1
|
Du D, Shiri I, Yousefirizi F, Salmanpour MR, Lv J, Wu H, Zhu W, Zaidi H, Lu L, Rahmim A. Impact of harmonization and oversampling methods on radiomics analysis of multi-center imbalanced datasets: application to PET-based prediction of lung cancer subtypes. EJNMMI Phys 2025; 12:34. [PMID: 40192981 PMCID: PMC11977052 DOI: 10.1186/s40658-025-00750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Medical imaging data frequently encounter image-generation heterogeneity and class imbalance properties, challenging strong generalized predictive performances with data-driven machine-learning methods. The purpose of this study was to investigate the impact of harmonization and oversampling methods on multi-center imbalanced datasets, with specific application to PET-based radiomics modeling for histologic subtype prediction in non-small cell lung cancer (NSCLC). METHODS The retrospective study included 245 patients with adenocarcinoma (ADC) and 78 patients with squamous cell carcinoma (SCC) from 4 centers. Utilizing 1502 radiomics features per patient, we trained, validated, and tested 4 machine-learning classifiers, to investigate the effect of no harmonization (NoH) or 4 feature harmonization methods, paired with no oversampling (NoO) or 5 oversampling methods on subtype prediction. Model performance was evaluated using the average area under the ROC curve (AUROC) and G-mean via 5 times 5-fold cross-validations. Statistical comparisons of the combined models against baseline (NoH + NoO) were performed for each fold of cross-validation using the DeLong test. RESULTS The number of cross-combinations with both AUROC and G-mean outperforming baseline in validation and testing was 15, 4, 2, and 7 (out of 29) for random forest (RF), linear discriminant analysis (LDA), logistic regression (LR), and support vector machine (SVM), respectively. ComBat harmonization combined with oversampling (SMOTE) via RF yielded better performance than baseline (AUROC and G-mean of validation: 0.725 vs. 0.608 and 0.625 vs. 0.398; testing: 0.637 vs. 0.567 and 0.506 vs. 0.287), though statistical significances were not observed. CONCLUSIONS Applying harmonization and oversampling methods in multi-center imbalanced datasets can improve NSCLC-subtype prediction, but the effect varies widely across classifiers. We have created open-source comparisons of harmonization and oversampling on different classifiers for comprehensive evaluations in different studies.
Collapse
Affiliation(s)
- Dongyang Du
- College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4, CH-1211, Switzerland
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Mohammad R Salmanpour
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Jieqin Lv
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Huiqin Wu
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wentao Zhu
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, 311121, China
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4, CH-1211, Switzerland
| | - Lijun Lu
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Pazhou Lab, Guangzhou, Guangdong, 510330, China.
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
2
|
Guglielmo P, Buffi N, Porreca A, Setti L, Aricò D, Muraglia L, Evangelista L. Current insights on PSMA PET/CT in intermediate-risk prostate cancer: a literature review. Ann Nucl Med 2025; 39:247-254. [PMID: 39812950 DOI: 10.1007/s12149-025-02015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The purpose of this systematic review was to evaluate the role of PSMA PET/CT in intermediate-risk prostate cancer (PCa) patients, to determine whether it could help improve treatment strategy and prognostic stratification. A systematic literature search up to May 2024 was conducted in the PubMed, Embase and Scopus databases. Articles with mixed risk patient populations, review articles, editorials, letters, comments, or case reports were excluded. The quality of the papers was assessed by using the CASP criteria. The literature search returned 1111 studies; however, 1105 articles were excluded, and therefore 6 full-text papers were retrieved for the final analysis. Three out of six papers focused on the utility of SUVmax in identifying high ISUP grade in patients with intermediate-risk PCa. The latest three papers discussed the controversial role of PSMA PET/CT in predicting the lymph node involvement, mainly in the case of favorable subset. PSMA PET has completely changed the management of patients with PCa; indeed its role is still undefined in patients with intermediate-risk disease. Future perspective is to investigate larger cohorts of intermediate-risk PCa patients, to fully recognize the added value offered by PSMA PET in this category of subjects.
Collapse
Affiliation(s)
- Priscilla Guglielmo
- Nuclear Medicine Unit, Humanitas Gavazzeni, Bergamo, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| | - Nicolò Buffi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Urology, Humanitas Clinical and Research Institute IRCCS, Rozzano, Italy
| | - Angelo Porreca
- Department of Oncological Urology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Lucia Setti
- Nuclear Medicine Unit, Humanitas Gavazzeni, Bergamo, Italy
| | - Demetrio Aricò
- Department of Nuclear Medicine, Humanitas Oncological Centre of Catania, 95125, Catania, Italy
| | - Lorenzo Muraglia
- Nuclear Medicine Unit, Humanitas Clinical and Research Institute IRCCS, Rozzano, Italy
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Nuclear Medicine Unit, Humanitas Clinical and Research Institute IRCCS, Rozzano, Italy
| |
Collapse
|
3
|
Cicero KI, Banerjee R, Kwok M, Dima D, Portuguese AJ, Chen D, Chalian M, Cowan AJ. Illuminating the Shadows: Innovation in Advanced Imaging Techniques for Myeloma Precursor Conditions. Diagnostics (Basel) 2025; 15:215. [PMID: 39857099 PMCID: PMC11765077 DOI: 10.3390/diagnostics15020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), the asymptomatic precursors to multiple myeloma, affect up to 5% of the population over the age of 40. Bone involvement, a myeloma-defining event, represents a major source of morbidity for patients. Key goals for the management of myeloma precursor conditions include (1) identifying patients at the highest risk for progression to MM with bone involvement and (2) differentiating precursor states from active myeloma requiring treatment. Computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)-CT with [18F]fluorodeoxyglucose (FDG) have improved sensitivity for the detection of myeloma bone disease compared to traditional skeletal surveys, and such advanced imaging also provides this field with better tools for detecting early signs of progression. Herein, we review the data supporting the use of advanced imaging for both diagnostics and prognostication in myeloma precursor conditions.
Collapse
Affiliation(s)
- Kara I. Cicero
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (K.I.C.); (R.B.); (M.K.); (D.D.); (A.J.P.)
- Division of Hematology and Oncology, School of Medicine, University of Washington, Seattle, WA 98115, USA
| | - Rahul Banerjee
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (K.I.C.); (R.B.); (M.K.); (D.D.); (A.J.P.)
- Division of Hematology and Oncology, School of Medicine, University of Washington, Seattle, WA 98115, USA
| | - Mary Kwok
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (K.I.C.); (R.B.); (M.K.); (D.D.); (A.J.P.)
- Division of Hematology and Oncology, School of Medicine, University of Washington, Seattle, WA 98115, USA
| | - Danai Dima
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (K.I.C.); (R.B.); (M.K.); (D.D.); (A.J.P.)
- Division of Hematology and Oncology, School of Medicine, University of Washington, Seattle, WA 98115, USA
| | - Andrew J. Portuguese
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (K.I.C.); (R.B.); (M.K.); (D.D.); (A.J.P.)
- Division of Hematology and Oncology, School of Medicine, University of Washington, Seattle, WA 98115, USA
| | - Delphine Chen
- Department of Radiology, University of Washington, Seattle, WA 98115, USA; (D.C.); (M.C.)
| | - Majid Chalian
- Department of Radiology, University of Washington, Seattle, WA 98115, USA; (D.C.); (M.C.)
| | - Andrew J. Cowan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (K.I.C.); (R.B.); (M.K.); (D.D.); (A.J.P.)
- Division of Hematology and Oncology, School of Medicine, University of Washington, Seattle, WA 98115, USA
| |
Collapse
|
4
|
Sun Z, Yang T, Ding C, Shi Y, Cheng L, Jia Q, Tao W. Clinical scoring systems, molecular subtypes and baseline [ 18F]FDG PET/CT image analysis for prognosis of diffuse large B-cell lymphoma. Cancer Imaging 2024; 24:168. [PMID: 39696503 DOI: 10.1186/s40644-024-00810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous hematological malignancy resulting in a range of outcomes, and the early prediction of these outcomes has important implications for patient management. Clinical scoring systems provide the most commonly used prognostic evaluation criteria, and the value of genetic testing has also been confirmed by in-depth research on molecular typing. [18F]-fluorodeoxyglucose positron emission tomography / computed tomography ([18F]FDG PET/CT) is an invaluable tool for predicting DLBCL progression. Conventional baseline image-based parameters and machine learning models have been used in prognostic FDG PET/CT studies of DLBCL; however, numerous studies have shown that combinations of baseline clinical scoring systems, molecular subtypes, and parameters and models based on baseline FDG PET/CT image may provide better predictions of patient outcomes and aid clinical decision-making in patients with DLBCL.
Collapse
Affiliation(s)
- Zhuxu Sun
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Tianshuo Yang
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuye Shi
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qingshen Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin, China
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
| |
Collapse
|
5
|
Wang S, Belemlilga D, Lei Y, Ganti AKP, Lin C, Asif S, Marasco JT, Oh K, Zhou S. Enhancing Survival Outcome Predictions in Metastatic Non-Small Cell Lung Cancer Through PET Radiomics Analysis. Cancers (Basel) 2024; 16:3731. [PMID: 39594686 PMCID: PMC11592397 DOI: 10.3390/cancers16223731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: Advanced-stage lung cancer poses significant management challenges. The goal of this study was to identify crucial clinical and PET radiomics features that enable prognostic stratification for predicting outcomes. (2) Methods: PET radiomics features of the primary lung lesions were extracted from 99 patients with stage IVB NSCLC, and the robustness of these PET radiomics features was evaluated against uncertainties stemming from extraction parameters and contour variation. We trained three survival risk models (clinical, radiomics, and a composite) through a penalized Cox model framework. We also created a Balanced Random Forest classification predictive model, using the selected features, to predict 1-year survival. (3) Results: We identified 367 common PET radiomics features that exhibited robustness to perturbations introduced by contour variation and extraction parameters. Our findings indicated that both the radiomics and the composite model outperformed the clinical model in stratifying the risk for survival with statistical significance. In predicting 1-year survival, the radiomics model and the composite model also achieved better predicting accuracies compared to the clinical model. (4) Conclusions: Robust PET radiomics analysis successfully facilitated the stratification of patient risk for survival outcomes and predicted 1-year survival in stage IVB NSCLC.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| | - Darryl Belemlilga
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
- College of Arts and Sciences, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| | - Apar Kishor P Ganti
- Division of Oncology and Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA;
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| | - Samia Asif
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Jacob T Marasco
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| | - Kyuhak Oh
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| |
Collapse
|
6
|
Pellegrino S, Origlia D, Di Donna E, Lamagna M, Della Pepa R, Pane F, Del Vecchio S, Fonti R. Coefficient of variation and texture analysis of 18F-FDG PET/CT images for the prediction of outcome in patients with multiple myeloma. Ann Hematol 2024; 103:3713-3721. [PMID: 39046513 PMCID: PMC11358233 DOI: 10.1007/s00277-024-05905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
In multiple myeloma (MM) bone marrow infiltration by monoclonal plasma cells can occur in both focal and diffuse manner, making staging and prognosis rather difficult. The aim of our study was to test whether texture analysis of 18 F-2-deoxy-d-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) images can predict survival in MM patients. Forty-six patients underwent 18 F-FDG-PET/CT before treatment. We used an automated contouring program for segmenting the hottest focal lesion (FL) and a lumbar vertebra for assessing diffuse bone marrow involvement (DI). Maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and texture features such as Coefficient of variation (CoV), were obtained from 46 FL and 46 DI. After a mean follow-up of 51 months, 24 patients died of myeloma and were compared to the 22 survivors. At univariate analysis, FL SUVmax (p = 0.0453), FL SUVmean (p = 0.0463), FL CoV (p = 0.0211) and DI SUVmax (p = 0.0538) predicted overall survival (OS). At multivariate analysis only FL CoV and DI SUVmax were retained in the model (p = 0.0154). By Kaplan-Meier method and log-rank testing, patients with FL CoV below the cut-off had significantly better OS than those with FL CoV above the cut-off (p = 0.0003), as well as patients with DI SUVmax below the threshold versus those with DI SUVmax above the threshold (p = 0.0006). Combining FL CoV and DI SUVmax by using their respective cut-off values, a statistically significant difference was found between the resulting four survival curves (p = 0.0001). Indeed, patients with both FL CoV and DI SUVmax below their respective cut-off values showed the best prognosis. Conventional and texture parameters derived from 18F-FDG PET/CT analysis can predict survival in MM patients by assessing the heterogeneity and aggressiveness of both focal and diffuse infiltration.
Collapse
Affiliation(s)
- Sara Pellegrino
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Davide Origlia
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Erica Di Donna
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Martina Lamagna
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Roberta Della Pepa
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Fabrizio Pane
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples, 80131, Italy
| | - Rosa Fonti
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.
| |
Collapse
|
7
|
Ramlee S, Manavaki R, Aloj L, Escudero Sanchez L. Mitigating the impact of image processing variations on tumour [ 18F]-FDG-PET radiomic feature robustness. Sci Rep 2024; 14:16294. [PMID: 39009706 PMCID: PMC11251269 DOI: 10.1038/s41598-024-67239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Radiomics analysis of [18F]-fluorodeoxyglucose ([18F]-FDG) PET images could be leveraged for personalised cancer medicine. However, the inherent sensitivity of radiomic features to intensity discretisation and voxel interpolation complicates its clinical translation. In this work, we evaluated the robustness of tumour [18F]-FDG-PET radiomic features to 174 different variations in intensity resolution or voxel size, and determined whether implementing parameter range conditions or dependency corrections could improve their robustness. Using 485 patient images spanning three cancer types: non-small cell lung cancer (NSCLC), melanoma, and lymphoma, we observed features were more sensitive to intensity discretisation than voxel interpolation, especially texture features. In most of our investigations, the majority of non-robust features could be made robust by applying parameter range conditions. Correctable features, which were generally fewer than conditionally robust, showed systematic dependence on bin configuration or voxel size that could be minimised by applying corrections based on simple mathematical equations. Melanoma images exhibited limited robustness and correctability relative to NSCLC and lymphoma. Our study provides an in-depth characterisation of the sensitivity of [18F]-FDG-PET features to image processing variations and reinforces the need for careful selection of imaging biomarkers prior to any clinical application.
Collapse
Affiliation(s)
- Syafiq Ramlee
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Luigi Aloj
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lorena Escudero Sanchez
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Philip MM, Watts J, McKiddie F, Welch A, Nath M. Development and Validation of Prognostic Models Using Radiomic Features from Pre-Treatment Positron Emission Tomography (PET) Images in Head and Neck Squamous Cell Carcinoma (HNSCC) Patients. Cancers (Basel) 2024; 16:2195. [PMID: 38927901 PMCID: PMC11202084 DOI: 10.3390/cancers16122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
High-dimensional radiomics features derived from pre-treatment positron emission tomography (PET) images offer prognostic insights for patients with head and neck squamous cell carcinoma (HNSCC). Using 124 PET radiomics features and clinical variables (age, sex, stage of cancer, site of cancer) from a cohort of 232 patients, we evaluated four survival models-penalized Cox model, random forest, gradient boosted model and support vector machine-to predict all-cause mortality (ACM), locoregional recurrence/residual disease (LR) and distant metastasis (DM) probability during 36, 24 and 24 months of follow-up, respectively. We developed models with five-fold cross-validation, selected the best-performing model for each outcome based on the concordance index (C-statistic) and the integrated Brier score (IBS) and validated them in an independent cohort of 102 patients. The penalized Cox model demonstrated better performance for ACM (C-statistic = 0.70, IBS = 0.12) and DM (C-statistic = 0.70, IBS = 0.08) while the random forest model displayed better performance for LR (C-statistic = 0.76, IBS = 0.07). We conclude that the ML-based prognostic model can aid clinicians in quantifying prognosis and determining effective treatment strategies, thereby improving favorable outcomes in HNSCC patients.
Collapse
Affiliation(s)
- Mahima Merin Philip
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Jessica Watts
- National Health Service Grampian, Aberdeen AB15 6RE, UK; (J.W.); (F.M.)
| | - Fergus McKiddie
- National Health Service Grampian, Aberdeen AB15 6RE, UK; (J.W.); (F.M.)
| | - Andy Welch
- Institute of Education in Healthcare and Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Mintu Nath
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| |
Collapse
|
9
|
Frood R, Mercer J, Brown P, Appelt A, Mistry H, Kochhar R, Scarsbrook A. Training and external validation of pre-treatment FDG PET-CT-based models for outcome prediction in anal squamous cell carcinoma. Eur Radiol 2024; 34:3194-3204. [PMID: 37924344 PMCID: PMC11126458 DOI: 10.1007/s00330-023-10340-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVES The incidence of anal squamous cell carcinoma (ASCC) is increasing worldwide, with a significant proportion of patients treated with curative intent having recurrence. The ability to accurately predict progression-free survival (PFS) and overall survival (OS) would allow for development of personalised treatment strategies. The aim of the study was to train and external test radiomic/clinical feature derived time-to-event prediction models. METHODS Consecutive patients with ASCC treated with curative intent at two large tertiary referral centres with baseline FDG PET-CT were included. Radiomic feature extraction was performed using LIFEx software on the pre-treatment PET-CT. Two distinct predictive models for PFS and OS were trained and tuned at each of the centres, with the best performing models externally tested on the other centres' patient cohort. RESULTS A total of 187 patients were included from centre 1 (mean age 61.6 ± 11.5 years, median follow up 30 months, PFS events = 57/187, OS events = 46/187) and 257 patients were included from centre 2 (mean age 62.6 ± 12.3 years, median follow up 35 months, PFS events = 70/257, OS events = 54/257). The best performing model for PFS and OS was achieved using a Cox regression model based on age and metabolic tumour volume (MTV) with a training c-index of 0.7 and an external testing c-index of 0.7 (standard error = 0.4). CONCLUSIONS A combination of patient age and MTV has been demonstrated using external validation to have the potential to predict OS and PFS in ASCC patients. CLINICAL RELEVANCE STATEMENT A Cox regression model using patients' age and metabolic tumour volume showed good predictive potential for progression-free survival in external testing. The benefits of a previous radiomics model published by our group could not be confirmed on external testing. KEY POINTS • A predictive model based on patient age and metabolic tumour volume showed potential to predict overall survival and progression-free survival and was validated on an external test cohort. • The methodology used to create a predictive model from age and metabolic tumour volume was repeatable using external cohort data. • The predictive ability of positron emission tomography-computed tomography-derived radiomic features diminished when the influence of metabolic tumour volume was accounted for.
Collapse
Affiliation(s)
- Russell Frood
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| | - Joseph Mercer
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, UK
| | - Peter Brown
- Department of Radiology, York and Scarborough Teaching Hospitals NHS Foundation Trust, York, UK
| | - Ane Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Hitesh Mistry
- Division of Pharmacy, University of Manchester, Manchester, UK
| | - Rohit Kochhar
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, UK
| | - Andrew Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Fukushima Y, Suzuki K, Kim M, Gu W, Yokoo S, Tsushima Y. Evaluation of bone marrow invasion on the machine learning of 18 F-FDG PET texture analysis in lower gingival squamous cell carcinoma. Nucl Med Commun 2024; 45:406-411. [PMID: 38372047 DOI: 10.1097/mnm.0000000000001826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
OBJECTIVES Lower gingival squamous cell carcinoma (LGSCC) has the potential to invade the alveolar bone. Traditionally, the diagnosis of LGSCC relied on morphological imaging, but inconsistencies between these assessments and surgical findings have been observed. This study aimed to assess the correlation between LGSCC bone marrow invasion and PET texture features and to enhance diagnostic accuracy by using machine learning. METHODS A retrospective analysis of 159 LGSCC patients with pretreatment 18 F-fluorodeoxyglucose (FDG) PET/computed tomography (CT) examination from 2009 to 2017 was performed. We extracted radiomic features from the PET images, focusing on pathologic bone marrow invasion detection. Extracted features underwent the least absolute shrinkage and selection operator algorithm-based selection and were then used for machine learning via the XGBoost package to distinguish bone marrow invasion presence. Receiver operating characteristic curve analysis was performed. RESULTS From the 159 patients, 88 qualified for further analysis (59 men; average age, 69.2 years), and pathologic bone marrow invasion was identified in 69 (78%) of these patients. Three significant radiological features were identified: Gray level co-occurrence matrix_Correlation, INTENSITY-BASED_IntensityInterquartileRange, and MORPHOLOGICAL_SurfaceToVolumeRatio. An XGBoost machine-learning model, using PET radiomic features to detect bone marrow invasion, yielded an area under the curve value of 0.83. CONCLUSION Our findings highlighted the potential of 18 F-FDG PET radiomic features, combined with machine learning, as a promising avenue for improving LGSCC diagnosis and treatment. Using 18 F-FDG PET texture features may provide a robust and accurate method for determining the presence or absence of bone marrow invasion in LGSCC patients.
Collapse
Affiliation(s)
| | - Keisuke Suzuki
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma,
| | - Mai Kim
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma,
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tennodai, Tsukuba, Ibaraki and
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa, Maebashi, Gunma, Japan
| | - Satoshi Yokoo
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma,
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa, Maebashi, Gunma, Japan
| |
Collapse
|
11
|
Fooladi M, Soleymani Y, Rahmim A, Farzanefar S, Aghahosseini F, Seyyedi N, Sh Zadeh P. Impact of different reconstruction algorithms and setting parameters on radiomics features of PSMA PET images: A preliminary study. Eur J Radiol 2024; 172:111349. [PMID: 38310673 DOI: 10.1016/j.ejrad.2024.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
PURPOSE Radiomics analysis of oncologic positron emission tomography (PET) images is an area of significant activity and potential. The reproducibility of radiomics features is an important consideration for routine clinical use. This preliminary study investigates the robustness of radiomics features in PSMA-PET images across penalized-likelihood (Q.Clear) and standard ordered subset expectation maximization (OSEM) reconstruction algorithms and their setting parameters in phantom and prostate cancer (PCa) patients. METHOD A NEMA image quality (IQ) phantom and 8 PCa patients were selected for phantom and patient analyses, respectively. PET images were reconstructed using Q.Clear (reconstruction β-value: 100-700, at intervals of 100 for both NEMA IQ phantom and patients) and OSEM (duration: 15sec, 30sec, 1 min, 2 min, 3 min, 4 min and 5 min for NEMA phantom and duration: 30 s, 1 min and 2 min for patients) reconstruction methods. Subsequently, 129 radiomic features were extracted from the reconstructed images. The coefficient of variation (COV) of each feature across reconstruction methods and their parameters was calculated to determine feature robustness. RESULTS The extracted radiomics features showed a different range of variability, depending on the reconstruction algorithms and setting parameters. Specifically, 23.0 % and 53.5 % of features were found as robust against β-value variations in Q.Clear and different durations in OSEM reconstruction algorithms, respectively. Taking into account the two algorithms and their parameters, eleven features (8.5 %) showed COV ≤ 5 % and eighteen (14 %) showed 5 % 20 %. The mean COVs of the extracted radiomics features were significantly different between the two reconstruction methods (p < 0.05) except for the phantom morphological features. CONCLUSIONS All radiomics features were affected by reconstruction methods and parameters, but features with small or very small variations are considered better candidates for reproducible quantification of either tumor or metastatic tissues in clinical trials. There is a need for standardization before the implementation of PET radiomics in clinical practice.
Collapse
Affiliation(s)
- Masoomeh Fooladi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Yunus Soleymani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada; Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| | - Saeed Farzanefar
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Farahnaz Aghahosseini
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Negisa Seyyedi
- Nursing and Midwifery Care Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Peyman Sh Zadeh
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Albano D, Calabrò A, Dondi F, Bertagna F. 2-[ 18F]-FDG PET/CT Semiquantitative and Radiomics Predictive Parameters of Richter's Transformation in CLL Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:203. [PMID: 38399491 PMCID: PMC10889972 DOI: 10.3390/medicina60020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in developed countries, which can evolve into aggressive lymphoma variants, a process called Richter transformation (RT). The aim of this retrospective study was to analyze the role of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (2-[18F]-FDG PET/CT) and its semiquantitative and radiomics features in detecting RT and evaluate the impact on overall survival (OS). Materials and Methods: One hundred and thirty-seven patients with histologically proven CLL were retrospectively recruited. PET/CT images were qualitatively and semiquantitatively examined by estimating the main metabolic parameters (the maximum standardized uptake value body weight (SUVbw), lean body mass (SUVlbm), body surface area (SUVbsa), lesion-to-blood-pool SUV ratio (L-BP SUV R), lesion-to-liver SUV ratio (L-L SUV R), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) and radiomics first- and second- order variables of the lesion with highest uptake. The role of these parameters in predicting RT and OS was analyzed. Results: One hundred and thirty (95%) PET/CT scans were positive, showing an increased tracer uptake at the site of disease, whereas the remaining 7 (5%) scans were negative. SUVbw, SUVlbm, SUVbsa, L-L SUV ratio, and L-BP SUV ratio were significantly higher in the RT group (p < 0.001 in all cases). Radiomics first- and second-order features were not significantly associated with RT. After a median follow-up of 44 months, 56 patients died; OS was significantly shorter in patients with RT than patients without RT (28 vs. 34 months; p = 0.002). Binet-stage, RT, and L-BP SUV R were shown to be independent prognostic features. Conclusions: Semiquantitative PET/CT parameters such as SUVbw, SUVlbm, SUVbsa, L-L SUV ratio and L-BP SUV ratio may be useful in discriminating patients with a high risk of developing RT, whereas Binet-stage, RT, and L-BP SUV R are also significant in predicting OS.
Collapse
Affiliation(s)
- Domenico Albano
- Nuclear Medicine Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (A.C.); (F.D.); (F.B.)
- Radiological Sciences and Public Health Department, University of Brescia, 25123 Brescia, Italy
| | - Anna Calabrò
- Nuclear Medicine Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (A.C.); (F.D.); (F.B.)
- Radiological Sciences and Public Health Department, University of Brescia, 25123 Brescia, Italy
| | - Francesco Dondi
- Nuclear Medicine Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (A.C.); (F.D.); (F.B.)
- Radiological Sciences and Public Health Department, University of Brescia, 25123 Brescia, Italy
| | - Francesco Bertagna
- Nuclear Medicine Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (A.C.); (F.D.); (F.B.)
- Radiological Sciences and Public Health Department, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
13
|
Pellegrino S, Fonti R, Vallone C, Morra R, Matano E, De Placido S, Del Vecchio S. Coefficient of Variation in Metastatic Lymph Nodes Determined by 18F-FDG PET/CT in Patients with Advanced NSCLC: Combination with Coefficient of Variation in Primary Tumors. Cancers (Basel) 2024; 16:279. [PMID: 38254770 PMCID: PMC10813913 DOI: 10.3390/cancers16020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Purpose The aim of the present study was to test whether the coefficient of variation (CoV) of 18F-FDG PET/CT images of metastatic lymph nodes and primary tumors may predict clinical outcome in patients with advanced non-small cell lung cancer (NSCLC). Materials and Methods Fifty-eight NSCLC patients who had undergone 18F-FDG PET/CT at diagnosis were evaluated. SUVmax, SUVmean, CoV, MTV and TLG were determined in targeted lymph nodes and corresponding primary tumors along with Total MTV (MTVTOT) and Whole-Body TLG (TLGWB) of all malignant lesions. Univariate analysis was performed using Cox proportional hazards regression whereas the Kaplan-Meier method and log-rank tests were used for survival analysis. Results Fifty-eight metastatic lymph nodes were analyzed and average values of SUVmax, SUVmean, CoV, MTV and TLG were 11.89 ± 8.54, 4.85 ± 1.90, 0.37 ± 0.16, 46.16 ± 99.59 mL and 256.84 ± 548.27 g, respectively, whereas in primary tumors they were 11.92 ± 6.21, 5.47 ± 2.34, 0.36 ± 0.14, 48.03 ± 64.45 mL and 285.21 ± 397.95 g, respectively. At univariate analysis, overall survival (OS) was predicted by SUVmax (p = 0.0363), SUVmean (p = 0.0200) and CoV (p = 0.0139) of targeted lymph nodes as well as by CoV of primary tumors (p = 0.0173), MTVTOT (p = 0.0007), TLGWB (p = 0.0129) and stage (p = 0.0122). Using Kaplan-Meier analysis, OS was significantly better in patients with CoV of targeted lymph nodes ≤ 0.29 than those with CoV > 0.29 (p = 0.0147), meanwhile patients with CoV of primary tumors > 0.38 had a better prognosis compared to those with CoV ≤ 0.38 (p = 0.0137). Finally, we combined the CoV values of targeted lymph nodes and primary tumors in all possible arrangements and a statistically significant difference was found among the four survival curves (p = 0.0133). In particular, patients with CoV of targeted lymph nodes ≤ 0.29 and CoV of primary tumors > 0.38 had the best prognosis. Conclusions The CoV of targeted lymph nodes combined with the CoV of primary tumors can predict prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Sara Pellegrino
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (S.P.); (R.F.); (C.V.)
| | - Rosa Fonti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (S.P.); (R.F.); (C.V.)
| | - Carlo Vallone
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (S.P.); (R.F.); (C.V.)
| | - Rocco Morra
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (R.M.); (E.M.); (S.D.P.)
| | - Elide Matano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (R.M.); (E.M.); (S.D.P.)
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (R.M.); (E.M.); (S.D.P.)
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (S.P.); (R.F.); (C.V.)
| |
Collapse
|
14
|
Hussain D, Al-Masni MA, Aslam M, Sadeghi-Niaraki A, Hussain J, Gu YH, Naqvi RA. Revolutionizing tumor detection and classification in multimodality imaging based on deep learning approaches: Methods, applications and limitations. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:857-911. [PMID: 38701131 DOI: 10.3233/xst-230429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND The emergence of deep learning (DL) techniques has revolutionized tumor detection and classification in medical imaging, with multimodal medical imaging (MMI) gaining recognition for its precision in diagnosis, treatment, and progression tracking. OBJECTIVE This review comprehensively examines DL methods in transforming tumor detection and classification across MMI modalities, aiming to provide insights into advancements, limitations, and key challenges for further progress. METHODS Systematic literature analysis identifies DL studies for tumor detection and classification, outlining methodologies including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and their variants. Integration of multimodality imaging enhances accuracy and robustness. RESULTS Recent advancements in DL-based MMI evaluation methods are surveyed, focusing on tumor detection and classification tasks. Various DL approaches, including CNNs, YOLO, Siamese Networks, Fusion-Based Models, Attention-Based Models, and Generative Adversarial Networks, are discussed with emphasis on PET-MRI, PET-CT, and SPECT-CT. FUTURE DIRECTIONS The review outlines emerging trends and future directions in DL-based tumor analysis, aiming to guide researchers and clinicians toward more effective diagnosis and prognosis. Continued innovation and collaboration are stressed in this rapidly evolving domain. CONCLUSION Conclusions drawn from literature analysis underscore the efficacy of DL approaches in tumor detection and classification, highlighting their potential to address challenges in MMI analysis and their implications for clinical practice.
Collapse
Affiliation(s)
- Dildar Hussain
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Mohammed A Al-Masni
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Muhammad Aslam
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Abolghasem Sadeghi-Niaraki
- Department of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Korea
| | - Jamil Hussain
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Rizwan Ali Naqvi
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, Korea
| |
Collapse
|
15
|
Travaglio Morales D, Huerga Cabrerizo C, Losantos García I, Coronado Poggio M, Cordero García JM, Llobet EL, Monachello Araujo D, Rizkallal Monzón S, Domínguez Gadea L. Prognostic 18F-FDG Radiomic Features in Advanced High-Grade Serous Ovarian Cancer. Diagnostics (Basel) 2023; 13:3394. [PMID: 37998530 PMCID: PMC10670627 DOI: 10.3390/diagnostics13223394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive disease with different clinical outcomes and poor prognosis. This could be due to tumor heterogeneity. The 18F-FDG PET radiomic parameters permit addressing tumor heterogeneity. Nevertheless, this has been not well studied in ovarian cancer. The aim of our work was to assess the prognostic value of pretreatment 18F-FDG PET radiomic features in patients with HGSOC. A review of 36 patients diagnosed with advanced HGSOC between 2016 and 2020 in our center was performed. Radiomic features were obtained from pretreatment 18F-FDGPET. Disease-free survival (DFS) and overall survival (OS) were calculated. Optimal cutoff values with receiver operating characteristic curve/median values were used. A correlation between radiomic features and DFS/OS was made. The mean DFS was 19.6 months and OS was 37.1 months. Total Lesion Glycolysis (TLG), GLSZM_ Zone Size Non-Uniformity (GLSZM_ZSNU), and GLRLM_Run Length Non-Uniformity (GLRLM_RLNU) were significantly associated with DFS. The survival-curves analysis showed a significant difference of DSF in patients with GLRLM_RLNU > 7388.3 versus patients with lower values (19.7 months vs. 31.7 months, p = 0.035), maintaining signification in the multivariate analysis (p = 0.048). Moreover, Intensity-based Kurtosis was associated with OS (p = 0.027). Pretreatment 18F-FDG PET radiomic features GLRLM_RLNU, GLSZM_ZSNU, and Kurtosis may have prognostic value in patients with advanced HGSOC.
Collapse
Affiliation(s)
- Daniela Travaglio Morales
- Nuclear Medicine Department, La Paz University Hospital, 28046 Madrid, Spain
- Nuclear Medicine Department, Halle University Hospital, 06120 Halle, Germany
| | - Carlos Huerga Cabrerizo
- Department of Medical Physics and Radiation Protection, La Paz University Hospital, 28046 Madrid, Spain
| | | | | | | | - Elena López Llobet
- Nuclear Medicine Department, La Paz University Hospital, 28046 Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Ahmed B, Sheikhzadeh P, Changizi V, Abbasi M, Soleymani Y, Sarhan W, Rahmim A. CT radiomics analysis of primary colon cancer patients with or without liver metastases: a correlative study with [ 18F]FDG PET uptake values. Abdom Radiol (NY) 2023; 48:3297-3309. [PMID: 37453942 DOI: 10.1007/s00261-023-03999-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Utilizing [18F]Fluoro-2-deoxy-D-glucose Positron Emission Tomography/Computed Tomography ([18F]FDG PET/CT) scans on primary colon cancer (CC) patients including with liver metastases (LM), we aimed to determine the relationship between structural CT radiomic features and metabolic PET standard uptake value (SUV) in these patients. MATERIAL AND METHOD A retrospective analysis was performed on 60 patients with primary CC, of which 40 had liver metastases that were more than 2 cm in diameter. [18F]FDG PET/CT was used to calculate SUVmax, and 42 CT radiomic characteristics were extracted from non-enhanced CT images. Tumors were manually segmented on fused PET/CT scans by two experienced nuclear medicine physicians. Sixty primary CC and forty LM lesions were segmented accordingly. In the cases of multiple LM lesions, the lesion with the largest diameter was chosen for segmentation. In a univariate analysis approach, we used Spearman correlation with multiple testing correction (Benjamini-Hutchberg false discovery rate (FDR), α = 0.05) to ascertain the relationship between SUVmax and CT radiomic features. RESULT Twenty-two (52.3%) and twenty-six (61.9%) CT radiomic features were found to be significantly correlated with SUVmax values of primary CC (n = 60) and LM (n = 40) lesions, respectively (FDR-corrected p value < 0.05 and 0.6 < |ρ| < 1). GLCM_homogeneity (ρ = 0.839), GLCM_dissimilarity (ρ = - 0.832), GLZLM_ZLNU (ρ = 0.827), and GLCM_contrast (ρ = - 0.815) were the 4 features most correlated with SUVmax in CC. On the other hand, in LM, the 4 features most correlated with SUVmax were GLRLM_LRHGE (ρ = 0.859), GLRLM_LRE (ρ = 0.859), GLRLM_LRLGE (ρ = 0.857), and GLRLM_RP (ρ = - 0.820). CONCLUSION We investigated the relationship between SUVmax of preoperative primary CC lesions and their LM with CT radiomic features. We found some CT radiomic features having relationships with the metabolic characteristics of lesions. This work suggests that non-invasive predictive imaging biomarkers for precision medicine can be derived from CT radiomic.
Collapse
Affiliation(s)
- Badr Ahmed
- Department of Radiology Technology and Radiotherapy, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Sheikhzadeh
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vahid Changizi
- Department of Radiology Technology and Radiotherapy, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrshad Abbasi
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Yunus Soleymani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Wisam Sarhan
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nuclear Medicine International Hospital for Cancer and Nuclear Medicine, University of Kufa, Najaf, Iraq
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Nakamori A, Tsuyoshi H, Tsujikawa T, Orisaka M, Kurokawa T, Yoshida Y. Evaluation of calcification distribution by CT-based textural analysis for discrimination of immature teratoma. J Ovarian Res 2023; 16:179. [PMID: 37635241 PMCID: PMC10464244 DOI: 10.1186/s13048-023-01268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Mature and immature teratomas are differentiated based on tumor markers and calcification or fat distribution. However, no study has objectively quantified the differences in calcification and fat distributions between these tumors. This study aimed to evaluate the diagnostic potential of CT-based textural analysis in differentiating between mature and immature teratomas in patients aged < 20 years. MATERIALS AND METHODS Thirty-two patients with pathologically proven mature cystic (n = 28) and immature teratomas (n = 4) underwent transabdominal ultrasound and/or abdominal and pelvic CT before surgery. The diagnostic performance of CT for assessing imaging features, including subjective manual measurement and objective textural analysis of fat and calcification distributions in the tumors, was evaluated by two experienced readers. The histopathological results were used as the gold standard. The Mann-Whitney U test was used for statistical analysis. RESULTS We evaluated 32 patients (mean age, 14.5 years; age range, 6-19 years). The mean maximum diameter and number of calcifications of immature teratomas were significantly larger than those of mature cystic teratomas (p < 0.01). The mean number of fats of immature teratomas was significantly larger than that of mature cystic teratomas (p < 0.01); however, no significant difference in the maximum diameter of fats was observed. CT textural features for calcification distribution in the tumors showed that mature cystic teratomas had higher homogeneity and energy than immature teratomas. However, immature teratomas showed higher correlation, entropy, and dissimilarity than mature cystic teratomas among features derived from the gray-level co-occurrence matrix (GLCM) (p < 0.05). No significant differences were observed in the CT features of fats derived from GLCM. CONCLUSION Our results demonstrate that calcification distribution on CT is a potential diagnostic biomarker to discriminate mature from immature teratomas, thus enabling optimal therapeutic selection for patients aged < 20 years.
Collapse
Affiliation(s)
- Akari Nakamori
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Makoto Orisaka
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Tetsuji Kurokawa
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| |
Collapse
|
18
|
Philip MM, Welch A, McKiddie F, Nath M. A systematic review and meta-analysis of predictive and prognostic models for outcome prediction using positron emission tomography radiomics in head and neck squamous cell carcinoma patients. Cancer Med 2023; 12:16181-16194. [PMID: 37353996 PMCID: PMC10469753 DOI: 10.1002/cam4.6278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) images of head and neck squamous cell carcinoma (HNSCC) patients can assess the functional and biochemical processes at cellular levels. Therefore, PET radiomics-based prediction and prognostic models have the potentials to understand tumour heterogeneity and assist clinicians with diagnosis, prognosis and management of the disease. We conducted a systematic review of published modelling information to evaluate the usefulness of PET radiomics in the prediction and prognosis of HNSCC patients. METHODS We searched bibliographic databases (MEDLINE, Embase, Web of Science) from 2010 to 2021 and considered 31 studies with pre-defined inclusion criteria. We followed the CHARMS checklist for data extraction and performed quality assessment using the PROBAST tool. We conducted a meta-analysis to estimate the accuracy of the prediction and prognostic models using the diagnostic odds ratio (DOR) and average C-statistic, respectively. RESULTS Manual segmentation method followed by 40% of the maximum standardised uptake value (SUVmax ) thresholding is a commonly used approach. The area under the receiver operating curves of externally validated prediction models ranged between 0.60-0.87, 0.65-0.86 and 0.62-0.75 for overall survival, distant metastasis and recurrence, respectively. Most studies highlighted an overall high risk of bias (outcome definition, statistical methodologies and external validation of models) and high unclear concern in terms of applicability. The meta-analysis showed the estimated pooled DOR of 6.75 (95% CI: 4.45, 10.23) for prediction models and the C-statistic of 0.71 (95% CI: 0.67, 0.74) for prognostic models. CONCLUSIONS Both prediction and prognostic models using clinical variables and PET radiomics demonstrated reliable accuracy for detecting adverse outcomes in HNSCC, suggesting the prospect of PET radiomics in clinical settings for diagnosis, prognosis and management of HNSCC patients. Future studies of prediction and prognostic models should emphasise the quality of reporting, external model validation, generalisability to real clinical scenarios and enhanced reproducibility of results.
Collapse
Affiliation(s)
| | - Andy Welch
- Institute of Education in Healthcare and Medical Sciences, University of AberdeenAberdeenUK
| | | | - Mintu Nath
- Institute of Applied Health Sciences, University of AberdeenAberdeenUK
| |
Collapse
|
19
|
Pellegrino S, Fonti R, Hakkak Moghadam Torbati A, Bologna R, Morra R, Damiano V, Matano E, De Placido S, Del Vecchio S. Heterogeneity of Glycolytic Phenotype Determined by 18F-FDG PET/CT Using Coefficient of Variation in Patients with Advanced Non-Small Cell Lung Cancer. Diagnostics (Basel) 2023; 13:2448. [PMID: 37510192 PMCID: PMC10378511 DOI: 10.3390/diagnostics13142448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
We investigated the role of Coefficient of Variation (CoV), a first-order texture parameter derived from 18F-FDG PET/CT, in the prognosis of Non-Small Cell Lung Cancer (NSCLC) patients. Eighty-four patients with advanced NSCLC who underwent 18F-FDG PET/CT before therapy were retrospectively studied. SUVmax, SUVmean, CoV, total Metabolic Tumor Volume (MTVTOT) and whole-body Total Lesion Glycolysis (TLGWB) were determined by an automated contouring program (SUV threshold at 2.5). We analyzed 194 lesions: primary tumors (n = 84), regional (n = 48) and non-regional (n = 17) lymph nodes and metastases in liver (n = 9), bone (n = 23) and other sites (n = 13); average CoVs were 0.36 ± 0.13, 0.36 ± 0.14, 0.42 ± 0.18, 0.30 ± 0.14, 0.37 ± 0.17, 0.34 ± 0.13, respectively. No significant differences were found between the CoV values among the different lesion categories. Survival analysis included age, gender, histology, stage, MTVTOT, TLGWB and imaging parameters derived from primary tumors. At univariate analysis, CoV (p = 0.0184), MTVTOT (p = 0.0050), TLGWB (p = 0.0108) and stage (p = 0.0041) predicted Overall Survival (OS). At multivariate analysis, age, CoV, MTVTOT and stage were retained in the model (p = 0.0001). Patients with CoV > 0.38 had significantly better OS than those with CoV ≤ 0.38 (p = 0.0143). Patients with MTVTOT ≤ 89.5 mL had higher OS than those with MTVTOT > 89.5 mL (p = 0.0063). Combining CoV and MTVTOT, patients with CoV ≤ 0.38 and MTVTOT > 89.5 mL had the worst prognosis. CoV, by reflecting the heterogeneity of glycolytic phenotype, can predict clinical outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Sara Pellegrino
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Rosa Fonti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Roberto Bologna
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Rocco Morra
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Vincenzo Damiano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Elide Matano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
20
|
Elahmadawy MA, Ashraf A, Moustafa H, Kotb M, Abd El-Gaid S. Prognostic value of initial [ 18 F]FDG PET/computed tomography volumetric and texture analysis-based parameters in patients with head and neck squamous cell carcinoma. Nucl Med Commun 2023; 44:653-662. [PMID: 37038954 DOI: 10.1097/mnm.0000000000001695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
AIM OF WORK To determine the predictive value of initial [ 18 F]FDG PET/computed tomography (CT) volumetric and radiomics-derived analyses in patients with head and neck squamous cell carcinoma (HNSCC). METHODS Forty-six adult patients had pathologically proven HNSCC and underwent pretherapy [ 18 F]FDG PET/CT were enrolled. Semi-quantitative PET-derived volumetric [(maximum standardized uptake value (SUVmax) and mean SUV (SUVmean), total lesion glycolysis (TLG) and metabolic tumor volume (MTV)] and radiomics analyses using LIFEx 6.73.3 software were performed. RESULTS In the current study group, the receiver operating characteristic curve marked a cutoff point of 21.105 for primary MTV with area under the curve (AUC) of 0.727, sensitivity of 62.5%, and specificity of 86.8% ( P value 0.041) to distinguish responders from non-responders, while no statistically significant primary SUVmean or max or primary TLG cut off points could be determined. It also marked the cutoff point for survival prediction of 10.845 for primary MTV with AUC 0.728, sensitivity of 80%, and specificity of 77.8% ( P value 0.026). A test of the synergistic performance of PET-derived volumetric and textural features significant parameters was conducted in an attempt to develop the most accurate and stable prediction model. Therefore, multivariate logistic regression analysis was performed to detect independent predictors of mortality. With a high specificity of 97.1% and an overall accuracy of 89.1%, the combination of primary tumor MTV and the textural feature gray-level co-occurrence matrix correlation provided the most accurate prediction of mortality ( P value < 0.001). CONCLUSION Textural feature indices are a noninvasive method for capturing intra-tumoral heterogeneity. In our study, a PET-derived prediction model was successfully generated with high specificity and accuracy.
Collapse
Affiliation(s)
| | - Aya Ashraf
- Nuclear Medicine Unit, National Cancer Institute
| | - Hosna Moustafa
- Nuclear Medicine Unit, Kasr Al-Ainy (NEMROCK Center), Cairo University, Cairo, Egypt
| | - Magdy Kotb
- Nuclear Medicine Unit, National Cancer Institute
| | | |
Collapse
|
21
|
Tamaki N, Hirata K, Kotani T, Nakai Y, Matsushima S, Yamada K. Four-dimensional quantitative analysis using FDG-PET in clinical oncology. Jpn J Radiol 2023:10.1007/s11604-023-01411-4. [PMID: 36947283 PMCID: PMC10366296 DOI: 10.1007/s11604-023-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Positron emission tomography (PET) with F-18 fluorodeoxyglucose (FDG) has been commonly used in many oncological areas. High-resolution PET permits a three-dimensional analysis of FDG distributions on various lesions in vivo, which can be applied for tissue characterization, risk analysis, and treatment monitoring after chemoradiotherapy and immunotherapy. Metabolic changes can be assessed using the tumor absolute FDG uptake as standardized uptake value (SUV) and metabolic tumor volume (MTV). In addition, tumor heterogeneity assessment can potentially estimate tumor aggressiveness and resistance to chemoradiotherapy. Attempts have been made to quantify intratumoral heterogeneity using radiomics. Recent reports have indicated the clinical feasibility of a dynamic FDG PET-computed tomography (CT) in pilot cohort studies of oncological cases. Dynamic imaging permits the assessment of temporal changes in FDG uptake after administration, which is particularly useful for differentiating pathological from physiological uptakes with high diagnostic accuracy. In addition, several new parameters have been introduced for the in vivo quantitative analysis of FDG metabolic processes. Thus, a four-dimensional FDG PET-CT is available for precise tissue characterization of various lesions. This review introduces various new techniques for the quantitative analysis of FDG distribution and glucose metabolism using a four-dimensional FDG analysis with PET-CT. This elegant study reveals the important role of tissue characterization and treatment strategies in oncology.
Collapse
Affiliation(s)
- Nagara Tamaki
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Kenji Hirata
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoya Kotani
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshitomo Nakai
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigenori Matsushima
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Hu Q, Li K, Yang C, Wang Y, Huang R, Gu M, Xiao Y, Huang Y, Chen L. The role of artificial intelligence based on PET/CT radiomics in NSCLC: Disease management, opportunities, and challenges. Front Oncol 2023; 13:1133164. [PMID: 36959810 PMCID: PMC10028142 DOI: 10.3389/fonc.2023.1133164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Objectives Lung cancer has been widely characterized through radiomics and artificial intelligence (AI). This review aims to summarize the published studies of AI based on positron emission tomography/computed tomography (PET/CT) radiomics in non-small-cell lung cancer (NSCLC). Materials and methods A comprehensive search of literature published between 2012 and 2022 was conducted on the PubMed database. There were no language or publication status restrictions on the search. About 127 articles in the search results were screened and gradually excluded according to the exclusion criteria. Finally, this review included 39 articles for analysis. Results Classification is conducted according to purposes and several studies were identified at each stage of disease:1) Cancer detection (n=8), 2) histology and stage of cancer (n=11), 3) metastases (n=6), 4) genotype (n=6), 5) treatment outcome and survival (n=8). There is a wide range of heterogeneity among studies due to differences in patient sources, evaluation criteria and workflow of radiomics. On the whole, most models show diagnostic performance comparable to or even better than experts, and the common problems are repeatability and clinical transformability. Conclusion AI-based PET/CT Radiomics play potential roles in NSCLC clinical management. However, there is still a long way to go before being translated into clinical application. Large-scale, multi-center, prospective research is the direction of future efforts, while we need to face the risk of repeatability of radiomics features and the limitation of access to large databases.
Collapse
Affiliation(s)
- Qiuyuan Hu
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Conghui Yang
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Yue Wang
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Rong Huang
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Mingqiu Gu
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Yuqiang Xiao
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
- *Correspondence: Long Chen, ; Yunchao Huang,
| | - Long Chen
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
- *Correspondence: Long Chen, ; Yunchao Huang,
| |
Collapse
|
23
|
Hatt M, Krizsan AK, Rahmim A, Bradshaw TJ, Costa PF, Forgacs A, Seifert R, Zwanenburg A, El Naqa I, Kinahan PE, Tixier F, Jha AK, Visvikis D. Joint EANM/SNMMI guideline on radiomics in nuclear medicine : Jointly supported by the EANM Physics Committee and the SNMMI Physics, Instrumentation and Data Sciences Council. Eur J Nucl Med Mol Imaging 2023; 50:352-375. [PMID: 36326868 PMCID: PMC9816255 DOI: 10.1007/s00259-022-06001-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE The purpose of this guideline is to provide comprehensive information on best practices for robust radiomics analyses for both hand-crafted and deep learning-based approaches. METHODS In a cooperative effort between the EANM and SNMMI, we agreed upon current best practices and recommendations for relevant aspects of radiomics analyses, including study design, quality assurance, data collection, impact of acquisition and reconstruction, detection and segmentation, feature standardization and implementation, as well as appropriate modelling schemes, model evaluation, and interpretation. We also offer an outlook for future perspectives. CONCLUSION Radiomics is a very quickly evolving field of research. The present guideline focused on established findings as well as recommendations based on the state of the art. Though this guideline recognizes both hand-crafted and deep learning-based radiomics approaches, it primarily focuses on the former as this field is more mature. This guideline will be updated once more studies and results have contributed to improved consensus regarding the application of deep learning methods for radiomics. Although methodological recommendations in the present document are valid for most medical image modalities, we focus here on nuclear medicine, and specific recommendations when necessary are made for PET/CT, PET/MR, and quantitative SPECT.
Collapse
Affiliation(s)
- M Hatt
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | | | - A Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| | - T J Bradshaw
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - P F Costa
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | | | - R Seifert
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
- Department of Nuclear Medicine, Münster University Hospital, Münster, Germany.
| | - A Zwanenburg
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - I El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, 33626, USA
| | - P E Kinahan
- Imaging Research Laboratory, PET/CT Physics, Department of Radiology, UW Medical Center, University of Washington, Seattle, WA, USA
| | - F Tixier
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - A K Jha
- McKelvey School of Engineering and Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - D Visvikis
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| |
Collapse
|
24
|
de Alencar NRG, Machado MAD, Mourato FA, de Oliveira ML, Moraes TF, Mattos Junior LAR, Chang TMC, de Azevedo CRAS, Brandão SCS. Exploratory analysis of radiomic as prognostic biomarkers in 18F-FDG PET/CT scan in uterine cervical cancer. Front Med (Lausanne) 2022; 9:1046551. [PMID: 36569127 PMCID: PMC9769204 DOI: 10.3389/fmed.2022.1046551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
Objective To evaluate the performance of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET/CT) radiomic features to predict overall survival (OS) in patients with locally advanced uterine cervical carcinoma. Methods Longitudinal and retrospective study that evaluated 50 patients with cervical epidermoid carcinoma (clinical stage IB2 to IVA according to FIGO). Segmentation of the 18F-FDG PET/CT tumors was performed using the LIFEx software, generating the radiomic features. We used the Mann-Whitney test to select radiomic features associated with the clinical outcome (death), excluding the features highly correlated with each other with Spearman correlation. Subsequently, ROC curves and a Kaplan-Meier analysis were performed. A p-value < 0.05 were considered significant. Results The median follow-up was 23.5 months and longer than 24 months in all surviving patients. Independent predictors for OS were found-SUVpeak with an AUC of 0.74, sensitivity of 77.8%, and specificity of 72.7% (p = 0.006); and the textural feature gray-level run-length matrix GLRLM_LRLGE, with AUC of 0.74, sensitivity of 72.2%, and specificity of 81.8% (p = 0.005). When we used the derived cut-off points from these ROC curves (12.76 for SUVpeak and 0.001 for GLRLM_LRLGE) in a Kaplan-Meier analysis, we can see two different groups (one with an overall survival probability of approximately 90% and the other with 30%). These biomarkers are independent of FIGO staging. Conclusion By radiomic 18F-FDG PET/CT data analysis, SUVpeak and GLRLM_LRLGE textural feature presented the best performance to predict OS in patients with cervical cancer undergoing chemo-radiotherapy and brachytherapy.
Collapse
Affiliation(s)
- Nadja Rolim Gonçalves de Alencar
- Master of Science Surgery Post-Graduation Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil,Department of Radiology and Nuclear Medicine, Hospital das Clínicas, Federal University of Pernambuco, Recife, Pernambuco, Brazil,*Correspondence: Nadja Rolim Gonçalves de Alencar,
| | - Marcos Antônio Dórea Machado
- Department of Radiology, Complexo Hospitalar Universitário Professor Edgard Santos/Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Felipe Alves Mourato
- Master of Science Surgery Post-Graduation Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil,Department of Radiology and Nuclear Medicine, Hospital das Clínicas, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | - Tien-Man Cabral Chang
- Nuclear Medicine Service, Instituto de Medicina Integrada Fernandes Figueira, Recife, Pernambuco, Brazil
| | | | - Simone Cristina Soares Brandão
- Master of Science Surgery Post-Graduation Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil,Department of Radiology and Nuclear Medicine, Hospital das Clínicas, Federal University of Pernambuco, Recife, Pernambuco, Brazil,Clinical Medicine, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
25
|
Muacevic A, Adler JR, Issa M, Ali O, Noureldin K, Gaber A, Mahgoub A, Ahmed M, Yousif M, Zeinaldine A. Textural Analysis as a Predictive Biomarker in Rectal Cancer. Cureus 2022; 14:e32241. [PMID: 36620843 PMCID: PMC9813797 DOI: 10.7759/cureus.32241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common deadly cancer. Early detection and accurate staging of CRC enhance good prognosis and better treatment outcomes. Rectal cancer staging is the cornerstone for selecting the best treatment approach. The standard gold method for rectal cancer staging is pelvic MRI. After staging, combining surgery and chemoradiation is the standard management aiming for a curative outcome. Textural analysis (TA) is a radiomic process that quantifies lesions' heterogenicity by measuring pixel distribution in digital imaging. MRI textural analysis (MRTA) of rectal cancer images is growing in current literature as a future predictor of outcomes of rectal cancer management, such as pathological response to neoadjuvant chemoradiotherapy (NCRT), survival, and tumour recurrence. MRTA techniques could validate alternative approaches in rectal cancer treatment, such as the wait-and-watch (W&W) approach in pathologically complete responders (pCR) following NCRT. We consider this a significant step towards implementing precision management in rectal cancer. In this narrative review, we summarize the current knowledge regarding the potential role of TA in rectal cancer management in predicting the prognosis and clinical outcomes, as well as aim to delineate the challenges which obstruct the implementing of this new modality in clinical practice.
Collapse
|
26
|
Eifer M, Pinian H, Klang E, Alhoubani Y, Kanana N, Tau N, Davidson T, Konen E, Catalano OA, Eshet Y, Domachevsky L. FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19 vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study. Eur Radiol 2022; 32:5921-5929. [PMID: 35385985 PMCID: PMC8985565 DOI: 10.1007/s00330-022-08725-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To evaluate if radiomics with machine learning can differentiate between F-18-fluorodeoxyglucose (FDG)-avid breast cancer metastatic lymphadenopathy and FDG-avid COVID-19 mRNA vaccine-related axillary lymphadenopathy. MATERIALS AND METHODS We retrospectively analyzed FDG-positive, pathology-proven, metastatic axillary lymph nodes in 53 breast cancer patients who had PET/CT for follow-up or staging, and FDG-positive axillary lymph nodes in 46 patients who were vaccinated with the COVID-19 mRNA vaccine. Radiomics features (110 features classified into 7 groups) were extracted from all segmented lymph nodes. Analysis was performed on PET, CT, and combined PET/CT inputs. Lymph nodes were randomly assigned to a training (n = 132) and validation cohort (n = 33) by 5-fold cross-validation. K-nearest neighbors (KNN) and random forest (RF) machine learning models were used. Performance was evaluated using an area under the receiver-operator characteristic curve (AUC-ROC) score. RESULTS Axillary lymph nodes from breast cancer patients (n = 85) and COVID-19-vaccinated individuals (n = 80) were analyzed. Analysis of first-order features showed statistically significant differences (p < 0.05) in all combined PET/CT features, most PET features, and half of the CT features. The KNN model showed the best performance score for combined PET/CT and PET input with 0.98 (± 0.03) and 0.88 (± 0.07) validation AUC, and 96% (± 4%) and 85% (± 9%) validation accuracy, respectively. The RF model showed the best result for CT input with 0.96 (± 0.04) validation AUC and 90% (± 6%) validation accuracy. CONCLUSION Radiomics features can differentiate between FDG-avid breast cancer metastatic and FDG-avid COVID-19 vaccine-related axillary lymphadenopathy. Such a model may have a role in differentiating benign nodes from malignant ones. KEY POINTS • Patients who were vaccinated with the COVID-19 mRNA vaccine have shown FDG-avid reactive axillary lymph nodes in PET-CT scans. • We evaluated if radiomics and machine learning can distinguish between FDG-avid metastatic axillary lymphadenopathy in breast cancer patients and FDG-avid reactive axillary lymph nodes. • Combined PET and CT radiomics data showed good test AUC (0.98) for distinguishing between metastatic axillary lymphadenopathy and post-COVID-19 vaccine-associated axillary lymphadenopathy. Therefore, the use of radiomics may have a role in differentiating between benign from malignant FDG-avid nodes.
Collapse
Affiliation(s)
- Michal Eifer
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Hodaya Pinian
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel
| | - Eyal Klang
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- ARC Center for Digital Innovation, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Yousef Alhoubani
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel
| | - Nayroz Kanana
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Tau
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tima Davidson
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Konen
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yael Eshet
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liran Domachevsky
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Qiu HZ, Zhang X, Liu SL, Sun XS, Mo YW, Lin HX, Lu ZJ, Guo J, Tang LQ, Mai HQ, Liu LT, Guo L. M1 stage subdivisions based on 18F-FDG PET-CT parameters to identify locoregional radiotherapy for metastatic nasopharyngeal carcinoma. Ther Adv Med Oncol 2022; 14:17588359221118785. [PMID: 35983026 PMCID: PMC9379565 DOI: 10.1177/17588359221118785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose To establish a risk classification of de novo metastatic nasopharyngeal carcinoma (mNPC) patients based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET-CT) radiomics parameters to identify suitable candidates for locoregional radiotherapy (LRRT). Methods In all, 586 de novo mNPC patients who underwent 18F-FDG PET-CT prior to palliative chemotherapy (PCT) were involved. A Cox regression model was performed to identify prognostic factors for overall survival (OS). Candidate PET-CT parameters were incorporated into the PET-CT parameter score (PPS). Recursive partitioning analysis (RPA) was applied to construct a risk stratification system. Results Multivariate Cox regression analyses revealed that total lesion glycolysis of locoregional lesions (LRL-TLG), the number of bone metastases (BMs), metabolic tumor volume of distant soft tissue metastases (DSTM-MTV), pretreatment Epstein-Barr virus DNA (EBV DNA), and liver involvement were independent prognosticators for OS. The number of BMs, LRL-TLG, and DSTM-MTV were incorporated as the PPS. Eligible patients were divided into three stages by the RPA-risk stratification model: M1a (low risk, PPSlow + no liver involvement), M1b (intermediate risk, PPSlow + liver involvement, PPShigh + low EBV DNA), and M1c (high risk, PPShigh + high EBV DNA). PCT followed by LRRT displayed favorable OS rates compared to PCT alone in M1a patients (p < 0.001). No significant survival difference was observed between PCT plus LRRT and PCT alone in M1b and M1c patients (p > 0.05). Conclusions The PPS-based RPA stratification model could identify suitable candidates for LRRT. Patients with stage M1a disease could benefit from LRRT.
Collapse
Affiliation(s)
- Hui-Zhi Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| | - Xu Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| | - Sai-Lan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| | - Xue-Song Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| | - Yi-Wen Mo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| | - Huan-Xin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| | - Zi-Jian Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| | - Jia Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| | - Lin-Quan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| | - Hai-Qiang Mai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P. R. China
| | - Li-Ting Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| | - Ling Guo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, P. R. China
| |
Collapse
|
28
|
Artificial intelligence-based PET image acquisition and reconstruction. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Salihoğlu YS, Uslu Erdemir R, Aydur Püren B, Özdemir S, Uyulan Ç, Ergüzel TT, Tekin HO. Diagnostic Performance of Machine Learning Models Based on 18F-FDG PET/CT Radiomic Features in the Classification of Solitary Pulmonary Nodules. Mol Imaging Radionucl Ther 2022; 31:82-88. [PMID: 35770958 PMCID: PMC9246312 DOI: 10.4274/mirt.galenos.2021.43760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives This study aimed to evaluate the ability of 18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features combined with machine learning methods to distinguish between benign and malignant solitary pulmonary nodules (SPN). Methods Data of 48 patients with SPN detected on 18F-FDG PET/CT scan were evaluated retrospectively. The texture feature extraction from PET/CT images was performed using an open-source application (LIFEx). Deep learning and classical machine learning algorithms were used to build the models. Final diagnosis was confirmed by pathology and follow-up was accepted as the reference. The performances of the models were assessed by the following metrics: Sensitivity, specificity, accuracy, and area under the receiver operator characteristic curve (AUC). Results The predictive models provided reasonable performance for the differential diagnosis of SPNs (AUCs ~0.81). The accuracy and AUC of the radiomic models were similar to the visual interpretation. However, when compared to the conventional evaluation, the sensitivity of the deep learning model (88% vs. 83%) and specificity of the classic learning model were higher (86% vs. 79%). Conclusion Machine learning based on 18F-FDG PET/CT texture features can contribute to the conventional evaluation to distinguish between benign and malignant lung nodules.
Collapse
Affiliation(s)
- Yavuz Sami Salihoğlu
- Çanakkale Onsekiz Mart University Faculty of Medicine, Department of Nuclear Medicine, Çanakkale, Turkey
| | - Rabiye Uslu Erdemir
- Zonguldak Bülent Ecevit University Faculty of Medicine, Department of Nuclear Medicine, Zonguldak, Turkey
| | - Büşra Aydur Püren
- Çanakkale Onsekiz Mart University Faculty of Medicine, Department of Nuclear Medicine, Çanakkale, Turkey
| | - Semra Özdemir
- Çanakkale Onsekiz Mart University Faculty of Medicine, Department of Nuclear Medicine, Çanakkale, Turkey
| | - Çağlar Uyulan
- İzmir Katip Çelebi University Faculty of Engineering and Architecture, Department of Mechanical Engineering, İzmir, Turkey
| | - Türker Tekin Ergüzel
- Üsküdar University Faculty of Natural Sciences, Department of Software Engineering, İstanbul, Turkey
| | - Hüseyin Ozan Tekin
- University of Sharjah, College of Health Sciences, Department of Medical Diagnostic Imaging, Sharjah, United Arab Emirates
| |
Collapse
|
30
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
31
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
32
|
Jiang C, Huang X, Li A, Teng Y, Ding C, Chen J, Xu J, Zhou Z. Radiomics signature from [ 18F]FDG PET images for prognosis predication of primary gastrointestinal diffuse large B cell lymphoma. Eur Radiol 2022; 32:5730-5741. [PMID: 35298676 DOI: 10.1007/s00330-022-08668-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the prognostic value of PET radiomics feature in the prognosis of patients with primary gastrointestinal diffuse large B cell lymphoma (PGI-DLBCL) treated with R-CHOP-like regimen. METHODS A total of 140 PGI-DLBCL patients who underwent pre-therapy [18F] FDG PET/CT were enrolled in this retrospective analysis. PET radiomics features obtained from patients in the training cohort were subjected to three machine learning methods and Pearson's correlation test for feature selection. Support vector machine (SVM) was used to build a radiomics signature classifier associated with progression-free survival (PFS) and overall survival (OS). A multivariate Cox proportional hazards regression model was established to predict survival outcomes. RESULTS A total of 1421 PET radiomics features were extracted and reduced to 5 features to build a radiomics signature which was significantly associated with PFS and OS (p < 0.05). The combined model incorporating radiomics signatures, metabolic metrics, and clinical risk factors showed high C-indices in both the training (PFS: 0.825, OS: 0.834) and validation sets (PFS: 0.831, OS: 0.877). Decision curve analysis (DCA) demonstrated that the combined models achieved the most net benefit across a wider reasonable range of threshold probabilities for predicting PFS and OS. CONCLUSION The newly developed radiomics signatures obtained by the ensemble strategy were independent predictors of PFS and OS for PGI-DLBCL patients. Moreover, the combined model with clinical and metabolic factors was able to predict patient prognosis and may enable personalized treatment decision-making. KEY POINTS • Radiomics signatures generated from the optimal radiomics feature set from the [18F]FDG PET images can predict the survival of PGI-DLBCL patients. • The optimal radiomics feature set is constructed by integrating the feature selection outputs of LASSO, RF, Xgboost, and PC methods. • Combined models incorporating radiomics signatures from18F-FDG PET images, metabolic parameters, and clinical factors outperformed clinical models, and NCCN-IPI.
Collapse
Affiliation(s)
- Chong Jiang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Xiangjun Huang
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ang Li
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yue Teng
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianxin Chen
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing City, Jiangsu Province, 210008, China.
| | - Zhengyang Zhou
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
33
|
Mireștean CC, Volovăț C, Iancu RI, Iancu DPT. Radiomics in Triple Negative Breast Cancer: New Horizons in an Aggressive Subtype of the Disease. J Clin Med 2022; 11:jcm11030616. [PMID: 35160069 PMCID: PMC8836903 DOI: 10.3390/jcm11030616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
In the last decade, the analysis of the medical images has evolved significantly, applications and tools capable to extract quantitative characteristics of the images beyond the discrimination capacity of the investigator's eye being developed. The applications of this new research field, called radiomics, presented an exponential growth with direct implications in the diagnosis and prediction of response to therapy. Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with a severe prognosis, despite the aggressive multimodal treatments applied according to the guidelines. Radiomics has already proven the ability to differentiate TNBC from fibroadenoma. Radiomics features extracted from digital mammography may also distinguish between TNBC and non-TNBC. Recent research has identified three distinct subtypes of TNBC using IRM breast images voxel-level radiomics features (size/shape related features, texture features, sharpness). The correlation of these TNBC subtypes with the clinical response to neoadjuvant therapy may lead to the identification of biomarkers in order to guide the clinical decision. Furthermore, the variation of some radiomics features in the neoadjuvant settings provides a tool for the rapid evaluation of treatment efficacy. The association of radiomics features with already identified biomarkers can generate complex predictive and prognostic models. Standardization of image acquisition and also of radiomics feature extraction is required to validate this method in clinical practice.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Surgery, Railways Clinical Hospital, 700506 Iasi, Romania
| | - Constantin Volovăț
- Department of Medical Oncology-Radiotherapy, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.V.); (D.P.T.I.)
- Euroclinic Oncological Hospital, 700110 Iasi, Romania
| | - Roxana Irina Iancu
- Department of Oral Pathology, Faculty of Dentistry, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Laboratory Department, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
- Correspondence: ; Tel.: +40-232-301-603
| | - Dragoș Petru Teodor Iancu
- Department of Medical Oncology-Radiotherapy, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.V.); (D.P.T.I.)
- Department of Radiotherapy, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
34
|
Systemic Inflammation Index and Tumor Glycolytic Heterogeneity Help Risk Stratify Patients with Advanced Epidermal Growth Factor Receptor-Mutated Lung Adenocarcinoma Treated with Tyrosine Kinase Inhibitor Therapy. Cancers (Basel) 2022; 14:cancers14020309. [PMID: 35053473 PMCID: PMC8773680 DOI: 10.3390/cancers14020309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Patients with advanced epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma have been known to respond to first-line tyrosine kinase inhibitor (TKI) treatment. However, a subgroup of patients are non-responsive to the treatment, with poor survival outcomes, and those who are initially responsive may still experience resistance. A reliable prognostic tool may provide a valuable direction for tailoring individual treatment strategies in this clinical setting. With this aim, the present study explores the prognostic power of the combination of the systemic inflammation index (portrayed by hematological markers) and tumor glycolytic heterogeneity (characterized by 18F-fluorodeoxyglucose positron emission tomography images). The model integrating these two biomarkers could be used to improve risk stratification, and the subsequent personalized management strategy in patients with advanced EGFR-mutated lung adenocarcinoma. Abstract Tyrosine kinase inhibitors (TKIs) are the first-line treatment for patients with advanced epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. Over half of patients failed to achieve prolonged survival benefits from TKI therapy. Awareness of a reliable prognostic tool may provide a valuable direction for tailoring individual treatments. We explored the prognostic power of the combination of systemic inflammation markers and tumor glycolytic heterogeneity to stratify patients in this clinical setting. One hundred and five patients with advanced EGFR-mutated lung adenocarcinoma treated with TKIs were retrospectively analyzed. Hematological variables as inflammation-induced biomarkers were collected, including the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), and systemic inflammation index (SII). First-order entropy, as a marker of heterogeneity within the primary lung tumor, was obtained by analyzing 18F-fluorodeoxyglucose positron emission tomography images. In a univariate Cox regression analysis, sex, smoking status, NLR, LMR, PLR, SII, and entropy were associated with progression-free survival (PFS) and overall survival (OS). After adjusting for confounders in the multivariate analysis, smoking status, SII, and entropy, remained independent prognostic factors for PFS and OS. Integrating SII and entropy with smoking status represented a valuable prognostic scoring tool for improving the risk stratification of patients. The integrative model achieved a Harrell’s C-index of 0.687 and 0.721 in predicting PFS and OS, respectively, outperforming the traditional TNM staging system (0.527 for PFS and 0.539 for OS, both p < 0.001). This risk-scoring model may be clinically helpful in tailoring treatment strategies for patients with advanced EGFR-mutated lung adenocarcinoma.
Collapse
|
35
|
Guglielmo P, Marturano F, Bettinelli A, Gregianin M, Paiusco M, Evangelista L. Additional Value of PET Radiomic Features for the Initial Staging of Prostate Cancer: A Systematic Review from the Literature. Cancers (Basel) 2021; 13:cancers13236026. [PMID: 34885135 PMCID: PMC8657371 DOI: 10.3390/cancers13236026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is one of the most frequent malignancies diagnosed in men and its prognosis depends on the stage at diagnosis. Molecular imaging, namely PET/CT or PET/MRI using prostate-specific radiotracers, has gained increasing application in accurately evaluating PCa at staging, especially in cases of high-risk disease, and it is now also recommended by international guidelines. Radiomic analysis is an emerging research field with a high potential to offer non-invasive and longitudinal biomarkers for personalized medicine, and several applications have been described in oncology patients. In this review, we discuss the available evidence on the role of radiomic analysis in PCa imaging at staging, exploring two different hybrid imaging modalities, such as PET/CT and PET/MRI, and the whole spectrum of radiotracers involved. Abstract We performed a systematic review of the literature to provide an overview of the application of PET radiomics for the prediction of the initial staging of prostate cancer (PCa), and to discuss the additional value of radiomic features over clinical data. The most relevant databases and web sources were interrogated by using the query “prostate AND radiomic* AND PET”. English-language original articles published before July 2021 were considered. A total of 28 studies were screened for eligibility and 6 of them met the inclusion criteria and were, therefore, included for further analysis. All studies were based on human patients. The average number of patients included in the studies was 72 (range 52–101), and the average number of high-order features calculated per study was 167 (range 50–480). The radiotracers used were [68Ga]Ga-PSMA-11 (in four out of six studies), [18F]DCFPyL (one out of six studies), and [11C]Choline (one out of six studies). Considering the imaging modality, three out of six studies used a PET/CT scanner and the other half a PET/MRI tomograph. Heterogeneous results were reported regarding radiomic methods (e.g., segmentation modality) and considered features. The studies reported several predictive markers including first-, second-, and high-order features, such as “kurtosis”, “grey-level uniformity”, and “HLL wavelet mean”, respectively, as well as PET-based metabolic parameters. The strengths and weaknesses of PET radiomics in this setting of disease will be largely discussed and a critical analysis of the available data will be reported. In our review, radiomic analysis proved to add useful information for lesion detection and the prediction of tumor grading of prostatic lesions, even when they were missed at visual qualitative assessment due to their small size; furthermore, PET radiomics could play a synergistic role with the mpMRI radiomic features in lesion evaluation. The most common limitations of the studies were the small sample size, retrospective design, lack of validation on external datasets, and unavailability of univocal cut-off values for the selected radiomic features.
Collapse
Affiliation(s)
- Priscilla Guglielmo
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV—IRCCS, 31033 Castelfranco Veneto, Italy; (P.G.); (M.G.)
| | - Francesca Marturano
- Medical Physics Unit, Veneto Institute of Oncology IOV—IRCCS, 32168 Padova, Italy; (F.M.); (A.B.); (M.P.)
| | - Andrea Bettinelli
- Medical Physics Unit, Veneto Institute of Oncology IOV—IRCCS, 32168 Padova, Italy; (F.M.); (A.B.); (M.P.)
| | - Michele Gregianin
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV—IRCCS, 31033 Castelfranco Veneto, Italy; (P.G.); (M.G.)
| | - Marta Paiusco
- Medical Physics Unit, Veneto Institute of Oncology IOV—IRCCS, 32168 Padova, Italy; (F.M.); (A.B.); (M.P.)
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine DIMED, University of Padova, 32168 Padova, Italy
- Correspondence: ; Tel.: +39-0498211310; Fax: +39-0498213008
| |
Collapse
|
36
|
Lilburn DM, Groves AM. The role of PET in imaging of the tumour microenvironment and response to immunotherapy. Clin Radiol 2021; 76:784.e1-784.e15. [DOI: 10.1016/j.crad.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Radiomics for Everyone: A New Tool Simplifies Creating Parametric Maps for the Visualization and Quantification of Radiomics Features. Tomography 2021; 7:477-487. [PMID: 34564303 PMCID: PMC8482265 DOI: 10.3390/tomography7030041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Aim was to develop a user-friendly method for creating parametric maps that would provide a comprehensible visualization and allow immediate quantification of radiomics features. For this, a self-explanatory graphical user interface was designed, and for the proof of concept, maps were created for CT and MR images and features were compared to those from conventional extractions. Especially first-order features were concordant between maps and conventional extractions, some even across all examples. Potential clinical applications were tested on CT and MR images for the differentiation of pulmonary lesions. In these sample applications, maps of Skewness enhanced the differentiation of non-malignant lesions and non-small lung carcinoma manifestations on CT images and maps of Variance enhanced the differentiation of pulmonary lymphoma manifestations and fungal infiltrates on MR images. This new and simple method for creating parametric maps makes radiomics features visually perceivable, allows direct feature quantification by placing a region of interest, can improve the assessment of radiological images and, furthermore, can increase the use of radiomics in clinical routine.
Collapse
|
38
|
Liberini V, Mariniello A, Righi L, Capozza M, Delcuratolo MD, Terreno E, Farsad M, Volante M, Novello S, Deandreis D. NSCLC Biomarkers to Predict Response to Immunotherapy with Checkpoint Inhibitors (ICI): From the Cells to In Vivo Images. Cancers (Basel) 2021; 13:4543. [PMID: 34572771 PMCID: PMC8464855 DOI: 10.3390/cancers13184543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death, and it is usually diagnosed in advanced stages (stage III or IV). Recently, the availability of targeted strategies and of immunotherapy with checkpoint inhibitors (ICI) has favorably changed patient prognosis. Treatment outcome is closely related to tumor biology and interaction with the tumor immune microenvironment (TME). While the response in molecular targeted therapies relies on the presence of specific genetic alterations in tumor cells, accurate ICI biomarkers of response are lacking, and clinical outcome likely depends on multiple factors that are both host and tumor-related. This paper is an overview of the ongoing research on predictive factors both from in vitro/ex vivo analysis (ranging from conventional pathology to molecular biology) and in vivo analysis, where molecular imaging is showing an exponential growth and use due to technological advancements and to the new bioinformatics approaches applied to image analyses that allow the recovery of specific features in specific tumor subclones.
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Turin, Italy;
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy
| | - Annapaola Mariniello
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Luisella Righi
- Pathology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (L.R.); (M.V.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Marco Donatello Delcuratolo
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Mohsen Farsad
- Nuclear Medicine, Central Hospital Bolzano, 39100 Bolzano, Italy;
| | - Marco Volante
- Pathology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (L.R.); (M.V.)
| | - Silvia Novello
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
39
|
Palumbo B, Bianconi F, Palumbo I. Solitary pulmonary nodule: Is positron emission tomography/computed tomography radiomics a valid diagnostic approach? Lung India 2021; 38:405-407. [PMID: 34472516 PMCID: PMC8509171 DOI: 10.4103/lungindia.lungindia_266_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Barbara Palumbo
- Department of Medicine and Surgery, Section of Nuclear Medicine and Health Physics, University of Perugia, Perugia, Italy
| | | | - Isabella Palumbo
- Department of Medicine and Surgery, Section of Radiotherapy, University of Perugia, Perugia, Italy
| |
Collapse
|