1
|
Snelson M, Vanuytsel T, Marques FZ. Breaking the Barrier: The Role of Gut Epithelial Permeability in the Pathogenesis of Hypertension. Curr Hypertens Rep 2024; 26:369-380. [PMID: 38662328 PMCID: PMC11324679 DOI: 10.1007/s11906-024-01307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE OF THE REVIEW To review what intestinal permeability is and how it is measured, and to summarise the current evidence linking altered intestinal permeability with the development of hypertension. RECENT FINDINGS Increased gastrointestinal permeability, directly measured in vivo, has been demonstrated in experimental and genetic animal models of hypertension. This is consistent with the passage of microbial substances to the systemic circulation and the activation of inflammatory pathways. Evidence for increased gut permeability in human hypertension has been reliant of a handful of blood biomarkers, with no studies directly measuring gut permeability in hypertensive cohorts. There is emerging literature that some of these putative biomarkers may not accurately reflect permeability of the gastrointestinal tract. Data from animal models of hypertension support they have increased gut permeability; however, there is a dearth of conclusive evidence in humans. Future studies are needed that directly measure intestinal permeability in people with hypertension.
Collapse
Affiliation(s)
- Matthew Snelson
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia.
- Victorian Heart Institute, Monash University, Melbourne, Australia.
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
2
|
Durgan DJ, Zubcevic J, Vijay-Kumar M, Yang T, Manandhar I, Aryal S, Muralitharan RR, Li HB, Li Y, Abais-Battad JM, Pluznick JL, Muller DN, Marques FZ, Joe B. Prospects for Leveraging the Microbiota as Medicine for Hypertension. Hypertension 2024; 81:951-963. [PMID: 38630799 DOI: 10.1161/hypertensionaha.124.21721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- David J Durgan
- Department of Integrative Physiology and Anesthesiology, Baylor College of Medicine, Houston, TX (D.J.D.)
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Matam Vijay-Kumar
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Sachin Aryal
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Baker Heart and Diabetes Institute, Melbourne, Australia (R.R.M., F.Z.M.)
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, PR China (H.-B.L., Y.L.)
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, PR China (H.-B.L., Y.L.)
| | | | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD (J.L.P.)
| | - Dominik N Muller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.)
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Germany (D.N.M.)
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (D.N.M.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (D.N.M.)
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Baker Heart and Diabetes Institute, Melbourne, Australia (R.R.M., F.Z.M.)
| | - Bina Joe
- Department of Integrative Physiology and Anesthesiology, Baylor College of Medicine, Houston, TX (D.J.D.)
| |
Collapse
|
3
|
Abstract
A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure. The field has moved from association to causation in the last 5 years, with studies that have used germ-free animals, antibiotic treatments and direct supplementation with microbial metabolites. The gut microbiome can regulate blood pressure through several mechanisms, including through gut dysbiosis-induced changes in microbiome-associated gene pathways in the host. Microbiota-derived metabolites are either beneficial (for example, short-chain fatty acids and indole-3-lactic acid) or detrimental (for example, trimethylamine N-oxide), and can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation. Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction. These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the renin-angiotensin-aldosterone system, the autonomic nervous system, and the immune system. Several methodological and technological challenges remain in gut microbiome research, and the solutions involve minimizing confounding factors, establishing causality and acting globally to improve sample diversity. New clinical trials, precision microbiome medicine and computational methods such as Mendelian randomization have the potential to enable leveraging of the microbiome for translational applications to lower blood pressure.
Collapse
|
4
|
Mohr AE, Crawford M, Jasbi P, Fessler S, Sweazea KL. Lipopolysaccharide and the gut microbiota: Considering structural variation. FEBS Lett 2022; 596:849-875. [PMID: 35262962 DOI: 10.1002/1873-3468.14328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Systemic inflammation is associated with chronic disease and is purported to be a main pathogenic mechanism underlying metabolic conditions. Microbes harbored in the host gastrointestinal tract release signaling byproducts from their cell wall, such as lipopolysaccharides (LPS), which can act locally and, after crossing the gut barrier and entering circulation, also systemically. Defined as metabolic endotoxemia, elevated concentrations of LPS in circulation are associated with metabolic conditions and chronic disease. As such, measurement of LPS is highly prevalent in animal and human research investigating these states. Indeed, LPS can be a potent stimulant of host immunity but this response depends on the microbial species' origin, a parameter often overlooked in both preclinical and clinical investigations. Indeed, the lipid A portion of LPS is mutable and comprises the main virulence and endotoxic component, thus contributing to the structural and functional diversity among LPSs from microbial species. In this review, we discuss how such structural differences in LPS can induce differential immunological responses in the host.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Meli'sa Crawford
- Biomedical Sciences, University of Riverside, California, Riverside, California, United States of America
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Samantha Fessler
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
5
|
Parantainen J, Barreto G, Koivuniemi R, Kautiainen H, Nordström D, Moilanen E, Hämäläinen M, Leirisalo-Repo M, Nurmi K, Eklund KK. The biological activity of serum bacterial lipopolysaccharides associates with disease activity and likelihood of achieving remission in patients with rheumatoid arthritis. Arthritis Res Ther 2022; 24:256. [PMID: 36411473 PMCID: PMC9677706 DOI: 10.1186/s13075-022-02946-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Dysbiotic intestinal and oral microbiota have been implicated in the pathogenesis of rheumatoid arthritis (RA), but the mechanisms how microbiota could impact disease activity have remained elusive. The aim of this study was to assess the association of the biological activity of serum lipopolysaccharides (LPS) with disease activity and likelihood of achieving remission in RA patients. METHODS We measured Toll-like receptor (TLR) 4-stimulating activity of sera of 58 RA patients with a reporter cell line engineered to produce secreted alkaline phosphatase in response to TLR4 stimulation. Levels of LPS-binding protein, CD14, and CD163 were determined by ELISA assays. RESULTS The patient serum-induced TLR4 activation (biological activity of LPS) was significantly associated with inflammatory parameters and body mass index at baseline and at 12 months and with disease activity (DAS28-CRP, p<0.001) at 12 months. Importantly, baseline LPS bioactivity correlated with disease activity (p=0.031) and, in 28 early RA patients, the likelihood of achieving remission at 12 months (p=0.009). The level of LPS bioactivity was similar at baseline and 12-month visits, suggesting that LPS bioactivity is an independent patient-related factor. Neutralization of LPS in serum by polymyxin B abrogated the TLR4 signaling, suggesting that LPS was the major contributor to TLR4 activation. CONCLUSION We describe a novel approach to study the biological activity of serum LPS and their impact in diseases. The results suggest that LPS contribute to the inflammatory burden and disease activity on patients with RA and that serum-induced TLR4 activation assays can serve as an independent prognostic factor. A graphical summary of the conclusions of the study.
Collapse
Affiliation(s)
- J. Parantainen
- grid.7737.40000 0004 0410 2071Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, PL 4 (Yliopistonkatu 3), 00014 Helsinki, Finland
| | - G. Barreto
- grid.7737.40000 0004 0410 2071Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, PL 4 (Yliopistonkatu 3), 00014 Helsinki, Finland ,Orton Orthopedic Hospital, Helsinki, Finland
| | - R. Koivuniemi
- grid.7737.40000 0004 0410 2071Department of Rheumatology, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland ,grid.413739.b0000 0004 0628 3152Kanta-Häme Central Hospital, Riihimäki, Finland
| | - H. Kautiainen
- grid.410705.70000 0004 0628 207XFolkhälsan Research Center, Helsinki, Finland; Unit of Primary Health Care, Kuopio University Hospital, Kuopio, Finland
| | - D. Nordström
- grid.15485.3d0000 0000 9950 5666Department of Internal medicine and rehabilitation, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - E. Moilanen
- grid.502801.e0000 0001 2314 6254The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - M. Hämäläinen
- grid.502801.e0000 0001 2314 6254The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - M. Leirisalo-Repo
- grid.7737.40000 0004 0410 2071Department of Rheumatology, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - K. Nurmi
- grid.7737.40000 0004 0410 2071Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, PL 4 (Yliopistonkatu 3), 00014 Helsinki, Finland
| | - K. K. Eklund
- grid.7737.40000 0004 0410 2071Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, PL 4 (Yliopistonkatu 3), 00014 Helsinki, Finland ,Orton Orthopedic Hospital, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Rheumatology, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Mohammad S, Al Zoubi S, Collotta D, Krieg N, Wissuwa B, Ferreira Alves G, Purvis GSD, Norata GD, Baragetti A, Catapano AL, Solito E, Zechendorf E, Schürholz T, Correa-Vargas W, Brandenburg K, Coldewey SM, Collino M, Yaqoob MM, Martin L, Thiemermann C. A Synthetic Peptide Designed to Neutralize Lipopolysaccharides Attenuates Metaflammation and Diet-Induced Metabolic Derangements in Mice. Front Immunol 2021; 12:701275. [PMID: 34349763 PMCID: PMC8328475 DOI: 10.3389/fimmu.2021.701275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic endotoxemia has been suggested to play a role in the pathophysiology of metaflammation, insulin-resistance and ultimately type-2 diabetes mellitus (T2DM). The role of endogenous antimicrobial peptides (AMPs), such as the cathelicidin LL-37, in T2DM is unknown. We report here for the first time that patients with T2DM compared to healthy volunteers have elevated plasma levels of LL-37. In a reverse-translational approach, we have investigated the effects of the AMP, peptide 19-2.5, in a murine model of high-fat diet (HFD)-induced insulin-resistance, steatohepatitis and T2DM. HFD-fed mice for 12 weeks caused obesity, an impairment in glycemic regulations, hypercholesterolemia, microalbuminuria and steatohepatitis, all of which were attenuated by Peptide 19-2.5. The liver steatosis caused by feeding mice a HFD resulted in the activation of nuclear factor kappa light chain enhancer of activated B cells (NF-ĸB) (phosphorylation of inhibitor of kappa beta kinase (IKK)α/β, IκBα, translocation of p65 to the nucleus), expression of NF-ĸB-dependent protein inducible nitric oxide synthase (iNOS) and activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, all of which were reduced by Peptide 19-2.5. Feeding mice, a HFD also resulted in an enhanced expression of the lipid scavenger receptor cluster of differentiation 36 (CD36) secondary to activation of extracellular signal-regulated kinases (ERK)1/2, both of which were abolished by Peptide 19-2.5. Taken together, these results demonstrate that the AMP, Peptide 19-2.5 reduces insulin-resistance, steatohepatitis and proteinuria. These effects are, at least in part, due to prevention of the expression of CD36 and may provide further evidence for a role of metabolic endotoxemia in the pathogenesis of metaflammation and ultimately T2DM. The observed increase in the levels of the endogenous AMP LL-37 in patients with T2DM may serve to limit the severity of the disease.
Collapse
Affiliation(s)
- Shireen Mohammad
- William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sura Al Zoubi
- William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Basic Medical Sciences, School of Medicine, Al-Balqa Applied University, As-Salt, Jordan
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Bianka Wissuwa
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | | | - Gareth S. D. Purvis
- William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Sir William Dunn School Pathology, University of Oxford, Oxford, United Kingdom
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
- Società Italiana per lo Studio della Aterosclerosi (S.I.S.A.) Centre for the Study of Atherosclerosis, Bassini Hospital, Milan, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
- Società Italiana per lo Studio della Aterosclerosi (S.I.S.A.) Centre for the Study of Atherosclerosis, Bassini Hospital, Milan, Italy
| | - Egle Solito
- William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universitá degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Schürholz
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Borstel, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Muhammad M. Yaqoob
- William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Lukas Martin
- William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Thiemermann
- William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Mohammad S, Thiemermann C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Front Immunol 2021; 11:594150. [PMID: 33505393 PMCID: PMC7829348 DOI: 10.3389/fimmu.2020.594150] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Diet-induced metabolic endotoxemia is an important factor in the development of many chronic diseases in animals and man. The gut epithelium is an efficient barrier that prevents the absorption of liposaccharide (LPS). Structural changes to the intestinal epithelium in response to dietary alterations allow LPS to enter the bloodstream, resulting in an increase in the plasma levels of LPS (termed metabolic endotoxemia). LPS activates Toll-like receptor-4 (TLR4) leading to the production of numerous pro-inflammatory cytokines and, hence, low-grade systemic inflammation. Thus, metabolic endotoxemia can lead to several chronic inflammatory conditions. Obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD) can also cause an increase in gut permeability and potential pharmacological and dietary interventions could be used to reduce the chronic low-grade inflammation associated with endotoxemia.
Collapse
Affiliation(s)
- Shireen Mohammad
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
8
|
Yoshitake R, Hirose Y, Murosaki S, Matsuzaki G. Heat-killed Lactobacillus plantarum L-137 attenuates obesity and associated metabolic abnormalities in C57BL/6 J mice on a high-fat diet. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 40:84-91. [PMID: 33996364 PMCID: PMC8099634 DOI: 10.12938/bmfh.2020-040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/24/2020] [Indexed: 12/31/2022]
Abstract
Heat-killed Lactobacillus plantarum L-137 (HK L-137) has anti-allergic, antitumor, and antiviral effects in mice, as well as an anti-inflammatory effect in rats with metabolic syndrome through regulation of immunity. To evaluate the influence of HK L-137 on chronic inflammation in mice with diet-induced obesity, C57BL/6 J mice were fed a normal diet (16% of energy as fat) or a high-fat diet (62% of energy as fat) with or without 0.002% HK L-137 for 4 to 20 weeks. It was found that HK L-137 supplementation alleviated weight gain and elevation of plasma glucose, cholesterol, alanine aminotransferase, and aspartate transaminase levels in mice with diet-induced obesity. Expression of several inflammation-related genes, including F4/80, CD11c, and IL-1β, in the epididymal adipose tissue of these mice was significantly downregulated by HK L-137. In addition, plasma levels of lipopolysaccharide-binding protein, a marker of endotoxemia, tended to be decreased by administration of HK L-137. These findings suggest that HK L-137 supplementation ameliorates obesity-induced metabolic abnormalities and adipose tissue inflammation, possibly through improvement of intestinal permeability.
Collapse
Affiliation(s)
- Rieko Yoshitake
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, University of The Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Yoshitaka Hirose
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, University of The Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Shinji Murosaki
- Nihon Pharmaceutical University, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Goro Matsuzaki
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, University of The Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|