despite the capacity of these substances to scavenge peroxides and free radicals in cell-free systems, their ability to exhibit these properties in vivo, upon pharmacological supplementation, has not been confirmed so far. Their cytoprotective activity is explained mainly by the ability not to suppress, but to activate multiple redox pathways, which causes biphasic hormetic responses and highly pleiotropic effects in cells. N-acetylcysteine, polyphenols, and vitamin C affect redox homeostasis by generating low-molecular-weight redox-active compounds (H2O2 or H2S), known for their ability to stimulate cellular endogenous antioxidant defense and promote cytoprotection at low concentrations but exert deleterious effects at high concentrations. Moreover, the activity of antioxidants strongly depends on the biological context and mode of their application. We show here that considering the biphasic and context-dependent response of cells on the pleiotropic action of antioxidants can help explain many of the conflicting results obtained in basic and applied research and build a more logical strategy for their use.
Collapse
Affiliation(s)
- Irina Tyuryaeva
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretskii pr. 4, 194064 St. Petersburg, Russia
| | - Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretskii pr. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
10
|
Alafaleq NO, Zughaibi TA, Jabir NR, Khan AU, Khan MS, Tabrez S. Biogenic Synthesis of Cu-Mn Bimetallic Nanoparticles Using Pumpkin Seeds Extract and Their Characterization and Anticancer Efficacy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1201. [PMID: 37049295 PMCID: PMC10096695 DOI: 10.3390/nano13071201] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Cancer is a chronic, heterogeneous illness that progresses through a spectrum of devastating clinical manifestations and remains the 2nd leading contributor to global mortality. Current cancer therapeutics display various drawbacks that result in inefficient management. The present study is intended to evaluate the anticancer potential of Cu-Mn bimetallic NPs (CMBNPs) synthesized from pumpkin seed extract against colon adenocarcinoma cancer cell line (HT-29). METHODS The CMBNPs were biosynthesized by continuously stirring an aqueous solution of pumpkin seed extract with CuSO4 and manganese (II) acetate tetrahydrate until a dark green solution was obtained. The characteristic features of biogenic CMBNPs were assessed by UV-visible spectrophotometry (UV-vis), X-ray powder diffraction (XRD), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A battery of biological assays, viz. neutral red uptake (NRU) assay, in vitro scratch assay, and comet assay, were performed for anticancer efficacy evaluation. RESULTS The formation of spherical monodispersed bimetallic nanoparticles with an average size of 50 nm was recorded using TEM. We observed dose-dependent cytotoxicity of CMBNPs in the HT-29 cell line with an IC50 dose of 115.2 µg/mL. On the other hand, CMBNPs did not show significant cytotoxicity against normal cell lines (Vero cells). Furthermore, the treatment of CMBNPs inhibited the migration of cancer cells and caused DNA damage with a significant increase in comet tail length. CONCLUSIONS The results showed substantial anticancer efficacy of CMBNPs against the studied cancer cell line. However, it is advocated that the current work be expanded to different in vitro cancer models so that an in vivo validation could be carried out in the most appropriate cancer model.
Collapse
Affiliation(s)
- Nouf Omar Alafaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nasimudeen R. Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur 613403, India
| | - Azhar U. Khan
- Department of Chemistry, School of Life and Basic Sciences, Siilas Campus, Jaipur National University, Jaipur 302017, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Li M, Sun X, Yin M, Shen J, Yan S. Recent Advances in Nanoparticle-Mediated Co-Delivery System: A Promising Strategy in Medical and Agricultural Field. Int J Mol Sci 2023; 24:5121. [PMID: 36982200 PMCID: PMC10048901 DOI: 10.3390/ijms24065121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Drug and gene delivery systems mediated by nanoparticles have been widely studied for life science in the past decade. The application of nano-delivery systems can dramatically improve the stability and delivery efficiency of carried ingredients, overcoming the defects of administration routes in cancer therapy, and possibly maintaining the sustainability of agricultural systems. However, delivery of a drug or gene alone sometimes cannot achieve a satisfactory effect. The nanoparticle-mediated co-delivery system can load multiple drugs and genes simultaneously, and improve the effectiveness of each component, thus amplifying efficacy and exhibiting synergistic effects in cancer therapy and pest management. The co-delivery system has been widely reported in the medical field, and studies on its application in the agricultural field have recently begun to emerge. In this progress report, we summarize recent progress in the preparation and application of drug and gene co-delivery systems and discuss the remaining challenges and future perspectives in the design and fabrication.
Collapse
Affiliation(s)
- Mingshan Li
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaowei Sun
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Alam MW, BaQais A, Mir TA, Nahvi I, Zaidi N, Yasin A. Effect of Mo doping in NiO nanoparticles for structural modification and its efficiency for antioxidant, antibacterial applications. Sci Rep 2023; 13:1328. [PMID: 36693936 PMCID: PMC9873629 DOI: 10.1038/s41598-023-28356-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Novel molybdenum (Mo)-doped nickel oxide (NiO) Nanoparticles (NPs) were synthesized by using a simple sonochemical methodology and the synthesized NPs were investigated for antioxidant, and antibacterial applications. The X-ray diffraction (XRD) analysis revealed that the crystal systems of rhombohedral (21.34 nm) and monoclinic (17.76 nm) were observed for pure NiO and Mo-doped NiO NPs respectively. The scanning electron microscopy (SEM) results show that the pure NiO NPs possess irregular spherical shape with an average particle size of 93.89 nm while the Mo-doped NiO NPs exhibit spherical morphology with an average particle size of 85.48 nm. The ultraviolet-visible (UV-Vis) spectrum further indicated that the pure and Mo-doped NiO NPs exhibited strong absorption band at the wavelengths of 365 and 349 nm, respectively. The free radical scavenging activity of NiO and Mo-doped NiO NPs was also investigated by utilizing several biochemical assays. The Mo-doped NiO NPs showed better antioxidant activity (84.2%) towards ABTS. + at 200 µg/mL in comparison to their pure counterpart which confirmed that not only antioxidant potency of the doped NPs was better than pure NPs but this efficacy was also concentration dependant as well. The NiO and Mo-doped NiO NPs were further evaluated for their antibacterial activity against gram-positive (Staphylococcus aureus and Bacillus subtilis) and gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The Mo-doped NiO NPs displayed better antibacterial activity (25 mm) against E. coli in comparison to the pure NPs. The synthesized NPs exhibited excellent aptitude for multi-dimensional applications.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering and BioMEMS, Transplantation Research & Innovation (Dpt)-R, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Noushi Zaidi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Amina Yasin
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
13
|
Synthesis of gold and copper bimetallic nanoclusters with papain for fluorescence detection of cortisone in biological samples. Anal Bioanal Chem 2023; 415:335-343. [PMID: 36355222 DOI: 10.1007/s00216-022-04412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
In this work, bimetallic gold and copper nanoclusters (Au-Cu NCs) were fabricated by using papain as a ligand. The as-synthesized papain-Au-Cu NCs displayed red fluorescence at 365 nm of UV lamp. The as-prepared papain-Au-Cu NCs display a strong fluorescence at 656 nm when excited at 390 nm. Papain encapsulated Au-Cu NCs exhibit distinct interaction site towards cortisone, which results red fluorescence "turn-off". Papain-Au-Cu NCs exhibited a rapid response and remarkable fluorescence quenching with the addition of cortisone as a biomarker. The developed probe is demonstrated for the quantification of cortisone by plotting the calibration graph between the fluorescence ratio (I0/I) and cortisone concentration (0.031-1.00 μM) with an impressive detection limit of 1.89 nM. Interestingly, the response of papain-Au-Cu NCs towards other biomarkers and common interfering species is quite silent, signifying the selectivity of papain-Au-Cu NCs for the detection of cortisone. The probe was successfully applied to assay cortisone biomarker in urine and plasma samples. More importantly, the analytical validation of the probe was assessed by assaying cortisone in intra- and inter-day, demonstrating papain-Au-Cu NCs could serve as promising probe for the rapid detection of cortisone in biological samples.
Collapse
|
14
|
Shah IH, Manzoor MA, Sabir IA, Ashraf M, Gulzar S, Chang L, Zhang Y. A green and environmental sustainable approach to synthesis the Mn oxide nanomaterial from Punica granatum leaf extracts and its in vitro biological applications. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:921. [PMID: 36258134 DOI: 10.1007/s10661-022-10606-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Pathogenic fungal infections in fruit cause economic losses and have deleterious effects on human health globally. Despite the low pH and high water contents of vegetables and fresh, ripened fruits, they are prone to fungal and bacterial diseases. The ever-increasing resistance of phytopathogens toward pesticides, fungicides and bactericides has resulted in substantial threats to plant growth and production in recent years. However, plant-mediated nanoparticles are useful tools for combating parasitic fungi and bacteria. Herein, we synthesized biogenic manganese oxide nanoparticles (MnONPs) from an extract of Punica granatum (P. granatum), and these nanoparticles showed significant antifungal and antibacterial activities. The production of MnONPs from plant extracts was confirmed by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and UV visible spectroscopy (UV). The surface morphology and shape of the nanoparticles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using a detached fruit method, the MnONPs were shown to exhibit significant antimicrobial activities against two bacterial strains, E. coli and S. aureus, and against the fungal species P. digitatum. The results revealed that the MnONPs had a minimum antimicrobial activity at 25 µg/mL and a maximum antimicrobial activity at 100 µg/mL against bacterial strains in lemon (citrus). Furthermore, the MnONPs exhibited significant ROS scavenging activity. Finally, inconclusive results from the green-synthesized MnONPs magnified their significant synergetic effects on the shelf life of tomatoes (Lycopercicum esculantum) and indicated that they could be used to counteract the phytopathological effects of postharvest fungal diseases in fruits and vegetables. Overall, this method of MnONPs synthesis is inexpensive, rapid and ecofriendly. MnONPs can be used as potential antimicrobial agents against different microbial species.
Collapse
Affiliation(s)
- Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Muhammad Ashraf
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shazma Gulzar
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
15
|
Alam MW, Al Qahtani HS, Souayeh B, Ahmed W, Albalawi H, Farhan M, Abuzir A, Naeem S. Novel Copper-Zinc-Manganese Ternary Metal Oxide Nanocomposite as Heterogeneous Catalyst for Glucose Sensor and Antibacterial Activity. Antioxidants (Basel) 2022; 11:antiox11061064. [PMID: 35739961 PMCID: PMC9219834 DOI: 10.3390/antiox11061064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
A novel copper-zinc-manganese trimetal oxide nanocomposite was synthesized by the simple co-precipitation method for sensing glucose and methylene blue degradation. The absorption maximum was found by ultraviolet–visible spectroscopy (UV-Vis) analysis, and the bandgap was 4.32 eV. The formation of a bond between metal and oxygen was confirmed by Fourier Transform Infrared Spectroscopy (FT-IR) analysis. The average crystallite size was calculated as 17.31 nm by X-ray powder diffraction (XRD) analysis. The morphology was observed as spherical by scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HR-TEM) analysis. The elemental composition was determined by Energy Dispersive X-ray Analysis (EDAX) analysis. The oxidation state of the metals present in the nanocomposites was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis. The hydrodynamic diameter and zeta potential of the nanocomposite were 218 nm and −46.8 eV, respectively. The thermal stability of the nanocomposite was analyzed by thermogravimetry-differential scanning calorimetry (TG-DSC) analysis. The synthesized nanocomposite was evaluated for the electrochemical glucose sensor. The nanocomposite shows 87.47% of degradation ability against methylene blue dye at a 50 µM concentration. The trimetal oxide nanocomposite shows potent activity against Escherichia coli. In addition to that, the prepared nanocomposite shows strong antioxidant application where scavenging activity was observed to be 76.58 ± 0.30, 76.89 ± 0.44, 81.41 ± 30, 82.58 ± 0.32, and 84.36 ± 0.09 % at 31, 62, 125, 250, and 500 µg/mL, respectively. The results confirm the antioxidant potency of nanoparticles (NPs) was concentration dependent.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.S.); (M.F.); (A.A.)
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.W.A.); (H.A.)
| | | | - Basma Souayeh
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.S.); (M.F.); (A.A.)
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Waqar Ahmed
- Takasago i-Kohza, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Hind Albalawi
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence: (M.W.A.); (H.A.)
| | - Mohd Farhan
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.S.); (M.F.); (A.A.)
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Alaaedeen Abuzir
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.S.); (M.F.); (A.A.)
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sumaira Naeem
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan;
| |
Collapse
|