1
|
Said Ali-Samani F, Shahrisa A, Tahmasebi-Birgani M, Hajjari M, Ghandil P. Study of the genomics and transcriptomics profiles of male-infertility genes in human prostate cancer: an in silico analysis. Syst Biol Reprod Med 2024; 70:139-149. [PMID: 38870367 DOI: 10.1080/19396368.2024.2354305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
The World Health Organization has considered the infertility as an international public health problem. Infertility affect nearly 1 in 7 couples and male component contributes to 50% of infertility cases. There is a clear link between male infertility and some cancers such as testicular germ cell, prostate and colon cancers. Two possibilities support this finding: 1) Cancer treatments can affect the fertility factors 2) Genetic profile of infertility genes have been altered in cancer patients. Although the previously published researches have mostly focused on the first factor, no article has yet confirmed the role of genetic factors. In this in silico study, we collected the large number of genes (n = 17703) involved in infertility. These genes were collected from NGS panel tests of male infertility and comprehensive literature review or online data base. The Prostate Adenocarcinoma genomic and transcriptomics raw data were downloaded from the cBioPortal Cancer dataset. This included with 494 patients of Prostate Cancer with 494 mutation data, 489 with CNA and 493 with RNA seqV2 data. TCGA RNA-Seq raw data was extracted in R using the cgdsr extension package with a threshold of ±2 relative to normal samples. The observed data showed that male infertility genes have been distributed through the human genome. Among the 17703 analyzed genes of this study, the genomic profile of three genes including OR9Q1, H4C6 and PSG7 were changed approximately in 100% of (n = 493) patients. In most of patients (>98%), genetic alteration was related to change in gene expression. In conclusion, this study showed that the genomic and transcriptomics patterns of some male-infertility genes are notably altered in patients of prostate cancer and suggested a possible role of genetic factors in occurrence of infertility in cancer patients. Our information can be used as a source for the design of genetic database of male-infertility.
Collapse
Affiliation(s)
- Farima Said Ali-Samani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arman Shahrisa
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Hajjari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Pegah Ghandil
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Loghin A, Popelea MC, Nechifor-Boilă IA, Borda A. Systematic Biopsy vs. Prostatectomy: Evaluating Correlations and Grading Discrepancies in Prostate Cancer. Cureus 2024; 16:e68075. [PMID: 39347309 PMCID: PMC11437350 DOI: 10.7759/cureus.68075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Background Prostate Cancer (PCa) represents a growing global health challenge. The main factor in predicting PCa prognosis is represented by the Gleason Score (GS) therefore, the accuracy of pathological features from preoperative biopsy is critical in the management of the patient. We aimed to investigate the correlation between prostate biopsy parameters and the prostatectomy specimen pathological features and to identify factors that lead to over- and under-grading tumors in biopsy samples. Materials and methods We performed a retrospective study that included 110 male patients with confirmed PCa, selected based on specific inclusion criteria. Biopsy and radical prostatectomy (RP) specimens were analyzed using standard histopathological techniques, and pathological features were assessed according to the latest guidelines. Statistical analysis was performed using IBM SPSS Statistics version 26.0.0 (IBM Corp., Armonk, NY). Results The study included 110 male patients with a median age of 67 years old, ranging from 48 to 79 years old. Correlations between biopsy parameters and RP outcomes were assessed and revealed several key findings. The tumoral length on biopsy was correlated with positive surgical margin (r=0.289, p<0.01) and with tumoral volume (r=0.526, p<0.001) on prostatectomy. Patients with higher grade groups (GG) on biopsy had an approximately four times higher chance of exhibiting extraprostatic extension. We demonstrated a significant correlation between Gleason Pattern 4 (%GP4) on biopsy and pT stage, with pT4 showing the highest %GP4, and a noticeable increase in %GP4 as the pT stage progressed from pT2b to pT4. The study found a significantly higher rate of undergrading at biopsy (30.90%) compared to overgrading (6.36%). Additionally, greater tumor length and higher tumor percentages in biopsies improved grading accuracy (p<0.001). Conclusion Our findings suggest that systemic biopsies play a key role in predicting pathological outcomes, especially through parameters that serve as key prognostic markers. However, due to the potential of the biopsy results to be under- or overgraded, urologists should take into consideration the advantages of using repeat biopsies or additional imaging techniques to achieve a more precise diagnosis and treatment strategy.
Collapse
Affiliation(s)
- Andrada Loghin
- Histology, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, ROU
- Pathology, Mures Clinical County Hospital, Târgu Mureș, ROU
| | | | - Ioan A Nechifor-Boilă
- Anatomy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, ROU
- Urology, Mures Clinical County Hospital, Târgu Mureș, ROU
| | - Angela Borda
- Histology, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, ROU
- Pathology, Targu-Mures Emergency County Hospital, Târgu Mureș, ROU
| |
Collapse
|
3
|
Alsaab HO, Alzahrani MS, F Alaqile A, Waggas DS, Almutairy B. Long non-coding RNAs; potential contributors in cancer chemoresistance through modulating diverse molecular mechanisms and signaling pathways. Pathol Res Pract 2024; 260:155455. [PMID: 39043005 DOI: 10.1016/j.prp.2024.155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
One of the mainstays of cancer treatment is chemotherapy. Drug resistance, however, continues to be the primary factor behind clinical treatment failure. Gene expression is regulated by long non-coding RNAs (lncRNAs) in several ways, including chromatin remodeling, translation, epigenetic, and transcriptional levels. Cancer hallmarks such as DNA damage, metastasis, immunological evasion, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis are all influenced by LncRNAs. Numerous studies have been conducted on LncRNA-driven mechanisms of resistance to different antineoplastic drugs. Diverse medication kinds elicit diverse resistance mechanisms, and each mechanism may have multiple contributing factors. As a result, several lncRNAs have been identified as new biomarkers and therapeutic targets for identifying and managing cancers. This compels us to thoroughly outline the crucial roles that lncRNAs play in drug resistance. In this regard, this article provides an in-depth analysis of the recently discovered functions of lncRNAs in the pathogenesis and chemoresistance of cancer. As a result, the current research might offer a substantial foundation for future drug resistance-conquering strategies that target lncRNAs in cancer therapies.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Atheer F Alaqile
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dania S Waggas
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
4
|
Wu Y, Liu P, Chen W, Bai S, Chen S, Chen J, Xu X, Xia J, Wu Y, Lai J, Sun C, Lao Z, Wan X, Wu Z. Microwave hyperthermia enhances radiosensitization by decreasing DNA repair efficiency and inducing oxidative stress in PC3 prostatic adenocarcinoma cells. Int J Hyperthermia 2024; 41:2335201. [PMID: 38583875 DOI: 10.1080/02656736.2024.2335201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
PURPOSE Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.
Collapse
Affiliation(s)
- Yajun Wu
- Department of TCM Pharmacy, Zhejiang Hospital, Hangzhou, China
| | - Pengyuan Liu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wendy Chen
- Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Shiting Bai
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sisi Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianglin Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Jindan Xia
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufei Wu
- ACS (International) Singapore, Singapore, Singapore
| | - Jianjun Lai
- Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhenghong Lao
- Department of Oncology, People's Hospital of Deqing County, Huzhou City, China
| | - Xiaoqing Wan
- Department of TCM Pharmacy, Zhejiang Hospital, Hangzhou, China
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Chen Q, Wu J, Li X, Ye Z, Yang H, Mu L. Amphibian-Derived Natural Anticancer Peptides and Proteins: Mechanism of Action, Application Strategies, and Prospects. Int J Mol Sci 2023; 24:13985. [PMID: 37762285 PMCID: PMC10530844 DOI: 10.3390/ijms241813985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that seriously threaten human life. Traditional anticancer therapies have achieved remarkable efficacy but have also some unavoidable side effects. Therefore, more and more research focuses on highly effective and less-toxic anticancer substances of natural origin. Amphibian skin is rich in active substances such as biogenic amines, alkaloids, alcohols, esters, peptides, and proteins, which play a role in various aspects such as anti-inflammatory, immunomodulatory, and anticancer functions, and are one of the critical sources of anticancer substances. Currently, a range of natural anticancer substances are known from various amphibians. This paper aims to review the physicochemical properties, anticancer mechanisms, and potential applications of these peptides and proteins to advance the identification and therapeutic use of natural anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | - Hailong Yang
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lixian Mu
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
6
|
Chang X, Wang H, Yang Z, Wang Y, Li J, Han Z. ESR2 polymorphisms on prostate cancer risk: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e33937. [PMID: 37335680 PMCID: PMC10256358 DOI: 10.1097/md.0000000000033937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND This meta-analysis was performed to address the association of 2 ESR2 gene polymorphisms (rs1256049 and rs4986938) with susceptibility to cancer. METHODS An extensive literature search for eligible candidate gene studies published before May 10, 2022, was conducted in PubMed, Medline, and Web of Science. The search strategy was as follows: (ESR2 OR ERβ OR ER beta OR estrogen receptor beta) AND (polymorphism OR mutation OR variation OR SNP OR genotype) AND (PCa OR PC OR prostate cancer). Potential sources of heterogeneity were sought out via trial sequential analysis, subgroup, and sensitivity analysis. RESULTS Overall, a total of 10 articles involving 18,064 cases and 19,556 controls for 2 polymorphisms of the ESR2 gene were enrolled. In the stratified analysis of rs1256049, we found that Caucasians might be correlated with an increased risk of prostate cancer (PCa), while less susceptibility was found in Asians. We observed that rs4986938 was not associated with PCa risk. CONCLUSION ESR2 rs1256049 polymorphism is associated with a higher risk of PCa in the Caucasian population and a lower risk of PCa in the Asian population.
Collapse
Affiliation(s)
- Xueliang Chang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingdong Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Cardiometabolic side effects of androgen deprivation therapy in prostate cancer. Curr Opin Support Palliat Care 2022; 16:216-222. [PMID: 36349380 DOI: 10.1097/spc.0000000000000624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE OF REVIEW Androgen-deprivation therapy (ADT) is widely employed for treatment of advanced prostate cancer and it is considered the frontline therapy. However, the numerous adverse reactions associated with this treatment option are concerning and its potential association with cardiovascular diseases (CVD) should not be overlooked. In this review, we examine the literature on the cardiovascular side effects of ADT and the physiologic mechanisms underpinning the association with CVD. We will also specifically discuss the different findings regarding the interesting potential disparity in major cardiovascular events among GnRH agonist-treated patients compared with patients undergoing GnRH antagonist treatment. RECENT FINDINGS Androgen-deprivation therapy increases the risk of developing CVD by altering the body composition, metabolism, vascular system, and cardiac physiology. GnRH agonists may pose a higher risk of cardiovascular mortality and morbidity than GnRH antagonists; however, this link remains to be determined. Furthermore, screening for cardiovascular risk factors before and during ADT treatment is a crucial step in preventing major adverse cardiac events in prostate cancer patients. Notably, preexisting CVD and comorbidities have been identified as major key elements predicting cardiovascular events. Early implementation of pharmacological and nonpharmacological treatment strategies is strongly suggested, and regular follow-up visits should be scheduled to continuously assess patients' cardiovascular risk under ADT. SUMMARY ADT is a very powerful treatment option for advanced prostate cancer that improves survival outcomes but has the potential of considerably impacting patients' cardiovascular health. Medical optimization and close monitoring are crucial during treatment with ADT.
Collapse
|
8
|
Morais M, Machado V, Dias F, Figueiredo P, Palmeira C, Martins G, Fernandes R, Malheiro AR, Mikkonen KS, Teixeira AL, Medeiros R. Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cells. Int J Nanomedicine 2022; 17:4321-4337. [PMID: 36147546 PMCID: PMC9489222 DOI: 10.2147/ijn.s364862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Silver nanoparticles (AgNPs) have shown great potential as anticancer agents, namely in therapies’ resistant forms of cancer. The progression of prostate cancer (PCa) to resistant forms of the disease (castration-resistant PCa, CRPC) is associated with poor prognosis and life quality, with current limited therapeutic options. CRPC is characterized by a high glucose consumption, which poses as an opportunity to direct AgNPs to these cancer cells. Thus, this study explores the effect of glucose functionalization of AgNPs in PCa and CRPC cell lines (LNCaP, Du-145 and PC-3). Methods AgNPs were synthesized, further functionalized, and their physical and chemical composition was characterized both in water and in culture medium, through UV-visible spectrum, dynamic light scattering (DLS), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Their effect was assessed in the cell lines regarding AgNPs’ entering pathway, cellular proliferation capacity, ROS production, mitochondrial membrane depolarization, cell cycle analysis and apoptosis evaluation. Results AgNPs displayed an average size of 61nm and moderate monodispersity with a slight increase after functionalization, and a round shape. These characteristics remained stable when redispersed in culture medium. Both AgNPs and G-AgNPs were cytotoxic only to CRPC cells and not to hormone-sensitive ones and their effect was higher after functionalization showing the potential of glucose to favor AgNPs’ uptake by cancer cells. Entering through endocytosis and being encapsulated in lysosomes, the NPs increased the ROS, inducing mitochondrial damage, and arresting cell cycle in S Phase, therefore blocking proliferation, and inducing apoptosis. Conclusion The nanoparticles synthesized in the present study revealed good characteristics and stability for administration to cancer cells. Their uptake through endocytosis leads to promising cytotoxic effects towards CRPC cells, revealing the potential of G-AgNPs as a future therapeutic approach to improve the management of patients with PCa resistant to hormone therapy or metastatic disease.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Patrícia Figueiredo
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carlos Palmeira
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, 4200-072, Portugal.,Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,Biomedical Research Center (CEBIMED, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, 4249-004, Portugal
| | - Gabriela Martins
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, 4200-072, Portugal.,Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Rui Fernandes
- HEMS-Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Ana Rita Malheiro
- HEMS-Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland.,Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, FI-00014, Finland
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal.,Biomedical Research Center (CEBIMED, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, 4249-004, Portugal.,Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|
9
|
Liu J, Dong L, Zhu Y, Dong B, Sha J, Zhu HH, Pan J, Xue W. Prostate cancer treatment - China's perspective. Cancer Lett 2022; 550:215927. [PMID: 36162714 DOI: 10.1016/j.canlet.2022.215927] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Prostate cancer (PCa) incidence and mortality have rapidly increased in China. Notably, unique epidemiological characteristics of PCa are found in the Chinese PCa population, including a low but rising incidence and an inferior but improving disease prognosis. Consequently, the current treatment landscape of PCa in China demonstrates distinct features. Establishing a more thorough understanding of the characteristics of Chinese patients may help provide novel insights into potential treatment strategies for PCa patients. Herein, we review the epidemiological status and differences in treatment modalities of Chinese PCa patients. In addition, we discuss the underlying socioeconomic and biological factors that contribute to such diversity and further propose directions for future efforts in optimizing the PCa treatment in China.
Collapse
Affiliation(s)
- Jiazhou Liu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jianjun Sha
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Helen He Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
10
|
Yu G, Bao J, Zhan M, Wang J, Li X, Gu X, Song S, Yang Q, Liu Y, Wang Z, Xu B. Comprehensive Analysis of m5C Methylation Regulatory Genes and Tumor Microenvironment in Prostate Cancer. Front Immunol 2022; 13:914577. [PMID: 35757739 PMCID: PMC9226312 DOI: 10.3389/fimmu.2022.914577] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background 5-Methylcytidine (m5C) methylation is an emerging epigenetic modification in recent years, which is associated with the development and progression of various cancers. However, the prognostic value of m5C regulatory genes and the correlation between m5C methylation and the tumor microenvironment (TME) in prostate cancer remain unknown. Methods In the current study, the genetic and transcriptional alterations and prognostic value of m5C regulatory genes were investigated in The Cancer Genome Atlas and Gene Expression Omnibus datasets. Then, an m5C prognostic model was established by LASSO Cox regression analysis. Gene set variation analyses (GSVA), gene set enrichment analysis (GSEA), clinical relevance, and TME analyses were conducted to explain the biological functions and quantify the TME scores between high-risk and low-risk subgroups. m5C regulatory gene clusters and m5C immune subtypes were identified using consensus unsupervised clustering analysis. The Cell-type Identification By Estimating Relative Subsets of RNA Transcripts algorithm was used to calculate the contents of immune cells. Results TET3 was upregulated at transcriptional levels in PCa compared with normal tissues, and a high TET3 expression was associated with poor prognosis. An m5C prognostic model consisting of 3 genes (NSUN2, TET3, and YBX1) was developed and a nomogram was constructed for improving the clinical applicability of the model. Functional analysis revealed the enrichment of pathways and the biological processes associated with RNA regulation and immune function. Significant differences were also found in the expression levels of m5C regulatory genes, TME scores, and immune cell infiltration levels between different risk subgroups. We identified two distinct m5C gene clusters and found their correlation with patient prognosis and immune cell infiltration characteristics. Naive B cells, CD8+ T cells, M1 macrophages and M2 macrophages were obtained and 2 m5C immune subtypes were identified. CTLA4, NSUN6, TET1, and TET3 were differentially expressed between immune subtypes. The expression of CTLA4 was found to be correlated with the degree of immune cell infiltration. Conclusions Our comprehensive analysis of m5C regulatory genes in PCa demonstrated their potential roles in the prognosis, clinical features, and TME. These findings may improve our understanding of m5C regulatory genes in the tumor biology of PCa.
Collapse
Affiliation(s)
- Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiahao Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangyi Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinjuan Li
- General Medical Department, Yangpu Daqiao Community Health Service Center, Shanghai, China
| | - Xin Gu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shangqing Song
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wheeler TT, Cao P, Ghouri MD, Ji T, Nie G, Zhao Y. Nanotechnological strategies for prostate cancer imaging and diagnosis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Zhang X, Xia B, Zheng H, Ning J, Zhu Y, Shao X, Liu B, Dong B, Gao H. Identification of characteristic metabolic panels for different stages of prostate cancer by 1H NMR-based metabolomics analysis. Lab Invest 2022; 20:275. [PMID: 35715864 PMCID: PMC9205125 DOI: 10.1186/s12967-022-03478-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/11/2022] [Indexed: 12/14/2022]
Abstract
Background Prostate cancer (PCa) is the second most prevalent cancer in males worldwide, yet detecting PCa and its metastases remains a major challenging task in clinical research setups. The present study aimed to characterize the metabolic changes underlying the PCa progression and investigate the efficacy of related metabolic panels for an accurate PCa assessment. Methods In the present study, 75 PCa subjects, 62 PCa patients with bone metastasis (PCaB), and 50 benign prostatic hyperplasia (BPH) patients were enrolled, and we performed a cross-sectional metabolomics analysis of serum samples collected from these subjects using a 1H nuclear magnetic resonance (NMR)-based metabolomics approach. Results Multivariate analysis revealed that BPH, PCa, and PCaB groups showed distinct metabolic divisions, while univariate statistics integrated with variable importance in the projection (VIP) scores identified a differential metabolite series, which included energy, amino acid, and ketone body metabolism. Herein, we identified a series of characteristic serum metabolic changes, including decreased trends of 3-HB and acetone as well as elevated trends of alanine in PCa patients compared with BPH subjects, while increased levels of 3-HB and acetone as well as decreased levels of alanine in PCaB patients compared with PCa. Additionally, our results also revealed the metabolic panels of discriminant metabolites coupled with the clinical parameters (age and body mass index) for discrimination between PCa and BPH, PCaB and BPH, PCaB and PCa achieved the AUC values of 0.828, 0.917, and 0.872, respectively. Conclusions Overall, our study gave successful discrimination of BPH, PCa and PCaB, and we characterized the potential metabolic alterations involved in the PCa progression and its metastases, including 3-HB, acetone and alanine. The defined biomarker panels could be employed to aid in the diagnosis and classification of PCa in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03478-5.
Collapse
Affiliation(s)
- Xi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Binbin Xia
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Ning
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Binrui Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, China.
| |
Collapse
|
13
|
Su H, Wang Y, Li H. RNA m6A Methylation Regulators Multi-Omics Analysis in Prostate Cancer. Front Genet 2021; 12:768041. [PMID: 34899855 PMCID: PMC8661905 DOI: 10.3389/fgene.2021.768041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/12/2021] [Indexed: 01/29/2023] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is known to be the most popular RNA modification in animals. Many research reports have elaborated on the effects of m6A regulators in medical practice, such as diagnosis, prognosis, and treatment. M6A modification has evident impacts on many aspects of RNA metabolism, just like RNA splicing, processing, translation, and stability. M6A also has a magnificent role in numerous types of cancers. We analyzed the prostate cancer datasets, from The Cancer Genome Atlas (TCGA) database, for every recognized m6A regulator in their gene expression, DNA methylation status and copy number variations (CNVs). We also systematically analyzed the relationship between different m6A regulators and the prognosis of prostate cancer. The results illustrated considerable differences in the expression of various m6A regulators between the prostate and normal cancer samples. At the same time, there were evident differences in the expression of various m6A regulators in prostate cancers with different Gleason scores. Subsequently, we determined CBLL1, FTO, YTHDC1, HNRNPA2B1 as crucial m6A regulators of prostate cancer. Premised on the expression of CBLL1, we also identified potential therapeutic agents for prostate cancer, and knockdown of FTO prominently inhibited prostate cells migration and invasion in vitro experiment.
Collapse
Affiliation(s)
- Hao Su
- Department of Urology, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Yutao Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongjun Li
- Department of Urology, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
14
|
McNevin CS, Cadoo K, Baird AM, Murchan P, Sheils O, McDermott R, Finn S. Pathogenic BRCA Variants as Biomarkers for Risk in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13225697. [PMID: 34830851 PMCID: PMC8616097 DOI: 10.3390/cancers13225697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Historically, the treatment of prostate cancer was a blanket approach for all. Prostate cancer has not benefitted from targeted treatments based on specific tumour characteristics (ie. Particular genetic or molecular patterns) the way other cancers have. This is important as studies have shown that prostate cancer patients with certain errors in their genes, such as BRCA2 or BRCA1, are more likely to have worse disease and poorer outcome. These patients can be treated successfully with a group of drugs called ‘PARP inhibitors’. This paper examines the prognostic, clinical and therapeutic role of BRCA2/BRCA1 mutations across the evolution of PCa. The impact of the inclusion of BRCA genes on genetic screening will also be outlined. Abstract Studies have demonstrated that men with Prostate Cancer (PCa) harboring BRCA2/BRCA1 genetic aberrations, are more likely to have worse disease and a poorer prognosis. A mutation in BRCA2 is known to confer the highest risk of PCa for men (8.6 fold in men ≤65 years) making BRCA genes a conceivable genomic biomarker for risk in PCa. These genes have attracted a lot of research attention however their role in the clinical assessment and treatment of PCa remains complex. Multiple studies have been published examining the relationship between prostate cancer and BRCA mutations. Here BRCA mutations are explored specifically as a biomarker for risk in PCa. It is in this context, we examined the prognostic, clinical and therapeutic role of BRCA2/BRCA1 mutations across the evolution of PCa. The impact of the inclusion of BRCA genes on genetic screening will also be outlined.
Collapse
Affiliation(s)
- Ciara S. McNevin
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland; (C.S.M.); (P.M.)
- Department of Medical Oncology, St. James Hospital, D08 NHY1 Dublin, Ireland;
| | - Karen Cadoo
- Department of Medical Oncology, St. James Hospital, D08 NHY1 Dublin, Ireland;
- School of Medicine, Trinity Translational Medicine Institute, St. James Hospital, D08 W9RT Dublin, Ireland; (A.-M.B.); (O.S.)
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, St. James Hospital, D08 W9RT Dublin, Ireland; (A.-M.B.); (O.S.)
| | - Pierre Murchan
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland; (C.S.M.); (P.M.)
- Science Foundation Ireland Centre for Research Training in Genomics Data Science, School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, H91 TK33 Galway, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, St. James Hospital, D08 W9RT Dublin, Ireland; (A.-M.B.); (O.S.)
| | - Ray McDermott
- Department of Medical Oncology, Tallaght University Hospital, D24 NR0A Dublin, Ireland;
- Department of Medical Oncology, St. Vincent’s University Hospital, D04 YN26 Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland; (C.S.M.); (P.M.)
- Department of Medical Oncology, St. James Hospital, D08 NHY1 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
15
|
Antitumor Activity and Mechanism of Action of Hormonotoxin, an LHRH Analog Conjugated to Dermaseptin-B2, a Multifunctional Antimicrobial Peptide. Int J Mol Sci 2021; 22:ijms222111303. [PMID: 34768734 PMCID: PMC8582938 DOI: 10.3390/ijms222111303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common cancer in men. For patients with advanced or metastatic prostate cancer, available treatments can slow down its progression but cannot cure it. The development of innovative drugs resulting from the exploration of biodiversity could open new therapeutic alternatives. Dermaseptin-B2, a natural multifunctional antimicrobial peptide isolated from Amazonian frog skin, has been reported to possess antitumor activity. To improve its pharmacological properties and to decrease its peripheral toxicity and lethality we developed a hormonotoxin molecule composed of dermaseptin-B2 combined with d-Lys6-LHRH to target the LHRH receptor. This hormonotoxin has a significant antiproliferative effect on the PC3 tumor cell line, with an IC50 value close to that of dermaseptin-B2. Its antitumor activity has been confirmed in vivo in a xenograft mouse model with PC3 tumors and appears to be better tolerated than dermaseptin-B2. Biophysical experiments showed that the addition of LHRH to dermaseptin-B2 did not alter its secondary structure or biological activity. The combination of different experimental approaches indicated that this hormonotoxin induces cell death by an apoptotic mechanism instead of necrosis, as observed for dermaseptin-B2. These results could explain the lower toxicity observed for this hormonotoxin compared to dermaseptin-B2 and may represent a promising targeting approach for cancer therapy.
Collapse
|
16
|
Sobhani N, Neeli PK, D’Angelo A, Pittacolo M, Sirico M, Galli IC, Roviello G, Nesi G. AR-V7 in Metastatic Prostate Cancer: A Strategy beyond Redemption. Int J Mol Sci 2021; 22:5515. [PMID: 34073713 PMCID: PMC8197232 DOI: 10.3390/ijms22115515] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Metastatic prostate cancer is the most common cancer in males and the fifth cause of cancer mortality worldwide. Despite the major progress in this field, leading to the approval of novel anti-androgens, the prognosis is still poor. A significant number of patients acquire an androgen receptor splice variant 7 (AR-V7), which is constitutively activated and lacks the ligand-binding domain (LBD) while maintaining the nuclear localization signal and DNA-binding domain (DBD). This conformational change, even in the absence of the ligand, allows its retention within the nucleus, where it acts as a transcription factor repressing crucial tumor suppressor genes. AR-V7 is an important oncogenic driver and plays a role as an early diagnostic and prognostic marker, as well as a therapeutic target for antagonists such as niclosamide and TAS3681. Anti-AR-V7 drugs have shown promise in recent clinical investigations on this subset of patients. This mini-review focuses on the relevance of AR-V7 in the clinical manifestations of castration-resistant prostate cancer (CRPC) and summarizes redemptive therapeutic strategies.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (N.S.); (P.K.N.); (M.P.)
| | - Praveen Kumar Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (N.S.); (P.K.N.); (M.P.)
| | - Alberto D’Angelo
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK;
| | - Matteo Pittacolo
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (N.S.); (P.K.N.); (M.P.)
| | - Marianna Sirico
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK;
- Azienda Socio-Sanitaria Territoriale Cremona, 26100 Cremona, Italy
| | - Ilaria Camilla Galli
- Histopathology and Molecular Diagnostics, Careggi Teaching Hospital, 50139 Florence, Italy;
| | | | - Gabriella Nesi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| |
Collapse
|
17
|
BRCA Germline Mutations in Prostate Cancer: The Future Is Tailored. Diagnostics (Basel) 2021; 11:diagnostics11050908. [PMID: 34069669 PMCID: PMC8161324 DOI: 10.3390/diagnostics11050908] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the second most common neoplasm in men and the fifth leading cause of death worldwide [...].
Collapse
|