1
|
Friker LL, Perwein T, Waha A, Dörner E, Klein R, Blattner-Johnson M, Layer JP, Sturm D, Nussbaumer G, Kwiecien R, Spier I, Aretz S, Kerl K, Hennewig U, Rohde M, Karow A, Bluemcke I, Schmitz AK, Reinhard H, Hernáiz Driever P, Wendt S, Weiser A, Guerreiro Stücklin AS, Gerber NU, von Bueren AO, Khurana C, Jorch N, Wiese M, Kratz CP, Eyrich M, Karremann M, Herrlinger U, Hölzel M, Jones DTW, Hoffmann M, Pietsch T, Gielen GH, Kramm CM. MSH2, MSH6, MLH1, and PMS2 immunohistochemistry as highly sensitive screening method for DNA mismatch repair deficiency syndromes in pediatric high-grade glioma. Acta Neuropathol 2025; 149:11. [PMID: 39894875 PMCID: PMC11788232 DOI: 10.1007/s00401-025-02846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025]
Abstract
Pediatric high-grade glioma (pedHGG) can occur as first manifestation of cancer predisposition syndromes resulting from pathogenic germline variants in the DNA mismatch repair (MMR) genes MSH2, MSH6, MLH1, and PMS2. The aim of this study was to establish a generalized screening for Lynch syndrome and constitutional MMR deficiency (CMMRD) in pedHGG patients, as the detection of MMR deficiencies (MMRD) may enable the upfront therapeutic use of checkpoint inhibitors and identification of variant carriers in the patients' families. We prospectively enrolled 155 centrally reviewed primary pedHGG patients for MMR-immunohistochemistry (IHC) as part of the HIT-HGG-2013 trial protocol. MMR-IHC results were subsequently compared to independently collected germline sequencing data (whole exome sequencing or pan-cancer DNA panel next-generation sequencing) available in the HIT-HGG-2013, INFORM, and MNP2.0 trials. MMR-IHC could be successfully performed in 127/155 tumor tissues. The screening identified all present cases with Lynch syndrome or CMMRD (5.5%). In addition, MMR-IHC also detected cases with exclusive somatic MMR gene alterations (2.3%), including MSH2 hypermethylation as an alternative epigenetic silencing mechanism. Most of the identified pedHGG MMRD patients had no family history of MMRD, and thus, they represented index patients in their families. Cases with regular protein expression in MMR-IHC never showed evidence for MMRD in DNA sequencing. In conclusion, MMR-IHC presents a cost-effective, relatively widely available, and fast screening method for germline MMRD in pedHGG with high sensitivity (100%) and specificity (96%). Given the relatively high prevalence of previously undetected MMRD cases among pedHGG patients, we strongly recommend incorporating MMR-IHC into routine diagnostics.
Collapse
Affiliation(s)
- Lea L Friker
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.
| | - Thomas Perwein
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Styrian Children's Cancer Research, Research Unit for Cancer and Inborn Errors of the Blood and Immunity in Children, Medical University of Graz, Graz, Austria
| | - Andreas Waha
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Evelyn Dörner
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Rebecca Klein
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Julian P Layer
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gunther Nussbaumer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Robert Kwiecien
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ulrike Hennewig
- Department of Pediatric Hematology and Oncology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Marius Rohde
- Department of Pediatric Hematology and Oncology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Axel Karow
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Ingmar Bluemcke
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ann Kristin Schmitz
- Department of Pediatrics, Asklepios Kinderklinik Sankt Augustin, Sankt Augustin, Germany
| | - Harald Reinhard
- Department of Pediatrics, Asklepios Kinderklinik Sankt Augustin, Sankt Augustin, Germany
| | - Pablo Hernáiz Driever
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, German HIT-LOGGIC-Registry for pLGG in Children and Adolescents, Berlin, Germany
| | - Susanne Wendt
- Department of Pediatric Oncology and Hematology, University Hospital Leipzig, Leipzig, Germany
| | - Annette Weiser
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ana S Guerreiro Stücklin
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - André O von Bueren
- Department of Pediatrics, Gynecology and Obstetrics, Division of Pediatric Hematology and Oncology, Geneva University Hospital, Geneva, Switzerland
- Department of Pediatrics, Gynecology and Obstetrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudia Khurana
- Department of Pediatric Hematology and Oncology, Children's Center Bethel, University Hospital Ostwestfalen-Lippe, Bielefeld, Germany
| | - Norbert Jorch
- Department of Pediatric Hematology and Oncology, Children's Center Bethel, University Hospital Ostwestfalen-Lippe, Bielefeld, Germany
| | - Maria Wiese
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Matthias Eyrich
- University Children's Hospital, University Hospital Würzburg, Würzburg, Germany
| | - Michael Karremann
- Department of Pediatric and Adolescent Medicine and Mannheim Cancer Center (MCC), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulrich Herrlinger
- Department of Neurooncology, Center for Neurology and CIO ABCD, University Hospital Bonn, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marion Hoffmann
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gerrit H Gielen
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Sathyakumar S, Martinez M, Perreault S, Legault G, Bouffet E, Jabado N, Larouche V, Renzi S. Advances in pediatric gliomas: from molecular characterization to personalized treatments. Eur J Pediatr 2024; 183:2549-2562. [PMID: 38558313 DOI: 10.1007/s00431-024-05540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Pediatric gliomas, consisting of both pediatric low-grade (pLGG) and high-grade gliomas (pHGG), are the most frequently occurring brain tumors in children. Over the last decade, several milestone advancements in treatments have been achieved as a result of stronger understanding of the molecular biology behind these tumors. This review provides an overview of pLGG and pHGG highlighting their clinical presentation, molecular characteristics, and latest advancements in therapeutic treatments. Conclusion: The increasing understanding of the molecular biology characterizing pediatric low and high grade gliomas has revolutionized treatment options for these patients, especially in pLGG. The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments. What is Known: • Pediatric Gliomas are the most common brain tumour in children. They are responsible for significant morbidity and mortality in this population. What is New: • Over the last two decades, there has been a significant increase in our global understanding of the molecular background of pediatric low and high grade gliomas. • The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments, with the ultimate goal of improving both the survival and the quality of life of these patients.
Collapse
Affiliation(s)
| | - Matthew Martinez
- Department of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sébastien Perreault
- Division of Pediatric Neurology, Department of Neurosciences, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Geneviève Legault
- Department of Pediatrics, Division of Neurology, Montreal Children's Hospital - McGill University Health Center, Montreal, Québec, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Eric Bouffet
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nada Jabado
- Division of Experimental Medicine, Montreal Children's Hospital, McGill University and McGill University Health Centre, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montreal, Québec, Canada
| | - Valérie Larouche
- Division of Hemato-Oncology, Department of Pediatrics, CHU de Québec-Université Laval, 2705 Boulevard, Laurier, G1V 4G2, Québec, Canada
| | - Samuele Renzi
- Division of Hemato-Oncology, Department of Pediatrics, CHU de Québec-Université Laval, 2705 Boulevard, Laurier, G1V 4G2, Québec, Canada.
| |
Collapse
|
3
|
Palova H, Das A, Pokorna P, Bajciova V, Pavelka Z, Jezova M, Pal K, Dimayacyac JR, Negm L, Stengs L, Bianchi V, Vejmelkova K, Noskova K, Jarosova M, Mejstrikova S, Mudry P, Kyr M, Merta T, Tinka P, Drabova K, Aulicka S, Jugas R, Tabori U, Slaby O, Sterba J. Precision immuno-oncology approach for four malignant tumors in siblings with constitutional mismatch repair deficiency syndrome. NPJ Precis Oncol 2024; 8:110. [PMID: 38773265 PMCID: PMC11109258 DOI: 10.1038/s41698-024-00597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
Constitutional mismatch repair deficiency (CMMRD) is a rare syndrome characterized by an increased incidence of cancer. It is caused by biallelic germline mutations in one of the four mismatch repair genes (MMR) genes: MLH1, MSH2, MSH6, or PMS2. Accurate diagnosis accompanied by a proper molecular genetic examination plays a crucial role in cancer management and also has implications for other family members. In this report, we share the impact of the diagnosis and challenges during the clinical management of two brothers with CMMRD from a non-consanguineous family harbouring compound heterozygous variants in the PMS2 gene. Both brothers presented with different phenotypic manifestations and cancer spectrum. Treatment involving immune checkpoint inhibitors significantly contributed to prolonged survival in both patients affected by lethal gliomas. The uniform hypermutation also allowed immune-directed treatment using nivolumab for the B-cell lymphoma, thereby limiting the intensive chemotherapy exposure in this young patient who remains at risk for subsequent malignancies.
Collapse
Affiliation(s)
- Hana Palova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Anirban Das
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Petra Pokorna
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Viera Bajciova
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Zdenek Pavelka
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Marta Jezova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karol Pal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jose R Dimayacyac
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Logine Negm
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lucie Stengs
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vanessa Bianchi
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Klara Vejmelkova
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Kristyna Noskova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Clinical Pharmacy Section of Hospital Pharmacy, University Hospital Brno, Brno, Czech Republic
| | - Marie Jarosova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sona Mejstrikova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Peter Mudry
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Michal Kyr
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Tomas Merta
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Pavel Tinka
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Klara Drabova
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stefania Aulicka
- Department of Pediatric Neurology, University Hospital Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Robin Jugas
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Uri Tabori
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
4
|
Mirabdolhosseini SM, Yaghoob Taleghani M, Rejali L, Sadeghi H, Fatemi N, Tavallaei M, Famil Meyari A, Saeidi N, Ketabi Moghadam P, Sadeghi A, Asadzadeh Aghdaei H, Zali MR, Nazemalhosseini Mojarad E. Rare single-nucleotide variants of MLH1 and MSH2 genes in patients with Lynch syndrome. Cancer Rep (Hoboken) 2024; 7:e1930. [PMID: 37919876 PMCID: PMC10809271 DOI: 10.1002/cnr2.1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Approximately 5% of colorectal cancers (CRCs) are hereditary. Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer (HNPCC), is the most common form of recognized hereditary CRC. Although Iran, as a developing country, has a high incidence of CRC, the spectrum of variants has yet to be thoroughly investigated. AIMS This study aimed to investigate pathogenic and non-pathogenic variants in MLH1 and MSH2 genes in Iranian patients with suspected Lynch syndrome (sLS). METHODS AND RESULTS In the present study, 25 peripheral blood samples were collected from patients with sLS and high microsatellite instability (MSI-H). After DNA extraction, all samples underwent polymerase chain reaction and Sanger sequencing to identify the variants in the exons of MLH1 and MSH2 genes. The identified variants were interpreted using prediction tools, and were finally reported under ACMG guidelines. In our study population, 13 variants were found in the MLH1 gene and 8 in the MSH2 gene. Interestingly, 7 of the 13 MLH1 variants and 3 of the 8 MSH2 variants were novel, whereas the remaining variants were previously reported or available in databases. In addition, some patients with sLS did not have variants in the exons of the MLH1 and MSH2 genes. The variants detected in the MLH1 and MSH2 genes had specific characteristics regarding the number, area of occurrence, and their relationship with demographic and clinicopathologic features. CONCLUSION Overall, our results suggest that analysis of MLH1 and MSH2 genes alone is insufficient in the Iranian population, and more comprehensive tests are recommended for detecting LS.
Collapse
Affiliation(s)
- Seyed Mohsen Mirabdolhosseini
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Yaghoob Taleghani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Sadeghi
- Genomic Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Tavallaei
- Department of Colorectal SurgeryMedical Science of Shahid Beheshti UniversityTehranIran
| | - Amin Famil Meyari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Narges Saeidi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Pardis Ketabi Moghadam
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Jovanović A, Tošić N, Marjanović I, Komazec J, Zukić B, Nikitović M, Ilić R, Grujičić D, Janić D, Pavlović S. Germline Variants in Cancer Predisposition Genes in Pediatric Patients with Central Nervous System Tumors. Int J Mol Sci 2023; 24:17387. [PMID: 38139220 PMCID: PMC10744041 DOI: 10.3390/ijms242417387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Central nervous system (CNS) tumors comprise around 20% of childhood malignancies. Germline variants in cancer predisposition genes (CPGs) are found in approximately 10% of pediatric patients with CNS tumors. This study aimed to characterize variants in CPGs in pediatric patients with CNS tumors and correlate these findings with clinically relevant data. Genomic DNA was isolated from the peripheral blood of 51 pediatric patients and further analyzed by the next-generation sequencing approach. Bioinformatic analysis was done using an "in-house" gene list panel, which included 144 genes related to pediatric brain tumors, and the gene list panel Neoplasm (HP:0002664). Our study found that 27% of pediatric patients with CNS tumors have a germline variant in some of the known CPGs, like ALK, APC, CHEK2, ELP1, MLH1, MSH2, NF1, NF2 and TP53. This study represents the first comprehensive evaluation of germline variants in pediatric patients with CNS tumors in the Western Balkans region. Our results indicate the necessity of genomic research to reveal the genetic basis of pediatric CNS tumors, as well as to define targets for the application and development of innovative therapeutics that form the basis of the upcoming era of personalized medicine.
Collapse
Affiliation(s)
- Aleksa Jovanović
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Nataša Tošić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Irena Marjanović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Jovana Komazec
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Branka Zukić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Marina Nikitović
- Pediatric Radiation Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
| | - Rosanda Ilić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Danica Grujičić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dragana Janić
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| |
Collapse
|
6
|
Frey B, Borgmann K, Jost T, Greve B, Oertel M, Micke O, Eckert F. DNA as the main target in radiotherapy-a historical overview from first isolation to anti-tumour immune response. Strahlenther Onkol 2023; 199:1080-1090. [PMID: 37620671 DOI: 10.1007/s00066-023-02122-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023]
Abstract
DNA damage is one of the foremost mechanisms of irradiation at the biological level. After the first isolation of DNA by Friedrich Miescher in the 19th century, the structure of DNA was described by Watson and Crick. Several Nobel Prizes have been awarded for DNA-related discoveries. This review aims to describe the historical perspective of DNA in radiation biology. Over the decades, DNA damage has been identified and quantified after irradiation. Depending on the type of sensing, different proteins are involved in sensing DNA damage and repairing the damage, if possible. For double-strand breaks, the main repair mechanisms are non-homologous end joining and homologous recombination. Additional mechanisms are the Fanconi anaemia pathway and base excision repair. Different methods have been developed for the detection of DNA double-strand breaks. Several drugs have been developed that interfere with different DNA repair mechanisms, e.g., PARP inhibitors. These drugs have been established in the standard treatment of different tumour entities and are being applied in several clinical trials in combination with radiotherapy. Over the past decades, it has become apparent that DNA damage mechanisms are also directly linked to the immune response in tumours. For example, cytosolic DNA fragments activate the innate immune system via the cGAS STING pathway.
Collapse
Affiliation(s)
- Benjamin Frey
- Translational Radiation Biology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Radiation Oncology, Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tina Jost
- Translational Radiation Biology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Muenster, Muenster, Germany
| | - Michael Oertel
- Department of Radiation Oncology, University Hospital Muenster, Muenster, Germany
| | - Oliver Micke
- Department of Radiotherapy and Radiation Oncology, Franziskus Hospital Bielefeld, Kiskerst. 26, 33615, Bielefeld, Germany.
| | - Franziska Eckert
- Department of Radiation Oncology, AKH, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| |
Collapse
|
7
|
Das A, Tabori U, Sambira Nahum LC, Collins NB, Deyell R, Dvir R, Faure-Conter C, Hassall TE, Minturn JE, Edwards M, Brookes E, Bianchi V, Levine A, Stone SC, Sudhaman S, Sanchez Ramirez S, Ercan AB, Stengs L, Chung J, Negm L, Getz G, Maruvka YE, Ertl-Wagner B, Ohashi PS, Pugh T, Hawkins C, Bouffet E, Morgenstern DA. Efficacy of Nivolumab in Pediatric Cancers with High Mutation Burden and Mismatch Repair Deficiency. Clin Cancer Res 2023; 29:4770-4783. [PMID: 37126021 PMCID: PMC10690097 DOI: 10.1158/1078-0432.ccr-23-0411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE Checkpoint inhibitors have limited efficacy for children with unselected solid and brain tumors. We report the first prospective pediatric trial (NCT02992964) using nivolumab exclusively for refractory nonhematologic cancers harboring tumor mutation burden (TMB) ≥5 mutations/megabase (mut/Mb) and/or mismatch repair deficiency (MMRD). PATIENTS AND METHODS Twenty patients were screened, and 10 were ultimately included in the response cohort of whom nine had TMB >10 mut/Mb (three initially eligible based on MMRD) and one patient had TMB between 5 and 10 mut/Mb. RESULTS Delayed immune responses contributed to best overall response of 50%, improving on initial objective responses (20%) and leading to 2-year overall survival (OS) of 50% [95% confidence interval (CI), 27-93]. Four children, including three with refractory malignant gliomas are in complete remission at a median follow-up of 37 months (range, 32.4-60), culminating in 2-year OS of 43% (95% CI, 18.2-100). Biomarker analyses confirmed benefit in children with germline MMRD, microsatellite instability, higher activated and lower regulatory circulating T cells. Stochastic mutation accumulation driven by underlying germline MMRD impacted the tumor microenvironment, contributing to delayed responses. No benefit was observed in the single patient with an MMR-proficient tumor and TMB 7.4 mut/Mb. CONCLUSIONS Nivolumab resulted in durable responses and prolonged survival for the first time in a pediatric trial of refractory hypermutated cancers including malignant gliomas. Novel biomarkers identified here need to be translated rapidly to clinical care to identify children who can benefit from checkpoint inhibitors, including upfront management of cancer. See related commentary by Mardis, p. 4701.
Collapse
Affiliation(s)
- Anirban Das
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Uri Tabori
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Lauren C. Sambira Nahum
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Natalie B. Collins
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | | | - Rina Dvir
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | - Jane E. Minturn
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Melissa Edwards
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Elissa Brookes
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Vanessa Bianchi
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Adrian Levine
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Simone C. Stone
- Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - Sumedha Sudhaman
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Santiago Sanchez Ramirez
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Ayse B. Ercan
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Lucie Stengs
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Jill Chung
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Logine Negm
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Gad Getz
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Birgit Ertl-Wagner
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - Trevor Pugh
- Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - Cynthia Hawkins
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Eric Bouffet
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Daniel A. Morgenstern
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| |
Collapse
|
8
|
Rumler S. Non-cellular immunotherapies in pediatric central nervous system tumors. Front Immunol 2023; 14:1242911. [PMID: 37885882 PMCID: PMC10598668 DOI: 10.3389/fimmu.2023.1242911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer and the most common cause of cancer death in pediatric patients. New therapies are desperately needed for some of the most malignant of all cancers. Immunotherapy has emerged in the past two decades as an additional avenue to augment/replace traditional therapies (such as chemotherapy, surgery, and radiation therapy). This article first discusses the unique nature of the pediatric CNS immune system and how it interacts with the systemic immune system. It then goes on to review three important and widely studied types of immune therapies: checkpoint inhibitors, vaccines, and radiation therapy, and touches on early studies of antibody-mediated immunogenic therapies, Finally, the article discusses the importance of combination immunotherapy for pediatric CNS tumors, and addresses the neurologic toxicities associated with immunotherapies.
Collapse
Affiliation(s)
- Sarah Rumler
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Das A, Nobre L. Genomics in pediatric high-grade gliomas: Hope or hype practical implications for resource limited settings. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2023. [DOI: 10.1016/j.phoj.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
10
|
Sturm D, Capper D, Andreiuolo F, Gessi M, Kölsche C, Reinhardt A, Sievers P, Wefers AK, Ebrahimi A, Suwala AK, Gielen GH, Sill M, Schrimpf D, Stichel D, Hovestadt V, Daenekas B, Rode A, Hamelmann S, Previti C, Jäger N, Buchhalter I, Blattner-Johnson M, Jones BC, Warmuth-Metz M, Bison B, Grund K, Sutter C, Hirsch S, Dikow N, Hasselblatt M, Schüller U, Koch A, Gerber NU, White CL, Buntine MK, Kinross K, Algar EM, Hansford JR, Gottardo NG, Schuhmann MU, Thomale UW, Hernáiz Driever P, Gnekow A, Witt O, Müller HL, Calaminus G, Fleischhack G, Kordes U, Mynarek M, Rutkowski S, Frühwald MC, Kramm CM, von Deimling A, Pietsch T, Sahm F, Pfister SM, Jones DTW. Multiomic neuropathology improves diagnostic accuracy in pediatric neuro-oncology. Nat Med 2023; 29:917-926. [PMID: 36928815 PMCID: PMC10115638 DOI: 10.1038/s41591-023-02255-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
The large diversity of central nervous system (CNS) tumor types in children and adolescents results in disparate patient outcomes and renders accurate diagnosis challenging. In this study, we prospectively integrated DNA methylation profiling and targeted gene panel sequencing with blinded neuropathological reference diagnostics for a population-based cohort of more than 1,200 newly diagnosed pediatric patients with CNS tumors, to assess their utility in routine neuropathology. We show that the multi-omic integration increased diagnostic accuracy in a substantial proportion of patients through annotation to a refining DNA methylation class (50%), detection of diagnostic or therapeutically relevant genetic alterations (47%) or identification of cancer predisposition syndromes (10%). Discrepant results by neuropathological WHO-based and DNA methylation-based classification (30%) were enriched in histological high-grade gliomas, implicating relevance for current clinical patient management in 5% of all patients. Follow-up (median 2.5 years) suggests improved survival for patients with histological high-grade gliomas displaying lower-grade molecular profiles. These results provide preliminary evidence of the utility of integrating multi-omics in neuropathology for pediatric neuro-oncology.
Collapse
Affiliation(s)
- Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felipe Andreiuolo
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
- Laboratory of Neuropathology, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Marco Gessi
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Christian Kölsche
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Philipp Sievers
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Azadeh Ebrahimi
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Abigail K Suwala
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neurological Surgery, Helen Diller Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gerrit H Gielen
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Volker Hovestadt
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bjarne Daenekas
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Agata Rode
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan Hamelmann
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christopher Previti
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ivo Buchhalter
- Omics IT and Data Management Core Facility, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Barbara C Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Monika Warmuth-Metz
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
- Neuroradiological Reference Center for the Pediatric Brain Tumor (HIT) Studies of the German Society of Pediatric Oncology and Hematology, University Hospital Würzburg, since 2021 University Hospital Augsburg, Augsburg, Germany
| | - Brigitte Bison
- Neuroradiological Reference Center for the Pediatric Brain Tumor (HIT) Studies of the German Society of Pediatric Oncology and Hematology, University Hospital Würzburg, since 2021 University Hospital Augsburg, Augsburg, Germany
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Kerstin Grund
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Sutter
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Hirsch
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Christine L White
- Genetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Parkville, VIC, Australia
| | - Molly K Buntine
- Genetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - Kathryn Kinross
- Australian and New Zealand Children's Haematology and Oncology Group (ANZCHOG), Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Elizabeth M Algar
- Genetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Jordan R Hansford
- Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australia immunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
| | | | - Ulrich W Thomale
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pablo Hernáiz Driever
- German HIT-LOGGIC Registry for low-grade glioma in children and adolescents, Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Astrid Gnekow
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, Faculty of Medicine, University Augsburg, Augsburg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hermann L Müller
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children's Hospital, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Gabriele Calaminus
- Department of Pediatric Hematology and Oncology, University Childrens' Hospital Muenster, Muenster, Germany
| | - Gudrun Fleischhack
- Pediatric Hematology and Oncology, Pediatrics III, University Children's Hospital of Essen, Essen, Germany
| | - Uwe Kordes
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, Faculty of Medicine, University Augsburg, Augsburg, Germany
| | - Christof M Kramm
- Department of Child and Adolescent Health, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
11
|
Würtemberger J, Ripperger T, Vokuhl C, Bauer S, Teichert-von Lüttichau I, Wardelmann E, Niemeyer CM, Kratz CP, Schlegelberger B, Hettmer S. Genetic susceptibility in children, adolescents, and young adults diagnosed with soft-tissue sarcomas. Eur J Med Genet 2023; 66:104718. [PMID: 36764384 DOI: 10.1016/j.ejmg.2023.104718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 10/30/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
Soft tissue sarcomas (STS) may arise as a consequence of germline variants in cancer predisposition genes (CPGs). We believe that elucidating germline sarcoma predisposition is critical for understanding disease biology and therapeutic requirements. Participation in surveillance programs may allow for early tumor detection, early initiation of therapy and, ultimately, better outcomes. Among children, adolescents, and adults diagnosed with soft-tissue sarcomas and examined as part of published germline sequencing studies, pathogenic/likely pathogenic (P/LP) variants in CPGs were reported in 7-33% of patients. P/LP germline variants were detected most frequently in TP53, NF1 and BRCA1/2. In this review, we describe reported associations between soft tissue sarcomas and germline variants in CPGs, with mentioning of locally aggressive and benign soft tissue tumors that have important associations with cancer predisposition syndromes. We also discuss recommendations for diagnostic germline genetic testing. Testing for sarcoma-predisposing germline variants should be considered as part of the routine clinical workup and care of any child, adolescent, or adult diagnosed with STS and take into account consequences for the whole family.
Collapse
Affiliation(s)
- Julia Würtemberger
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Vokuhl
- Institute of Pathology, University Hospital Bonn, 53127, Bonn, Germany
| | - Sebastian Bauer
- Department of Oncology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Irene Teichert-von Lüttichau
- Technical University of Munich, School of Medicine, Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Munich, Germany
| | - Eva Wardelmann
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany.
| |
Collapse
|
12
|
Mushtaq N, Mustansir F, Minhas K, Usman S, Qureshi BM, Mubarak F, Bari E, Enam SA, Laghari AA, Javed G, Shamim S, Darbar A, Abbasi AN, Kirmani S, Resham S, Bilal A, Hamid SA, Zia N, Shaheen N, Wali R, Ghafoor T, Imam U, Maaz AUR, Khan S, Laperriere N, Desbrandes F, Dirks P, Drake J, Huang A, Tabori U, Hawkins C, Bartels U, Ramaswamy V, Bouffet E. Building the ecosystem for pediatric neuro-oncology care in Pakistan: Results of a 7-year long twinning program between Canada and Pakistan. Pediatr Blood Cancer 2022; 69:e29726. [PMID: 35484912 DOI: 10.1002/pbc.29726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Low- and middle-income countries sustain the majority of pediatric cancer burden, with significantly poorer survival rates compared to high-income countries. Collaboration between institutions in low- and middle-income countries and high-income countries is one of the ways to improve cancer outcomes. METHODS Patient characteristics and effects of a pediatric neuro-oncology twinning program between the Hospital for Sick Children in Toronto, Canada and several hospitals in Karachi, Pakistan over 7 years are described in this article. RESULTS A total of 460 patients were included in the study. The most common primary central nervous system tumors were low-grade gliomas (26.7%), followed by medulloblastomas (18%), high-grade gliomas (15%), ependymomas (11%), and craniopharyngiomas (11.7%). Changes to the proposed management plans were made in consultation with expert physicians from the Hospital for Sick Children in Toronto, Canada. On average, 24% of the discussed cases required a change in the original management plan over the course of the twinning program. However, a decreasing trend in change in management plans was observed, from 36% during the first 3.5 years to 16% in the last 3 years. This program also led to the launch of a national pediatric neuro-oncology telemedicine program in Pakistan. CONCLUSIONS Multidisciplinary and collaborative efforts by experts from across the world have aided in the correct diagnosis and treatment of children with brain tumors and helped establish local treatment protocols. This experience may be a model for other low- and middle-income countries that are planning on creating similar programs.
Collapse
Affiliation(s)
- Naureen Mushtaq
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Fatima Mustansir
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Khurram Minhas
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Sadia Usman
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Bilal Mazhar Qureshi
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Fatima Mubarak
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Ehsan Bari
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Syed Ather Enam
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Altaf Ali Laghari
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Gohar Javed
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Shahzad Shamim
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Aneela Darbar
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Ahmed Nadeem Abbasi
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Salman Kirmani
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Shahazadi Resham
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | - Afia Bilal
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi, Pakistan
| | | | - Nida Zia
- Indus Children Cancer Hospital, Karachi, Pakistan
| | - Najma Shaheen
- Shaukat Khanum Memorial Cancer Hospital, Lahore, Pakistan
| | - Rabia Wali
- Shaukat Khanum Memorial Cancer Hospital, Lahore, Pakistan
| | | | - Uzma Imam
- National Institute of Child Health, Karachi, Pakistan
| | | | - Sara Khan
- The Hospital for Sick Children, Toronto, Canada
| | | | | | - Peter Dirks
- The Hospital for Sick Children, Toronto, Canada
| | - James Drake
- The Hospital for Sick Children, Toronto, Canada
| | - Annie Huang
- The Hospital for Sick Children, Toronto, Canada
| | - Uri Tabori
- The Hospital for Sick Children, Toronto, Canada
| | | | - Ute Bartels
- The Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
13
|
Wu D, Chen Q, Chen J. Case Report: Malignant Brain Tumors in Siblings With MSH6 Mutations. Front Oncol 2022; 12:920305. [PMID: 35903677 PMCID: PMC9315106 DOI: 10.3389/fonc.2022.920305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Familial brain tumor incidences are low. Identifying the genetic alterations of familial brain tumors can help better understand the pathogenesis and make therapy regimens for these tumors. Case Presentation An elder female and a younger male were diagnosed with brain tumors at the age of 10 and 5, respectively. Whole-genome sequencing analysis of the two patients’ blood, primary brain tumor tissues, and their parents’ blood samples was performed, which revealed that the two tumor samples harbored extremely high somatic mutation loads. Additionally, we observed pigmentation on the male patient’s skin. Conclusion Germline, biallelic mutation of MSH6—a gene related to DNA mismatch repair whose defect will result in constitutional mismatch repair deficiency (CMMRD)—is causal for the brain tumors of these two siblings.
Collapse
Affiliation(s)
- Di Wu
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Qingshan Chen
- Department of Neurosurgery, The Second People’s Hospital of Liaocheng of Shandong Province, Liaocheng, China
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jian Chen,
| |
Collapse
|
14
|
Vimalathas G, Kristensen BW. Expression, prognostic significance and therapeutic implications of PD-L1 in gliomas. Neuropathol Appl Neurobiol 2022; 48:e12767. [PMID: 34533233 PMCID: PMC9298327 DOI: 10.1111/nan.12767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
The advent of checkpoint immunotherapy, particularly with programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors, has provided ground-breaking results in several advanced cancers. Substantial efforts are being made to extend these promising therapies to other refractory cancers such as gliomas, especially glioblastoma, which represents the most frequent and malignant glioma and carries an exceptionally grim prognosis. Thus, there is a need for new therapeutic strategies with related biomarkers. Gliomas have a profoundly immunosuppressive tumour micro-environment and evade immunological destruction by several mechanisms, one being the expression of inhibitory immune checkpoint molecules such as PD-L1. PD-L1 is recognised as an important therapeutic target and its expression has been shown to hold prognostic value in different cancers. Several clinical trials have been launched and some already completed, but PD-1/PD-L1 inhibitors have yet to show convincing clinical efficacy in gliomas. Part of the explanation may reside in the vast molecular heterogeneity of gliomas and a complex interplay within the tumour micro-environment. In parallel, critical knowledge about PD-L1 expression is beginning to accumulate including knowledge on expression levels, testing methodology, co-expression with other checkpoint molecules and prognostic and predictive value. This article reviews these aspects and points out areas where biomarker research is needed to develop more successful checkpoint-related therapeutic strategies in gliomas.
Collapse
Affiliation(s)
| | - Bjarne Winther Kristensen
- Department of PathologyOdense University HospitalOdenseDenmark
- Department of Pathology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Recent evidence suggests high tumor mutational burden (TMB-H) as a predictor of response to immune checkpoint blockade (ICB) in cancer. However, results in TMB-H gliomas have been inconsistent. In this article, we discuss the main pathways leading to TMB-H in glioma and how these might affect immunotherapy response. RECENT FINDINGS Recent characterization of TMB-H gliomas showed that 'post-treatment' related to mismatch repair (MMR) deficiency is the most common mechanism leading to TMB-H in gliomas. Unexpectedly, preliminary evidence suggested that benefit with ICB is rare in this population. Contrary to expectations, ICB response was reported in a subset of TMB-H gliomas associated with constitutional MMR or polymerase epsilon (POLE) defects (e.g., constitutional biallelic MMRd deficiency). In other cancers, several trials suggest increased ICB efficacy is critically associated with increased lymphocyte infiltration at baseline which is missing in most gliomas. Further characterization of the immune microenvironment of gliomas is needed to identify biomarkers to select the patients who will benefit from ICB. SUMMARY Intrinsic molecular and immunological differences between gliomas and other cancers might explain the lack of efficacy of ICB in a subset of TMB-H gliomas. Novel combinations and biomarkers are awaited to improve immunotherapy response in these cancers.
Collapse
Affiliation(s)
- Diego Prost
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin
| | - Franck Bielle
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie Laboratoire Escourolle, Paris, France
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge
- Department of Pathology, Brigham and Women's Hospital
- Department of Oncologic Pathology, Dana-Farber Cancer Institute
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin
- Department of Neurology, Brigham and Women's Hospital, Boston, USA
| |
Collapse
|
16
|
Tabori U, Das A, Hawkins C. Germline predisposition to glial neoplasms in children and young adults: A narrative review. GLIOMA 2021. [DOI: 10.4103/glioma.glioma_12_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|