1
|
Raîche-Marcoux G, Méthot S, Tchatchouang A, Bettoli C, Maranda C, Loiseau A, Proulx S, Rochette PJ, Genin E, Boisselier É. Localization of fluorescent gold nanoparticles throughout the eye after topical administration. Front Med (Lausanne) 2025; 12:1557611. [PMID: 40177275 PMCID: PMC11961937 DOI: 10.3389/fmed.2025.1557611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
The human eye is a highly intricate sensory organ. When a condition requiring treatment occurs, eyedrops, which represent 90% of all ophthalmic treatments, are most frequently used. However, eyedrops are associated with low bioavailability, with less than 0.02% of therapeutic molecules reaching the anterior chamber. Thus, new delivery systems are required to ensure sufficient drug concentration over time at the target site. Gold nanoparticles are a promising avenue for drug delivery; however, they can be difficult to track in biological systems. Fluorescent gold nanoparticles, which have the same ultrastability and biocompatibility as their nonfluorescent counterpart, could act as an effective imaging tool to study their localization throughout the eye after administration. Thus, this study (1) synthesized and characterized fluorescent gold nanoparticles, (2) validated similar properties between nonfluorescent and fluorescent gold nanoparticles, and (3) determined their localization in the eye after topical application on ex vivo rabbit eyes. The fluorescent gold nanoparticles were synthesized, characterized, and identified in the cornea, iris, lens, and posterior segment of rabbit eyeballs, demonstrating tremendous potential for future drug delivery research.
Collapse
Affiliation(s)
- Gabrielle Raîche-Marcoux
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sébastien Méthot
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ange Tchatchouang
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Camille Bettoli
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, France
| | - Cloé Maranda
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Alexis Loiseau
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Stéphanie Proulx
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Patrick J. Rochette
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Emilie Genin
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, France
| | - Élodie Boisselier
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
2
|
Zhu J, Wang H, Chen L. Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review). Int J Mol Med 2025; 55:36. [PMID: 39717951 PMCID: PMC11722055 DOI: 10.3892/ijmm.2024.5477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024] Open
Abstract
The world's leading infectious disease killer tuberculosis (TB) has >10 million new cases and ~1.5 million mortalities yearly. Effective TB control and management depends on accurate and timely diagnosis to improve treatment, curb transmission and reduce the burden on the medical system. Current clinical diagnostic methods for tuberculosis face the shortcomings of limited accuracy and sensitivity, time consumption and high cost of equipment and reagents. Nanomaterials have markedly enhanced the sensitivity, specificity and speed of TB detection in recent years, owing to their distinctive physical and chemical features. They offer several biomolecular binding sites, enabling the simultaneous identification of multiple TB biomarkers. Biosensors utilizing nanomaterials are often compact, user‑friendly and well‑suited for detecting TB on location and in settings with limited resources. The present review aimed to review the advances that have occurred during the last five years in the application of nanomaterials for TB diagnostics, focusing on their detection capabilities, structures, working principles and the significance of key nanomaterials. The current review addressed the limitations and challenges of nanomaterials‑based TB diagnostics, along with potential solutions.
Collapse
Affiliation(s)
- Jianmeng Zhu
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Affiliated Chun'an Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 311700, P.R. China
| | - Hongqin Wang
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Affiliated Chun'an Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 311700, P.R. China
| | - Lili Chen
- Orthopedics of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Affiliated Chun'an Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 311700, P.R. China
| |
Collapse
|
3
|
Tewari M, Rana P, Pande V. Nanomaterial-Based Biosensors for the Detection of COVID-19. Indian J Microbiol 2025; 65:120-136. [PMID: 40371045 PMCID: PMC12069788 DOI: 10.1007/s12088-024-01336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/12/2024] [Indexed: 05/16/2025] Open
Abstract
The COVID-19 outbreak began in December 2019 and has affected people worldwide. It was declared a pandemic in 2020 by the World Health Organization. Developing rapid and reliable diagnostic techniques is crucial for identifying COVID-19 early and preventing the disease from becoming severe. In addition to conventional diagnostic techniques such as RT-PCR, computed tomography, serological assays, and sequencing methods, biosensors have become widely accepted for identifying and screening COVID-19 infection with high accuracy and sensitivity. Their low cost, high sensitivity, specificity, and portability make them ideal for diagnostics. The use of nanomaterials improves the performance of biosensors by increasing their sensitivities and limiting detection by several orders of magnitude. This manuscript briefly reviews the COVID-19 outbreak and its pathogenesis. Furthermore, it comprehensively discusses the currently available biosensors for SARS-CoV-2 detection, with a special emphasis on nanomaterials-based biosensors developed to detect this emerging virus and its variants efficiently.
Collapse
Affiliation(s)
- Manju Tewari
- Department of Biotechnology, Kumaun University, Sir J.C. Bose Technical Campus, Bhimtal, Uttarakhand 263136 India
| | - Prerna Rana
- Department of Biotechnology, Kumaun University, Sir J.C. Bose Technical Campus, Bhimtal, Uttarakhand 263136 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Sir J.C. Bose Technical Campus, Bhimtal, Uttarakhand 263136 India
| |
Collapse
|
4
|
Rastmanesh S, Zeinaly I, Alivirdiloo V, Mobed A, Darvishi M. Biosensing for rapid detection of MDR, XDR and PDR bacteria. Clin Chim Acta 2025; 567:120121. [PMID: 39746435 DOI: 10.1016/j.cca.2024.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacteria poses a significant threat to global public health, complicating the management of infectious diseases and increasing morbidity and mortality rates. Rapid and sensitive detection of these resistant pathogens is crucial for effective treatment and infection control. This manuscript provides a comprehensive overview of various biosensor technologies developed for the rapid identification and quantification of MDR and XDR bacteria. We discuss the principles of operation, sensitivity, specificity, and practical applications of different biosensing platforms, including electrochemical, optical, and piezoelectric sensors. Additionally, we explore recent advancements in nanomaterials and microfluidics that enhance biosensor performance and enable point-of-care testing. The manuscript also addresses the challenges faced in the implementation of these technologies in clinical settings, such as regulatory hurdles and the need for standardization. A systematic literature review was conducted to identify relevant studies. Databases utilized include PubMed and Scopus, covering the time frame from 2015 to 2024. The literature screening criteria focused on the inclusion of only clinically validated studies to ensure the reliability and applicability of the findings. By highlighting the potential of biosensors to revolutionize the detection of drug-resistant bacteria, this work aims to inform researchers, clinicians, and policymakers about the critical role of innovative diagnostic tools in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Samad Rastmanesh
- Department of Pharmaceutics and Nanotechnology, School of pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Ilghar Zeinaly
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Ahmad Mobed
- Social Determinants of Health Research Center, Health Management and Safety Promotion, Iran.
| | - Mohammad Darvishi
- Infectious Disease, School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center(IDTMC), AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Duman H, Akdaşçi E, Eker F, Bechelany M, Karav S. Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1805. [PMID: 39591046 PMCID: PMC11597081 DOI: 10.3390/nano14221805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| |
Collapse
|
6
|
Verma J, Kumar C, Sharma M, Saxena S. Biotechnological advances in microbial synthesis of gold nanoparticles: Optimizations and applications. 3 Biotech 2024; 14:263. [PMID: 39387004 PMCID: PMC11458872 DOI: 10.1007/s13205-024-04110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
This review discusses the eco-friendly and cost-effective biosynthesis of gold nanoparticles (AuNPs) in viable microorganisms, focusing on microbes-mediated AuNP biosynthesis. This process suits agricultural, environmental, and biomedical applications, offering renewable, eco-friendly, non-toxic, sustainable, and time-efficient methods. Microorganisms are increasingly used in green technology, nanotechnology, and RNAi technology, but several microorganisms have not been fully identified and characterized. Bio-nanotechnology offers eco-friendly and sustainable solutions for nanomedicine, with microbe-mediated nanoparticle biosynthesis producing AuNPs with anti-oxidation activity, stability, and biocompatibility. Ultrasmall AuNPs offer rapid distribution, renal clearance, and enhanced permeability in biomedical applications. The review explores nano-size dependent biosynthesis of AuNPs by bacteria, fungi, and viruses revealing their non-toxic, non-genotoxic, and non-oxidative properties on human cells. AuNPs with varying sizes and shapes, from nitrate reductase enzymes, have shown potential as a promising nano-catalyst. The synthesized AuNPs, with negative charge capping molecules, have demonstrated antibacterial activity against drug-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii strains, and were non-toxic to Vero cell lines, indicating potential antibiotic resistance treatments. A green chemical method for the biosynthesis of AuNPs using reducing chloroauric acid and Rhizopus oryzae protein extract has been described, demonstrating excellent stability and strong catalytic activity. AuNPs are eco-friendly, non-toxic, and time-efficient, making them ideal for biomedical applications due to their antioxidant, antidiabetic, and antibacterial properties. In addition to the biomedical application, the review also highlights the role of microbially synthesized AuNPs in sustainable management of plant diseases, and environmental bioremediation.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Chitranjan Kumar
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313 India
| | - Monica Sharma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
7
|
Yan Y, Cai H, Yang M. The Application of Nanotechnology for the Diagnosis and Treatment of Endocrine Disorders: A Review of Current Trends, Toxicology and Future Perspective. Int J Nanomedicine 2024; 19:9921-9942. [PMID: 39345911 PMCID: PMC11439355 DOI: 10.2147/ijn.s477835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
The endocrine system regulates many biological systems, and disruptions may result in disorders, such as diabetes, thyroid dysfunction, Cushing's syndrome, and obesity. The total incidence of endocrine illnesses was found to be 47.4%, excluding type 2 diabetes mellitus, with a significant frequency of newly diagnosed endocrine disorders. Nanotechnology manipulates particles at the atomic and molecular levels, opening up new paths for studying disease etiology and therapeutic alternatives. The goal of using nanomaterials in the treatment of endocrine illnesses is to create endogenous nano-biosensors that can detect even modest changes in hormone levels and react spontaneously to restore normal function. The size and surface characteristics of nanoparticles enhances the sensitivity in nano-sensors and are functionalized for targeted drug delivery. Nano-sized carriers composed of lipids, polymers, carbon, or metals have been shown to work much better than standard drug delivery methods. Nanoparticles (NPs) offer various advantages over current methods for diagnosing and treating endocrine disorders, acting as hydrogels for insulin delivery and wound healing. Incorporating selenium NPs into inorganic nanoparticles enhances their bioactivity and targeted delivery. Gold NPs show a promising precise insulin delivery. Mesoporous silica NPs maintain glycemic level effectively and lipid and polymeric NPs protect drugs from degradation in the gastrointestinal tract. Carbon nanotubes (CNTs) have become popular in thyroid surgeries. These characteristics make nanoparticles valuable for developing effective diagnostic and therapeutic systems. NP-based medicines have been thoroughly researched in order to identify the beginning point for the creation of theranostics, which may function in two ways: as imaging agents or therapeutics. The study posits that nanotechnology bridges diagnostics and therapies, potentially revolutionizing endocrine disorder treatments. This review delves into nanotechnology techniques, emphasizing their applications in diagnosing and treating diabetes mellitus.
Collapse
Affiliation(s)
- Yan Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Hanqing Cai
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Maoguang Yang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| |
Collapse
|
8
|
Karnwal A, Kumar Sachan RS, Devgon I, Devgon J, Pant G, Panchpuri M, Ahmad A, Alshammari MB, Hossain K, Kumar G. Gold Nanoparticles in Nanobiotechnology: From Synthesis to Biosensing Applications. ACS OMEGA 2024; 9:29966-29982. [PMID: 39035946 PMCID: PMC11256298 DOI: 10.1021/acsomega.3c10352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
Nanobiotechnology has ushered in a new era of scientific discovery where the unique properties of nanomaterials, such as gold nanoparticles, have been harnessed for a wide array of applications. This review explores gold nanoparticles' synthesis, properties, and multidisciplinary applications, focusing on their role as biosensors. Gold nanoparticles possess exceptional physicochemical attributes, including size-dependent optical properties, biocompatibility, and ease of functionalization, making them promising candidates for the development of biosensing platforms. The review begins by providing a comprehensive overview of gold nanoparticle synthesis techniques, highlighting the advantages and disadvantages of various approaches. It then delves into the remarkable properties that underpin their success in biosensing, such as localized surface plasmon resonance and enhanced surface area. The discussion also includes the functionalization strategies that enable specific binding to biomolecules, enhancing the sensitivity and selectivity of gold-nanoparticle-based biosensors. Furthermore, this review surveys the diverse applications of gold nanoparticles in biosensing, encompassing diagnostics, environmental monitoring, and drug delivery. The multidisciplinary nature of these applications underscores the versatility and potential of gold nanoparticles in addressing complex challenges in healthcare and environmental science. The review emphasizes the pressing need for further exploration and research in the field of nanobiotechnology, particularly regarding the synthesis, properties, and biosensing applications of gold nanoparticles. With their exceptional physicochemical attributes and versatile functionalities, gold nanoparticles present a promising avenue for addressing complex challenges in healthcare and environmental science, making it imperative to advance our understanding of their synthesis, properties, and applications for enhanced biosensing capabilities and broader scientific innovation.
Collapse
Affiliation(s)
- Arun Karnwal
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Rohan Samir Kumar Sachan
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Inderpal Devgon
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Jyotsna Devgon
- Centre
for Interdisciplinary Biomedical Research, Adesh University, Bathinda 151101, Punjab, India
| | - Gaurav Pant
- Department
of Microbiology, Graphic Era (Deemed to
be University), Dehradun 248009, Uttarakhand, India
| | - Mitali Panchpuri
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College,
University of Calcutta, 92, Shyama Prasad Mukherjee Rd, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Gaurav Kumar
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
9
|
Brambilla D, Panico F, Zarini L, Mussida A, Ferretti AM, Aslan M, Ünlü MS, Chiari M. Copolymer-Coated Gold Nanoparticles: Enhanced Stability and Customizable Functionalization for Biological Assays. BIOSENSORS 2024; 14:319. [PMID: 39056595 PMCID: PMC11274550 DOI: 10.3390/bios14070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Gold nanoparticles (AuNPs) play a vital role in biotechnology, medicine, and diagnostics due to their unique optical properties. Their conjugation with antibodies, antigens, proteins, or nucleic acids enables precise targeting and enhances biosensing capabilities. Functionalized AuNPs, however, may experience reduced stability, leading to aggregation or loss of functionality, especially in complex biological environments. Additionally, they can show non-specific binding to unintended targets, impairing assay specificity. Within this work, citrate-stabilized and silica-coated AuNPs (GNPs and SiGNPs, respectively) have been coated using N,N-dimethylacrylamide-based copolymers to increase their stability and enable their functionalization with biomolecules. AuNP stability after modification has been assessed by a combination of techniques including spectrophotometric characterization, nanoparticle tracking analysis, transmission electron microscopy and functional microarray tests. Two different copolymers were identified to provide a stable coating of AuNPs while enabling further modification through click chemistry reactions, due to the presence of azide groups in the polymers. Following this experimental design, AuNPs decorated with ssDNA and streptavidin were synthesized and successfully used in a biological assay. In conclusion, a functionalization scheme for AuNPs has been developed that offers ease of modification, often requiring single steps and short incubation time. The obtained functionalized AuNPs offer considerable flexibility, as the functionalization protocol can be personalized to match requirements of multiple assays.
Collapse
Affiliation(s)
- Dario Brambilla
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Federica Panico
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Lorenzo Zarini
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Alessandro Mussida
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Anna M. Ferretti
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Gaudenzio Fantoli 16/15, 20138 Milan, Italy;
| | - Mete Aslan
- Electrical and Computer Engineering Department, Boston University, Boston, MA 02215, USA; (M.A.); (M.S.Ü.)
| | - M. Selim Ünlü
- Electrical and Computer Engineering Department, Boston University, Boston, MA 02215, USA; (M.A.); (M.S.Ü.)
| | - Marcella Chiari
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| |
Collapse
|
10
|
Jiang M, Wang A, Sun Y, Li Y, Chen Y, Zhou J, Liu H, Ding P, Qi Y, Li N, Zhang G. Development of a Gold Nanoparticle-Based Immunochromatographic Strip for Rapid Detection of Porcine Circovirus Type 2. Microbiol Spectr 2023; 11:e0195322. [PMID: 37466437 PMCID: PMC10434270 DOI: 10.1128/spectrum.01953-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/15/2023] [Indexed: 07/20/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is an important swine infectious pathogen that seriously threatens the global swine industry. PCV2 Cap protein is the only structural and the main immunogenic protein constituting the viral capsid. In this study, a gold nanoparticle-based immunochromatographic strip with high sensitivity and specificity was developed which could be used for rapid detection of PCV2 virions or Cap protein in research. The visual detection limit of the strip was 103.18 50% tissue culture infective does (TCID50)/mL for PCV2, and 2.03 μg/mL for PCV2 Cap protein. No cross-reactivity was observed with the PCV1 and PCV3 Cap proteins and other common swine pathogens such as porcine reproductive and respiratory syndrome virus, classical swine fever virus, pseudorabies virus, porcine epidemic diarrhea virus, porcine parvovirus, and swine influenza virus. The repeatability of the strip was good. The stability of the strip was perfect for 12 months in a dry state at room temperature. Visual results could be obtained within 5 min by simply inserting the strip into the diluted sample. The strip is a time-saving, labor-saving, and reliable tool for testing of PCV2 virions or Cap protein in research. The idea of this study might open a new perspective for the application of the strip. IMPORTANCE Porcine circovirus type 2 (PCV2) Cap protein is the only structural and the main immunogenic protein constituting the viral capsid. Although many methods can be used to identify PCV2 or PCV2 Cap protein in vaccine research, they usually require high workload and time. The developed strip can specifically detect PCV2 virions or Cap protein, and visual qualitative results can be obtained within 5 min by simply diluting the sample and inserting the strip into the sample. The final value of the strip is providing a simple and time-saving method for real-time monitoring of PCV2 antigen in vaccine research with reliable results, such as the different stages of PCV2 Cap protein expression and purification, as well as the different stages of PCV2 reproduction and purification.
Collapse
Affiliation(s)
- Min Jiang
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Aiping Wang
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Agricultural University, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Yaning Sun
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
| | - Yuan Li
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yumei Chen
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Jingming Zhou
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Hongliang Liu
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Peiyang Ding
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Yanhua Qi
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Ning Li
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Henan Agricultural University, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| |
Collapse
|
11
|
Rodriguez-Quijada C, Lyons C, Sanchez-Purra M, Santamaria C, Leonardo BM, Quinn S, Tlusty MF, Shiaris M, Hamad-Schifferli K. Gold Nanoparticle Paper Immunoassays for Sensing the Presence of Vibrio parahaemolyticus in Oyster Hemolymph. ACS OMEGA 2023; 8:19494-19502. [PMID: 37305279 PMCID: PMC10249105 DOI: 10.1021/acsomega.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023]
Abstract
Seafood contamination with Vibrio bacteria is a problem for aquaculture, especially with oysters, which are often consumed raw. Current methods for diagnosing bacterial pathogens in seafood involve lab-based assays such as polymerase chain reaction or culturing, which are time consuming and must occur in a centralized location. Detection of Vibrio in a point-of-care assay would be a significant tool for food safety control measures. We report here a paper immunoassay that can detect the presence of Vibrio parahaemolyticus (Vp) in buffer and oyster hemolymph. The test uses gold nanoparticles conjugated to polyclonal anti-Vibrio antibodies in a paper-based sandwich immunoassay. A sample is added to the strip and wicked through by capillary action. If Vp is present, it results in a visible color at the test area that can be read out by eyes or a standard mobile phone camera. The assay has a limit of detection of 6.05 × 105 cfu/mL and a cost estimate of $5 per test. Receiver operating characteristic curves with validated environmental samples showed a test sensitivity of 0.96 and a specificity of 1.00. Because the assay is inexpensive and can be used on Vp directly without the requirement for culturing, or sophisticated equipment, it has the potential to be used in fieldable settings.
Collapse
Affiliation(s)
- Cristina Rodriguez-Quijada
- Department
of Engineering, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Casandra Lyons
- Department
of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Maria Sanchez-Purra
- Department
of Engineering, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Charles Santamaria
- Department
of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Brianna M. Leonardo
- Department
of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Sara Quinn
- Department
of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Michael F. Tlusty
- School
for the Environment, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125 United States
| | - Michael Shiaris
- Department
of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
- School
for the Environment, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125 United States
| | - Kimberly Hamad-Schifferli
- Department
of Engineering, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
- School
for the Environment, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125 United States
| |
Collapse
|
12
|
Chopra H, Mohanta YK, Rauta PR, Ahmed R, Mahanta S, Mishra PK, Panda P, Rabaan AA, Alshehri AA, Othman B, Alshahrani MA, Alqahtani AS, AL Basha BA, Dhama K. An Insight into Advances in Developing Nanotechnology Based Therapeutics, Drug Delivery, Diagnostics and Vaccines: Multidimensional Applications in Tuberculosis Disease Management. Pharmaceuticals (Basel) 2023; 16:581. [PMID: 37111338 PMCID: PMC10145450 DOI: 10.3390/ph16040581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis (TB), one of the deadliest contagious diseases, is a major concern worldwide. Long-term treatment, a high pill burden, limited compliance, and strict administration schedules are all variables that contribute to the development of MDR and XDR tuberculosis patients. The rise of multidrug-resistant strains and a scarcity of anti-TB medications pose a threat to TB control in the future. As a result, a strong and effective system is required to overcome technological limitations and improve the efficacy of therapeutic medications, which is still a huge problem for pharmacological technology. Nanotechnology offers an interesting opportunity for accurate identification of mycobacterial strains and improved medication treatment possibilities for tuberculosis. Nano medicine in tuberculosis is an emerging research field that provides the possibility of efficient medication delivery using nanoparticles and a decrease in drug dosages and adverse effects to boost patient compliance with therapy and recovery. Due to their fascinating characteristics, this strategy is useful in overcoming the abnormalities associated with traditional therapy and leads to some optimization of the therapeutic impact. It also decreases the dosing frequency and eliminates the problem of low compliance. To develop modern diagnosis techniques, upgraded treatment, and possible prevention of tuberculosis, the nanoparticle-based tests have demonstrated considerable advances. The literature search was conducted using Scopus, PubMed, Google Scholar, and Elsevier databases only. This article examines the possibility of employing nanotechnology for TB diagnosis, nanotechnology-based medicine delivery systems, and prevention for the successful elimination of TB illnesses.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
| | | | - Ramzan Ahmed
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Ri-Bhoi, Baridua 793101, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | | | - Paramjot Panda
- School of Biological Sciences, AIPH University, Bhubaneswar 754001, Odisha, India
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Baneen Ali AL Basha
- Laboratory Department, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
13
|
Bursy D, Balwierz R, Groch P, Biernat P, Byrski A, Kasperkiewicz K, Ochędzan-Siodłak W. Nanoparticles coated by chloramphenicol in hydrogels as a useful tool to increase the antibiotic release and antibacterial activity in dermal drug delivery. Pharmacol Rep 2023; 75:657-670. [PMID: 37039973 DOI: 10.1007/s43440-023-00482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Nanocarriers for antibacterial drugs became hopeful tools against the increasing resistance of bacteria to antibiotics. This work focuses on a comprehensive study of the applicability and therapeutic suitability of dermal carbopol-based hydrogels containing chloramphenicol carried by various nanoparticles (AuNPs and SiNPs). METHODS The different forms of carbopol-based drugs for dermal use were obtained. Five different concentrations of chloramphenicol and two types of nanoparticles (silica and gold) in carbopol-based ointments were tested. The influence of different carbopol formulations with nanocarriers on the rheological properties as well as the release profile of active substances and bacteriostatic activity on five reference strains were determined. RESULTS The properties of the obtained hydrogels were compared to a commercial formulation, and finally it was possible to obtain a formulation that allowed improved antimicrobial activity over a commercially available detreomycin ointment while reducing the concentration of the antibiotic. CONCLUSION The work indicates that it is possible to reduce the concentration of chloramphenicol by four times while maintaining its bacteriostatic activity, which can improve the patient's safety profile while increasing the effectiveness of the therapy.
Collapse
Affiliation(s)
- Dawid Bursy
- Department of Drug Forms Technology, Faculty of Pharmacy, Wrocław Medical University, Borowska St. 211, 50-556, Wrocław, Poland
| | - Radosław Balwierz
- Institute of Chemistry, University of Opole, Oleska St. 48, 45-052, Opole, Poland.
| | - Paweł Groch
- Institute of Chemistry, University of Opole, Oleska St. 48, 45-052, Opole, Poland
| | - Paweł Biernat
- Department of Drug Forms Technology, Faculty of Pharmacy, Wrocław Medical University, Borowska St. 211, 50-556, Wrocław, Poland
| | - Adam Byrski
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059, Cracow, Poland
| | - Katarzyna Kasperkiewicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska St. 28, 40-032, Katowice, Poland
| | | |
Collapse
|
14
|
Retout M, Gosselin B, Jokerst JV, Jabin I, Bruylants G. A fluoride-induced aggregation test to quickly assess the efficiency of ligand exchange procedures from citrate capped AuNPs. Colloids Surf A Physicochem Eng Asp 2023; 660:130801. [PMID: 36779205 PMCID: PMC9912280 DOI: 10.1016/j.colsurfa.2022.130801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypothesis Citrate capped gold nanoparticles (AuNPs-citrate) are the starting material for most of the academic and industrial applications using gold nanoparticles. AuNPs-citrate must usually be functionalized with organic (bio)molecules, through a ligand exchange process, to become suitable for the envisaged application. The evaluation of the efficiency of the ligand-exchange process with a simple and convenient procedure is challenging. Experiments Fluoride was used to evaluate the efficiency of a ligand exchange process from AuNPs-citrate with five standard types of ligands. The relationship between the aggregation level of the AuNPs exposed to fluoride and the amount of residual citrate ligands at the surface of the AuNPs was studied. The fluoride-induced aggregation process was characterized with various techniques such as TEM, UV-Vis, ATR-FTIR or MANTA and then used to quickly identify the optimal conditions for the functionalization of AuNPs-citrate with a new ligand, i.e. a PEGylated calixarene-tetradiazonium salt (X4-(PEG)4). Findings It was observed that the fluoride-induced aggregation of AuNPs is proportional to the efficiency of the ligands exchange. We believe that these results could benefit to everyone engineering AuNPs for advanced applications, as the fluoride-aggregation of AuNPs can be used as a general and versatile quality test to verify the coating density of organic (bio)molecules on AuNPs.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Bryan Gosselin
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Jesse V. Jokerst
- Department of NanoEngineering and Department of Radiology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
15
|
Colorimetric Assaying of Exosomal Metabolic Biomarkers. Molecules 2023; 28:molecules28041909. [PMID: 36838895 PMCID: PMC9962048 DOI: 10.3390/molecules28041909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Exosomes released into the extracellular matrix have been reported to contain metabolic biomarkers of various diseases. These intraluminal vesicles are typically found in blood, urine, saliva, breast milk, cerebrospinal fluid, semen, amniotic fluid, and ascites. Analysis of exosomal content with specific profiles of DNA, microRNA, proteins, and lipids can mirror their cellular origin and physiological state. Therefore, exosomal cargos may reflect the physiological processes at cellular level and can potentially be used as biomarkers. Herein, we report an optical detection method for assaying exosomal biomarkers that supersedes the state-of-the-art time consuming and laborious assays such as ELISA and NTA. The proposed assay monitors the changes in optical properties of poly(3-(4-methyl-3'-thienyloxy) propyltriethylammonium bromide) upon interacting with aptamers/peptide nucleic acids in the presence or absence of target biomarkers. As a proof of concept, this study demonstrates facile assaying of microRNA, DNA, and advanced glycation end products in exosomes isolated from human plasma with detection levels of ~1.2, 0.04, and 0.35 fM/exosome, respectively. Thus, the obtained results illustrate that the proposed methodology is applicable for rapid and facile detection of generic exosomal biomarkers for facilitating diseases diagnosis.
Collapse
|
16
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
17
|
Oliveira BB, Ferreira D, Fernandes AR, Baptista PV. Engineering gold nanoparticles for molecular diagnostics and biosensing. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1836. [PMID: 35932114 DOI: 10.1002/wnan.1836] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Advances in nanotechnology and medical science have spurred the development of engineered nanomaterials and nanoparticles with particular focus on their applications in biomedicine. In particular, gold nanoparticles (AuNPs) have been the focus of great interest, due to their exquisite intrinsic properties, such as ease of synthesis and surface functionalization, tunable size and shape, lack of acute toxicity and favorable optical, electronic, and physicochemical features, which possess great value for application in biodetection and diagnostics purposes, including molecular sensing, photoimaging, and application under the form of portable and simple biosensors (e.g., lateral flow immunoassays that have been extensively exploited during the current COVID-19 pandemic). We shall discuss the main properties of AuNPs, their synthesis and conjugation to biorecognition moieties, and the current trends in sensing and detection in biomedicine and diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Beatriz B Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
18
|
Esmaeilzadeh AA, Yaseen MM, Khudaynazarov U, Al-Gazally ME, Catalan Opulencia MJ, Jalil AT, Mohammed RN. Recent advances on the electrochemical and optical biosensing strategies for monitoring microRNA-21: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4449-4459. [PMID: 36330992 DOI: 10.1039/d2ay01384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The small non-coding RNA, microRNA-21 (miR-21), is dysregulated in various cancers and can be considered an appropriate target for therapeutic approaches. Therefore, the detection of miR-21 concentration is important in the diagnosis of diseases. Low specificity and the cost of materials are two necessary limitations in the traditional diagnosis method such as RT-PCR, northern blotting and microarray analysis. Biosensor technology can play an effective role in improving the quality of human life due to its capacity of rapid diagnosis, monitoring different markers, suitable sensitivity, and specificity. Moreover, bioanalytical systems have an essential role in the detection of biomolecules or miRNAs due to their critical features, including easy usage, portability, low cost and real-time analysis. Electrochemical biosensors based on novel nanomaterials and oligonucleotides can hybridize with miR-21 in different ranges. Moreover, optical biosensors and piezoelectric devices have been developed for miR-21 detection. In this study, we have evaluated different materials used in bioanalytical systems for miR-21 detection as well as various nanomaterials that offer improved electrodes for its detection.
Collapse
Affiliation(s)
| | - Muna Mohammed Yaseen
- Basic Science Department, Dentistry of College, University of Anbar, Al-Anbar, Iraq
| | - Utkir Khudaynazarov
- Teaching Assistant, MD, Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan university of Sulaimaniya, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| |
Collapse
|
19
|
Khan J, Rasmi Y, Kırboğa KK, Ali A, Rudrapal M, Patekar RR. Development of gold nanoparticle-based biosensors for COVID-19 diagnosis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:111. [PMID: 36092513 PMCID: PMC9444098 DOI: 10.1186/s43088-022-00293-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative organism of coronavirus disease 2019 (COVID-19) which poses a significant threat to public health worldwide. Though there are certain recommended drugs that can cure COVID-19, their therapeutic efficacy is limited. Therefore, the early and rapid detection without compromising the test accuracy is necessary in order to provide an appropriate treatment for the disease suppression.
Main body
Nanoparticles (NPs) can closely mimic the virus and interact strongly with its proteins due to their morphological similarities. NPs have been widely applied in a variety of medical applications, including biosensing, drug delivery, antimicrobial treatment, and imaging. Recently, NPs-based biosensors have attracted great interest for their biological activities and specific sensing properties, which allows the detection of analytes such as nucleic acids (DNA or RNA), aptamers, and proteins in clinical samples. Further, the advances of nanotechnologies have enabled the development of miniaturized detection systems for point-of-care biosensors, a new strategy for detecting human viral diseases. Among the various NPs, the specific physicochemical properties of gold NPs (AuNPs) are being widely used in the field of clinical diagnostics. As a result, several AuNP-based colorimetric detection methods have been developed.
Short conclusion
The purpose of this review is to provide an overview of the development of AuNPs-based biosensors by virtue of its powerful characteristics as a signal amplifier or enhancer that target pathogenic RNA viruses that provide a reliable and effective strategy for detecting of the existing or newly emerging SARS-CoV-2.
Collapse
|
20
|
Hashemzadeh MS. The emergence of nanotechnology and a revolution in diagnostic methods of biological threat agents. ROMANIAN JOURNAL OF MILITARY MEDICINE 2022. [DOI: 10.55453/rjmm.2022.125.3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nanotechnology is applied in wide-ranging fields including energy, information technology, consumables, medicine, etc. Nanomedicine includes the medical applications of nanomaterials in the fields of diagnosis and treatment. This paper focuses on the application of nanotechnology in medical diagnostics for which the main applications of nanomedicine include the detection and discovery of specific biomarkers and rapid identification of biological agents. The introduction of nanotechnology into the medical field before a serious increase in disease symptoms makes early diagnosis possible, thereby preventing more damage to the patient. With the manufacture of nanomaterials and novel entities, reduced size of sensing instruments, as well as biochips and bionanosensors, nanotechnology has revolutionized diagnostic methods. Gold nanoparticles (NPs), quantum dots (QDs), nanotubes, polymeric NPs, and liposomes are among NPs used in medical diagnostics. The importance of these diagnostic methods is redoubled whenever there is a need for the rapid and accurate diagnosis of biological threat agents
Collapse
|
21
|
Sen A, Sester C, Poulsen H, Hodgkiss JM. Accounting for Interaction Kinetics between Gold Nanoparticles and Aptamers Enables High-Performance Colorimetric Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32813-32822. [PMID: 35833898 DOI: 10.1021/acsami.2c04747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA aptamers have emerged as promising probes for challenging analytes that cannot be easily detected by conventional probes, including small-molecule targets. Among the different signal transduction approaches, gold nanoparticle (AuNP) aggregation assays have been widely used to generate a colorimetric response from aptamer-target interactions. This sensor design relies on the competition between the aptamer adsorbing to the AuNP surface versus interacting with the target, whereby target binding reduces the number of adsorbed aptamers that destabilizes AuNPs toward salt-induced aggregation, thereby inducing a color change. However, this thermodynamic framework overlooks the potential influence of interaction kinetics of different aptamer conformations with AuNP surfaces and with targets in solution or near surfaces. Here, we show that aptamers become more strongly adsorbed on AuNPs over time, and these trapped aptamers are less responsive toward the target analyte. By varying the sequence of addition in sensing assays, we demonstrate that these interaction kinetics have a significant effect on the sensor response and thereby produce an effective sensor for methamphetamine (meth) at biologically relevant levels in oral fluids. Along with underpinning new tools for assay development, this new knowledge also highlights the need for aptamer selection strategies that evolve aptamer sequences based on the functionality that they need to exhibit in an actual sensor.
Collapse
Affiliation(s)
- Anindita Sen
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| | - Clément Sester
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| | - Helen Poulsen
- Forensic Specialised Analytical Services (F-SAS), Institute of Environmental Science and Research (ESR), P.O. Box 50348, Wellington 5240, New Zealand
| | - Justin M Hodgkiss
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| |
Collapse
|
22
|
Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022; 304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Interactions of proteins with nanomaterials draw attention of many research groups interested in fundamental phenomena. However, alongside with valuable information regarding physicochemical aspects of such processes and their mechanisms, they more and more often prove to be useful from a point of view of bioanalytics. Deliberate use of processes based on adsorption of proteins on nanoparticles (or vice versa) allows for a development of new analytical methods and improvement of the existing ones. It also leads to obtaining of nanoparticles of desired properties and functionalities, which can be used as elements of analytical tools for various applications. Due to interactions with nanoparticles, proteins can also gain new functionalities or lose their interfering potential, which from perspective of bioanalytics seems to be very inviting and attractive. In the framework of this article we will discuss the bioanalytical potential of interactions of proteins with a chosen group of nanoparticles, and implementation of so driven processes for biosensing. Moreover, we will show both positive and negative (opportunities and challenges) aspects resulting from the presence of proteins in media/samples containing metal-based nanoparticles or their precursors.
Collapse
|
23
|
Retout M, Mantri Y, Jin Z, Zhou J, Noël G, Donovan B, Yim W, Jokerst JV. Peptide-Induced Fractal Assembly of Silver Nanoparticles for Visual Detection of Disease Biomarkers. ACS NANO 2022; 16:6165-6175. [PMID: 35377141 PMCID: PMC9530071 DOI: 10.1021/acsnano.1c11643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report the peptide-programmed fractal assembly of silver nanoparticles (AgNPs) in a diffusion-limited aggregation (DLA) mode, and this change in morphology generates a significant color change. We show that peptides with specific repetitions of defined amino acids (i.e., arginine, histidine, or phenylalanine) can induce assembly and coalescence of the AgNPs (20 nm) into a hyperbranched structure (AgFSs) (∼2 μm). The dynamic process of this assembly was systematically investigated, and the extinction of the nanostructures can be modulated from 400 to 600 nm by varying the peptide sequences and molar ratio. According to this rationale, two strategies of SARS-CoV-2 detection were investigated. The activity of the main protease (Mpro) involved in SARS-CoV-2 was validated with a peptide substrate that can bridge the AgNPs after the proteolytic cleavage. A sub-nanomolar limit of detection (0.5 nM) and the capacity to distinguish by the naked eye in a wide concentration range (1.25-30 nM) were achieved. Next, a multichannel sensor-array based on multiplex peptides that can visually distinguish SARS-CoV-2 proteases from influenza proteases in doped human samples was investigated.
Collapse
Affiliation(s)
| | | | | | | | - Grégoire Noël
- Functional and Evolutionary Entomology-Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | | | | | | |
Collapse
|
24
|
Anh NH, Doan MQ, Dinh NX, Huy TQ, Tri DQ, Ngoc Loan LT, Van Hao B, Le AT. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv 2022; 12:10950-10988. [PMID: 35425077 PMCID: PMC8988175 DOI: 10.1039/d1ra08311b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Modern society has been facing serious health-related problems including food safety, diseases and illness. Hence, it is urgent to develop analysis methods for the detection and control of food contaminants, disease biomarkers and pathogens. As the traditional instrumental methods have several disadvantages, including being time consuming, and having high cost and laborious procedures, optical nanosensors have emerged as promising alternative or complementary approaches to those traditional ones. With the advantages of simple preparation, high surface-to-volume ratio, excellent biocompatibility, and especially, unique optical properties, gold nanoparticles (AuNPs) have been demonstrated as excellent transducers for optical sensing systems. Herein, we provide an overview of the synthesis of AuNPs and their excellent optical properties that are ideal for the development of optical nanosensors based on local surface plasmon resonance (LSPR), colorimetry, fluorescence resonance energy transfer (FRET), and surface-enhanced Raman scattering (SERS) phenomena. We also review the sensing strategies and their mechanisms, as well as summarizing the recent advances in the monitoring of food contaminants, disease biomarkers and pathogens using developed AuNP-based optical nanosensors in the past seven years (2015-now). Furthermore, trends and challenges in the application of these nanosensors in the determination of those analytes are discussed to suggest possible directions for future developments.
Collapse
Affiliation(s)
- Nguyen Ha Anh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Mai Quan Doan
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Electric and Electronics, Phenikaa University Hanoi 12116 Vietnam
| | - Doan Quang Tri
- Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST) 1st Dai Co Viet Road Hanoi Vietnam
| | - Le Thi Ngoc Loan
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon 55113 Vietnam
| | - Bui Van Hao
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| |
Collapse
|
25
|
Nascimento ED, Fonseca WT, de Oliveira TR, de Correia CRSTB, Faça VM, de Morais BP, Silvestrini VC, Pott-Junior H, Teixeira FR, Faria RC. COVID-19 diagnosis by SARS-CoV-2 Spike protein detection in saliva using an ultrasensitive magneto-assay based on disposable electrochemical sensor. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 353:131128. [PMID: 34866796 DOI: 10.1016/j.snb.2021.131148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 05/27/2023]
Abstract
The outbreak of the COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome of Coronavirus 2 (SARS-CoV-2), has fueled the search for diagnostic tests aiming at the control and reduction of the viral transmission. The main technique used for diagnosing the Coronavirus disease (COVID-19) is the reverse transcription-polymerase chain reaction (RT-PCR) technique. However, considering the high number of cases and the underlying limitations of the RT-PCR technique, especially with regard to accessibility and cost of the test, one does not need to overemphasize the need to develop new and less expensive testing techniques that can aid the early diagnosis of the disease. With that in mind, we developed an ultrasensitive magneto-assay using magnetic beads and gold nanoparticles conjugated to human angiotensin-converting enzyme 2 (ACE2) peptide (Gln24-Gln42) for the capturing and detection of SARS-CoV-2 Spike protein in human saliva. The technique applied involved the use of a disposable electrochemical device containing eight screen-printed carbon electrodes which allow the simultaneous analysis of eight samples. The magneto-assay exhibited an ultralow limit of detection of 0.35 ag mL-1 for the detection of SARS-CoV-2 Spike protein in saliva. The magneto-assay was tested in saliva samples from healthy and SARS-CoV-2-infected individuals. In terms of efficiency, the proposed technique - which presented a sensitivity of 100.0% and specificity of 93.7% for SARS-CoV-2 Spike protein-exhibited great similarity with the RT-PCR technique. The results obtained point to the application potential of this simple, low-cost magneto-assay for saliva-based point-of-care COVID-19 diagnosis.
Collapse
Affiliation(s)
- Evair D Nascimento
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Wilson T Fonseca
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Tássia R de Oliveira
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Camila R S T B de Correia
- Department of Genetics and Evolution, Federal University of Sao Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Beatriz P de Morais
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Virginia C Silvestrini
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Felipe R Teixeira
- Department of Genetics and Evolution, Federal University of Sao Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Ronaldo C Faria
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
26
|
Nascimento ED, Fonseca WT, de Oliveira TR, de Correia CRSTB, Faça VM, de Morais BP, Silvestrini VC, Pott-Junior H, Teixeira FR, Faria RC. COVID-19 diagnosis by SARS-CoV-2 Spike protein detection in saliva using an ultrasensitive magneto-assay based on disposable electrochemical sensor. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 353:131128. [PMID: 34866796 PMCID: PMC8626148 DOI: 10.1016/j.snb.2021.131128] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 05/03/2023]
Abstract
The outbreak of the COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome of Coronavirus 2 (SARS-CoV-2), has fueled the search for diagnostic tests aiming at the control and reduction of the viral transmission. The main technique used for diagnosing the Coronavirus disease (COVID-19) is the reverse transcription-polymerase chain reaction (RT-PCR) technique. However, considering the high number of cases and the underlying limitations of the RT-PCR technique, especially with regard to accessibility and cost of the test, one does not need to overemphasize the need to develop new and less expensive testing techniques that can aid the early diagnosis of the disease. With that in mind, we developed an ultrasensitive magneto-assay using magnetic beads and gold nanoparticles conjugated to human angiotensin-converting enzyme 2 (ACE2) peptide (Gln24-Gln42) for the capturing and detection of SARS-CoV-2 Spike protein in human saliva. The technique applied involved the use of a disposable electrochemical device containing eight screen-printed carbon electrodes which allow the simultaneous analysis of eight samples. The magneto-assay exhibited an ultralow limit of detection of 0.35 ag mL-1 for the detection of SARS-CoV-2 Spike protein in saliva. The magneto-assay was tested in saliva samples from healthy and SARS-CoV-2-infected individuals. In terms of efficiency, the proposed technique - which presented a sensitivity of 100.0% and specificity of 93.7% for SARS-CoV-2 Spike protein-exhibited great similarity with the RT-PCR technique. The results obtained point to the application potential of this simple, low-cost magneto-assay for saliva-based point-of-care COVID-19 diagnosis.
Collapse
Affiliation(s)
- Evair D Nascimento
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Wilson T Fonseca
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Tássia R de Oliveira
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Camila R S T B de Correia
- Department of Genetics and Evolution, Federal University of Sao Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Beatriz P de Morais
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Virginia C Silvestrini
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Felipe R Teixeira
- Department of Genetics and Evolution, Federal University of Sao Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Ronaldo C Faria
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
27
|
Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals (Basel) 2022; 15:ph15010090. [PMID: 35056148 PMCID: PMC8781427 DOI: 10.3390/ph15010090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
The lateral flow assay (LFA) is an extensively used paper-based platform for the rapid and on-site detection of different analytes. The method is user-friendly with no need for sophisticated operation and only includes adding sample. Generally, antibodies are employed as the biorecognition elements in the LFA. However, antibodies possess several disadvantages including poor stability, high batch-to-batch variation, long development time, high price and need for ethical approval and cold chain. Because of these limitations, aptamers screened by an in vitro process can be a good alternative to antibodies as biorecognition molecules in the LFA. In recent years, aptamer-based LFAs have been investigated for the detection of different analytes in point-of-care diagnostics. In this review, we summarize the applications of aptamer technology in LFAs in clinical diagnostic rapid tests for the detection of biomarkers, microbial analytes, hormones and antibiotics. Performance, advantages and drawbacks of the developed assays are also discussed.
Collapse
|
28
|
Laochai T, Yukird J, Promphet N, Qin J, Chailapakul O, Rodthongkum N. Non-invasive electrochemical immunosensor for sweat cortisol based on L-cys/AuNPs/ MXene modified thread electrode. Biosens Bioelectron 2022; 203:114039. [DOI: 10.1016/j.bios.2022.114039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
|
29
|
Tobin E, Brenner S. Nanotechnology Fundamentals Applied to Clinical Infectious Diseases and Public Health. Open Forum Infect Dis 2021; 8:ofab583. [PMID: 34988245 PMCID: PMC8694202 DOI: 10.1093/ofid/ofab583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Nanotechnology involves the discovery and fabrication of nanoscale materials possessing unique physicochemical properties that are being employed in industry and medicine. Infectious Diseases clinicians and public health scientists utilize nanotechnology applications to diagnose, treat, and prevent infectious diseases. However, fundamental principles of nanotechnology are often presented in technical formats that presuppose an advanced knowledge of chemistry, physics, and engineering, thereby limiting the clinician’s grasp of the underlying science. While nanoscience is technically complex, it need not be out of reach of the clinical practitioner. The aim of this review is to introduce fundamental principles of nanotechnology in an accessible format, describe examples of current clinical infectious diseases and public health applications, and provide a foundation that will aid understanding of and appreciation for this burgeoning and important field of science.
Collapse
Affiliation(s)
- Ellis Tobin
- College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, New York, USA
| | - Sara Brenner
- Office of In Vitro Diagnostics and Radiological Health, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
30
|
Aldahhan R, Almohazey D, Khan FA. Emerging trends in the application of gold nanoformulations in colon cancer diagnosis and treatment. Semin Cancer Biol 2021; 86:1056-1065. [PMID: 34843989 DOI: 10.1016/j.semcancer.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/01/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
Colorectal cancer is one of the most aggressive types of cancer with about two million new cases and one million deaths in 2020. The side effects of the available chemotherapies and the possibility of developing resistance against treatment highlight the importance of developing new therapeutic options. The development in the field of nanotechnology have introduced the application of nanoparticles (NPs) as a promising approach in the diagnosis and treatments of colorectal cancer and other types of cancer. Gold nanoparticles (AuNPs) are currently one of the most studied materials as they possess unique tunable properties allowing them to play a role in colorectal cancer bioimaging, diagnosis, and therapy. The high surface-to-volume ratio of AuNPs mediates their utilization in drug delivery as well as functionalization to provide specific targeting. Moreover, depending on their physical properties (size, shape), AuNPs can be modified to fit the intended application. However, there are contradictory results around the pharmacokinetics of AuNPs including their biodistribution, clearance, and toxicity. This variation of opinions is most likely due to the development of different AuNPs that vary in shape, size, and surface chemistry, in addition to the conditions under which each research was carried out. The conflicting data represent a challenge in the clinical use of AuNPs suggesting the need to understand the toxicity, fate, and long-term exposure of AuNPs in vivo. Thus, there is an unmet need for the establishment of a publicly available data base for extensive analysis. In this review, we discuss the recent advances in AuNP applications in the treatment and diagnosis of colorectal cancer, mechanisms of action, and clinical challenges.
Collapse
Affiliation(s)
- Razan Aldahhan
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
31
|
Fadaee Takmil N, Jaleh B, Feizi Mohazzab B, Khazalpour S, Rostami-Vartooni A, Hong Chuong Nguyen T, Cuong Nguyen X, Varma RS. Hydrogen production by Electrochemical reaction using waste zeolite boosted with Titania and Au nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Application of Gold Nanoparticle-Based Materials in Cancer Therapy and Diagnostics. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5040069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several metal nanoparticles have been developed for medical application. While all have their benefits, gold nanoparticles (AuNPs) are ideal in cancer therapy and diagnosis as they are chemically inert and minimally toxic. Several studies have shown the potential of AuNPs in the therapeutic field, as photosensitizing agents in sonochemical and photothermal therapy and as drug delivery, as well as in diagnostics and theranostics. Although there is a significant number of reviews on the application of AuNPs in cancer medicine, there is no comprehensive review on their application both in therapy and diagnostics. Therefore, considering the high number of studies on AuNPs’ applications, this review summarizes data on the application of AuNPs in cancer therapy and diagnostics. In addition, we looked at the influence of AuNPs’ shape and size on their biological properties. We also present the potential use of hybrid materials based on AuNPs in sonochemical and photothermal therapy and the possibility of their use in diagnostics. Despite their potential, the use of AuNPs and derivatives in cancer medicine still has some limitations. In this review, we provide an overview of the biological, physicochemical, and legal constraints on using AuNPs in cancer medicine.
Collapse
|
33
|
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021; 26:5823. [PMID: 34641367 PMCID: PMC8510367 DOI: 10.3390/molecules26195823] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical-physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure-activity correlation in the frame of their applications in the biomedical and biotechnology sectors.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Dario Drommi
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| |
Collapse
|
34
|
Shandilya R, Kumari R, Singh RD, Chouksey A, Bhargava A, Goryacheva IY, Mishra PK. Gold based nano-photonic approach for point-of-care detection of circulating long non-coding RNAs. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 36:102413. [PMID: 34147663 DOI: 10.1016/j.nano.2021.102413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/06/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Development of a rapid, sensitive and easy to use point of care assay for detection of circulating long non-coding RNAs (lncRNAs) is of great importance. These biomolecules possess the ability to regulate vital cellular processes and act as biomarkers for various human non-communicable diseases. The present work aimed to develop a simplified and reliable cytometric fluorescence-based approach for precise recognition of circulating lncRNAs in a given sample using biotinylated uracil-modified oligonucleotide tethered AlexaFluor488-labeled streptavidin gold colloidal (BiO-StrAG) nano-conjugates. The fluorophores in close proximity to the gold nanoparticles result in quenching of fluorescence; however, specific recognition of target lncRNAs increases this distance which causes plasmonic enhancement of fluorescence. As per the flow cytometry and fluorometry investigations, the developed methodology provides a precise and sensitive approach for detection of the target lncRNAs (up to 5 nM in any given sample). With advantages of high selectivity and feasibility, our strategy offers great potential of being developed as a promising tool for interrogating aberrant regulation of lncRNAs functions, especially indicated in various diseased states.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Radha Dutt Singh
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anju Chouksey
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
35
|
Lim JY, Lee SS. Quartz crystal microbalance cardiac Troponin I immunosensors employing signal amplification with TiO 2 nanoparticle photocatalyst. Talanta 2021; 228:122233. [PMID: 33773737 DOI: 10.1016/j.talanta.2021.122233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
A sensitive and highly reproducible cardiac troponin I (cTnI) immunoassay in human serum is a challenging research goal for researchers studying biosensors because cTnI can undergo proteolysis and various modifications in blood. Furthermore, the reproducible detection of cTnI at very low concentrations is also required for diagnosing acute myocardial infarction. Here, we present sensitive and highly reproducible quartz crystal microbalance (QCM) immunosensors for the detection of cTnI in human serum. The unique features of this study are the use of a pair of capture antibodies that bind to different epitopes of cTnI, and the use of a signal amplification technique that enlarged the size of the titanium dioxide nanoparticles using photocatalytic silver staining. Since QCM measures changes in the resonance frequency due to the changes in mass occurring on the sensor surface, it is possible to quantitatively analyze cTnI based on the enormous increase in mass using a sandwich immunoassay and subsequent signal amplification by silver staining. The detection limit of the cTnI immunoassay in human serum without photocatalytic silver staining was 307 pg/ml, but 18 pg/ml in photocatalytic silver staining-mediated signal amplification. Thus, amplifying the signal increased the sensitivity and reproducibility of the cTnI immunoassay in human serum.
Collapse
Affiliation(s)
- Ji Yoon Lim
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Soo Suk Lee
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea; Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
36
|
Jana SK, Gucchait A, Paul S, Saha T, Acharya S, Hoque KM, Misra AK, Chatterjee BK, Chatterjee T, Chakrabarti P. Virstatin-Conjugated Gold Nanoparticle with Enhanced Antimicrobial Activity against the Vibrio cholerae El Tor Biotype. ACS APPLIED BIO MATERIALS 2021; 4:3089-3100. [DOI: 10.1021/acsabm.0c01483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Swapan Kumar Jana
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Arin Gucchait
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Susmita Paul
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tultul Saha
- Division of Molecular Pathophysiology, National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Somobrata Acharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kazi Mirajul Hoque
- Division of Molecular Pathophysiology, National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Barun K. Chatterjee
- Department of Physics, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
37
|
Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021; 334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
Amphiphilic block copolymers are widely utilized in the design of formulations owing to their unique physicochemical properties, flexible structures and functional chemistry. Amphiphilic polymeric micelles (APMs) formed from such copolymers have gained attention of the drug delivery scientists in past few decades for enhancing the bioavailability of lipophilic drugs, molecular targeting, sustained release, stimuli-responsive properties, enhanced therapeutic efficacy and reducing drug associated toxicity. Their properties including ease of surface modification, high surface area, small size, and enhanced permeation as well as retention (EPR) effect are mainly responsible for their utilization in the diagnosis and therapy of various diseases. However, some of the challenges associated with their use are premature drug release, low drug loading capacity, scale-up issues and their poor stability that need to be addressed for their wider clinical utility and commercialization. This review describes comprehensively their physicochemical properties, various methods of preparation, limitations followed by approaches employed for the development of optimized APMs, the impact of each preparation technique on the physicochemical properties of the resulting APMs as well as various biomedical applications of APMs. Based on the current scenario of their use in treatment and diagnosis of diseases, the directions in which future studies need to be carried out to explore their full potential are also discussed.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, Jaipur, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gopal L Khatik
- National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi road, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India; Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
38
|
Chen R, Hu Y, Chen M, An J, Lyu Y, Liu Y, Li D. Naked-Eye Detection of Hepatitis B Surface Antigen Using Gold Nanoparticles Aggregation and Catalase-Functionalized Polystyrene Nanospheres. ACS OMEGA 2021; 6:9828-9833. [PMID: 33869962 PMCID: PMC8047666 DOI: 10.1021/acsomega.1c00507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Developing rapid, efficient, highly sensitive, simple, stable, and low-cost virus marker detection products that are appropriate for basic facilities is of great importance in the early diagnosis and treatment of viruses. Naked-eye detection methods are especially important when medical testing facilities are limited. Polystyrene nanospheres (PSs) with catalytic and specific recognition functions were successfully developed by simultaneously modifying catalase and goat anti-hepatitis B surface antibodies on nanospheres. The modified PSs contributed significantly to the amplification of the signal. Via the specific antigen-antibody reaction, the bifunctional nanospheres could be captured on microplate and then catalyzed the decomposition of hydrogen peroxide to reduce chloroauric acid and synthesize gold nanoparticles (AuNPs). Due to the surface plasmon resonance of AuNPs, the solution color change could be observed with the naked eye and the limit of detection (LOD) was 0.1 ng/mL. Furthermore, the LOD observed with instrumentation was 0.01 ng/mL, which meant that a rapid, efficient, and highly sensitive method for the detection of hepatitis B surface antigens was successfully developed, and neither complex sample pretreatment nor expensive equipment was needed.
Collapse
Affiliation(s)
- Rubing Chen
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yongqin Hu
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
- Center
for Intelligent Sensing Technology (CIST), College of Optoelectronic
Engineering, Chongqing University, Chongqing 400044, China
| | - Meizhu Chen
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Jia An
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
- Center
for Intelligent Sensing Technology (CIST), College of Optoelectronic
Engineering, Chongqing University, Chongqing 400044, China
| | - Ying Lyu
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yufei Liu
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
- Center
for Intelligent Sensing Technology (CIST), College of Optoelectronic
Engineering, Chongqing University, Chongqing 400044, China
- Centre
for NanoHealth, College of Science, Swansea
University, Singleton
Park, Swansea SA2 8PP, U.K.
| | - Dongling Li
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| |
Collapse
|
39
|
|
40
|
Sena-Torralba A, Alvarez-Diduk R, Parolo C, Torné-Morató H, Müller A, Merkoçi A. Paper-Based Electrophoretic Bioassay: Biosensing in Whole Blood Operating via Smartphone. Anal Chem 2021; 93:3112-3121. [PMID: 33534544 DOI: 10.1021/acs.analchem.0c04330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Point-of-care (PoC) tests are practical and effective diagnostic solutions for major clinical problems, ranging from the monitoring of a pandemic to recurrent or simple measurements. Although, in recent years, a great improvement in the analytical performance of such sensors has been observed, there is still a major issue that has not been properly solved: the ability to perform adequate sample treatments. The main reason is that normally sample treatments require complicated or long procedures not adequate for deployment at the PoC. In response, a sensing platform, called paper-based electrophoretic bioassay (PEB), that combines the key characteristics of a lateral flow assay (LFA) with the sample treatment capabilities of electrophoresis is developed. In particular, the ability of PEB to separate different types of particles and to detect human antibodies in untreated spiked whole blood is demonstrated. Finally, to make the platform suitable for PoC, PEB is coupled with a smartphone that controls the electrophoresis and reads the optical signal generated. It is believed that the PEB platform represents a much-needed solution for the detection of low target concentrations in complex media, solving one of the major limitations of LFA and opening opportunities for point-of-care sensors.
Collapse
Affiliation(s)
- Amadeo Sena-Torralba
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ruslan Alvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Claudio Parolo
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Helena Torné-Morató
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Alexander Müller
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
41
|
Fuentes-Baile M, Pérez-Valenciano E, García-Morales P, de Juan Romero C, Bello-Gil D, Barberá VM, Rodríguez-Lescure Á, Sanz JM, Alenda C, Saceda M. CLytA-DAAO Chimeric Enzyme Bound to Magnetic Nanoparticles. A New Therapeutical Approach for Cancer Patients? Int J Mol Sci 2021; 22:1477. [PMID: 33540681 PMCID: PMC7867295 DOI: 10.3390/ijms22031477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/01/2023] Open
Abstract
D-amino acid oxidase (DAAO) is an enzyme that catalyzes the oxidation of D-amino acids generating H2O2. The enzymatic chimera formed by DAAO bound to the choline-binding domain of N-acetylmuramoyl-L-alanine amidase (CLytA) induces cytotoxicity in several pancreatic and colorectal carcinoma and glioblastoma cell models. In the current work, we determined whether the effect of CLytA-DAAO immobilized in magnetic nanoparticles, gold nanoparticles, and alginate capsules offered some advantages as compared to the free CLytA-DAAO. Results indicate that the immobilization of CLytA-DAAO in magnetic nanoparticles increases the stability of the enzyme, extending its time of action. Besides, we compared the effect induced by CLytA-DAAO with the direct addition of hydrogen peroxide, demonstrating that the progressive generation of reactive oxygen species by CLytA-DAAO is more effective in inducing cytotoxicity than the direct addition of H2O2. Furthermore, a pilot study has been initiated in biopsies obtained from pancreatic and colorectal carcinoma and glioblastoma patients to evaluate the expression of the main genes involved in resistance to CLytA-DAAO cytotoxicity. Based on our findings, we propose that CLytA-DAAO immobilized in magnetic nanoparticles could be effective in a high percentage of patients and, therefore, be used as an anti-cancer therapy for pancreatic and colorectal carcinoma and glioblastoma.
Collapse
Affiliation(s)
- María Fuentes-Baile
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara 11, Elche, 03203 Alicante, Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
| | - Elizabeth Pérez-Valenciano
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; (E.P.-V.); (P.G.-M.); (D.B.-G.)
| | - Pilar García-Morales
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; (E.P.-V.); (P.G.-M.); (D.B.-G.)
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara 11, Elche, 03203 Alicante, Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; (E.P.-V.); (P.G.-M.); (D.B.-G.)
| | - Daniel Bello-Gil
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; (E.P.-V.); (P.G.-M.); (D.B.-G.)
| | - Víctor M. Barberá
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara 11, Elche, 03203 Alicante, Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
- Unidad de Genética Molecular, Hospital General Universitario de Elche, Camí de l’Almazara 11, Elche, 03203 Alicante, Spain
| | | | - Jesús M. Sanz
- Centro de Investigaciones Biológicas Margarita Salas (Consejo Superior de Investigaciones Científicas) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), C/Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Cristina Alenda
- Unidad de Investigación, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario de Alicante, C/Maestro Alonso, 10, 03010 Alicante, Spain;
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara 11, Elche, 03203 Alicante, Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; (E.P.-V.); (P.G.-M.); (D.B.-G.)
| |
Collapse
|
42
|
Mu J, Yu LL, Wellems TE. Sensitive Immunoassay Detection of Plasmodium Lactate Dehydrogenase by Inductively Coupled Plasma Mass Spectrometry. Front Cell Infect Microbiol 2021; 10:620419. [PMID: 33505925 PMCID: PMC7831609 DOI: 10.3389/fcimb.2020.620419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022] Open
Abstract
Rapid, reliable, and sensitive detection of Plasmodium infection is central to malaria control and elimination. Many Malaria Rapid Diagnostic Tests (RDTs) developed for this purpose depend upon immunoassays that can be improved by advances in bound antibody sensor technology. In a previous study, immuno-polymerase chain reaction (PCR) was shown to provide highly sensitive detection of Plasmodium falciparum lactate dehydrogenase (PfLDH) in monoclonal antibody (mAb) sandwich assays. Here, we show comparably high immunoassay sensitivity by inductively coupled plasma mass spectrometry (ICP-MS) detection of gold nanoparticles (AuNPs). Following capture of PfLDH with the primary mAb and binding of the AuNP-labeled detection mAb, ICP-MS signals from the AuNPs provided quantitative measures of recombinant PfLDH test dilutions and P. falciparum-infected erythrocytes. A detection limit of 1.5 pg/mL was achieved with the PfLDH protein. Parasitemia in cultures of P. falciparum-infected erythrocytes could be detected to a lower limit of 1.6 parasite/μl (p/μl) for early ring-stage forms and 0.3 p/μl for mixed stages including mature trophozoites and schizont-stages. These results show that ICP-MS detection of AuNPs can support highly sensitive and accurate detection of Plasmodium infection.
Collapse
Affiliation(s)
- Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Lee L. Yu
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
43
|
Phopin K, Tantimongcolwat T. Pesticide Aptasensors-State of the Art and Perspectives. SENSORS 2020; 20:s20236809. [PMID: 33260648 PMCID: PMC7730859 DOI: 10.3390/s20236809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Contamination by pesticides in the food chain and the environment is a worldwide problem that needs to be actively monitored to ensure safety. Unfortunately, standard pesticide analysis based on mass spectrometry takes a lot of time, money and effort. Thus, simple, reliable, cost-effective and field applicable methods for pesticide detection have been actively developed. One of the most promising technologies is an aptamer-based biosensor or so-called aptasensor. It utilizes aptamers, short single-stranded DNAs or RNAs, as pesticide recognition elements to integrate with various innovative biosensing technologies for specific and sensitive detection of pesticide residues. Several platforms for aptasensors have been dynamically established, such as colorimetry, fluorometry, electrochemistry, electrochemiluminescence (ECL) and so forth. Each platform has both advantages and disadvantages depending on the purpose of use and readiness of technology. For example, colorimetric-based aptasensors are more affordable than others because of the simplicity of fabrication and resource requirements. Electrochemical-based aptasensors have mainly shown better sensitivity than others with exceedingly low detection limits. This paper critically reviews the progression of pesticide aptasensors throughout the development process, including the selection, characterization and modification of aptamers, the conceptual frameworks of integrating aptamers and biosensors, the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end users) criteria of different platforms and the future outlook.
Collapse
Affiliation(s)
- Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakorn Pathom 73170, Thailand;
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakorn Pathom 73170, Thailand;
- Correspondence:
| |
Collapse
|
44
|
Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules 2020; 25:E4613. [PMID: 33050462 PMCID: PMC7587200 DOI: 10.3390/molecules25204613] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are micronutrients that are widely present in human daily diets. Numerous studies have demonstrated their potential as antioxidants and anti-inflammatory agents, and for cancer prevention, heart protection and the treatment of neurodegenerative diseases. However, due to their vulnerability to environmental conditions and low bioavailability, their application in the food and medical fields is greatly limited. Nanoformulations, as excellent drug delivery systems, can overcome these limitations and maximize the pharmacological effects of polyphenols. In this review, we summarize the biological activities of polyphenols, together with systems for their delivery, including phospholipid complexes, lipid-based nanoparticles, protein-based nanoparticles, niosomes, polymers, micelles, emulsions and metal nanoparticles. The application of polyphenol nanoparticles in food and medicine is also discussed. Although loading into nanoparticles solves the main limitation to application of polyphenolic compounds, there are some concerns about their toxicological safety after entry into the human body. It is therefore necessary to conduct toxicity studies and residue analysis on the carrier.
Collapse
Affiliation(s)
| | | | | | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.Y.); (Y.D.); (F.W.)
| |
Collapse
|
45
|
Abstract
The pervasive spread of infectious diseases and pandemics, such as the 2019 coronavirus disease (COVID-19), are becoming increasingly serious and urgent threats to human health. Preventing the spread of such diseases prioritizes the development of sensing devices that can rapidly, selectively, and reliably detect pathogens at minimal cost. Paper-based analytical devices (PADs) are promising tools that satisfy those criteria. Numerous paper-based biosensors have been established that rival conventional pathogen detection methods. Among them, colorimetric strategies are promising since results can be interpreted by eye, and are simple to operate, which is advantageous for point-of-care testing (POCT). Particularly, the application of nanomaterials on paper-based biosensors has become important as these materials are capable of converting signals from pathogens through unique mechanisms to yield an amplified colorimetric readout. To highlight the research progress on using nanomaterials in colorimetric paper-based biosensor for pathogen detection, we discuss the sensing mechanisms of how they work, structural and analytical characteristics of the devices, and representative recent applications. Current challenges and future directions of using PADs and nanomaterial-mediated strategies are also discussed.
Collapse
Affiliation(s)
- Quynh Huong Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
46
|
Cheng C, Harpster MH, Oakey J. Convection-driven microfabricated hydrogels for rapid biosensing. Analyst 2020; 145:5981-5988. [PMID: 32820752 PMCID: PMC7819640 DOI: 10.1039/d0an01069c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A microscale biosensing platform using rehydration-mediated swelling of bio-functionalized hydrogel structures and rapid target analyte capture is described. Induced convective flow mitigates diffusion limited incubation times, enabling model assays to be completed in under three minutes. Assay design parameters have been evaluated, revealing fabrication criteria required to tune detection sensitivity.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82070, USA.
| | | | | |
Collapse
|
47
|
Tabatabaei MS, Islam R, Ahmed M. Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: A review. Anal Chim Acta 2020; 1143:250-266. [PMID: 33384122 DOI: 10.1016/j.aca.2020.08.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Development of state-of-the-art assays for sensitive and specific detection of disease biomarkers has received significant interest for early detection and prevention of various diseases. Enzyme Linked Immunosorbent assays (ELISA) and Polymerase Chain Reaction (PCR) are two examples of proteins and nucleic acid detection assays respectively, which have been widely used for the sensitive detection of target analytes in biological fluids. Recently, immuno-PCR has emerged as a sensitive detection method, where high specificity of sandwich ELISA assays is combined with high sensitivity of PCR for trace detection of biomarkers. However, inherent disadvantages of immuno-PCR assays limit their application as rapid and sensitive detection method in clinical settings. With advances in nanomaterials, nanoparticles-based immunoassays have been widely used to improve the sensitivity and simplicity of traditional immunoassays. Owing to facile synthesis, surface functionalization, and superior optical and electronic properties, gold nanoparticles have been at the forefront of sensing and detection technologies and have been extensively studied to improve the efficacies of immunoassays. This review provides a brief history of immuno-PCR assays and specifically focuses on the role of gold nanoparticles to improve the sensitivity and specificity of ELISA, PCR and immuno-PCR assays.
Collapse
Affiliation(s)
| | - Rafiq Islam
- Somru BioScience Inc., 19 Innovation Way, BioCommons Research Park.Charlottetown, PE, C1E 0B7, Canada
| | - Marya Ahmed
- Department of Chemistry, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
48
|
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front Bioeng Biotechnol 2020; 8:990. [PMID: 32903562 PMCID: PMC7438450 DOI: 10.3389/fbioe.2020.00990] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology has become a trending area in science and has made great advances with the development of functional, engineered nanoparticles. Various metal nanoparticles have been widely exploited for a wide range of medical applications. Among them, gold nanoparticles (AuNPs) are widely reported to guide an impressive resurgence and are highly remarkable. AuNPs, with their multiple, unique functional properties, and easy of synthesis, have attracted extensive attention. Their intrinsic features (optics, electronics, and physicochemical characteristics) can be altered by changing the characterization of the nanoparticles, such as shape, size and aspect ratio. They can be applied to a wide range of medical applications, including drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and radiation therapy (RT), diagnosis, X-ray imaging, computed tomography (CT) and other biological activities. However, to the best of our knowledge, there is no comprehensive review that summarized the applications of AuNPs in the medical field. Therefore, in this article we systematically review the methods of synthesis, the modification and characterization techniques of AuNPs, medical applications, and some biological activities of AuNPs, to provide a reference for future studies.
Collapse
Affiliation(s)
| | | | | | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | |
Collapse
|
49
|
Moraes DA, Souza Junior JB, Ferreira FF, Mogili NVV, Varanda LC. Gold nanowire growth through stacking fault mechanism by oleylamine-mediated synthesis. NANOSCALE 2020; 12:13316-13329. [PMID: 32555890 DOI: 10.1039/d0nr03669b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tadpole-like gold nanowires were obtained by the oleylamine-mediated synthesis presenting an unusual mixture of fcc and hcp phases. Structural analyses were performed to understand their structure and growth using aberration-corrected high-resolution scanning transmission electron microscopy and electron diffraction at the tail region of tadpoles showing that the anisotropic shape occurred due to stacking fault defects. Stacking faults and twin defects are responsible for the hcp phase inferring a defect dependent growth. The stacking fault model used in X-ray diffraction (XRD) refinement resulted in 60% of hcp stacking sequences. Temperature-dependent XRD analyses showed that the faults become unstable around 120 °C, and it is completely converted to the fcc phase at 230 °C. We attribute the nanowire formation to a stacking fault mechanism of growth that begins in the later stage of nanoparticle growth. The UV-Vis spectrum presented two localized surface plasmon resonance bands at 500 nm and from 800 nm extending to near-infrared, associated with transverse and longitudinal modes, respectively. A surprising ferromagnetic behavior is also observed with a blocking temperature near 300 K.
Collapse
Affiliation(s)
- Daniel A Moraes
- Colloidal Materials Group, Physical-Chemistry Department, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil.
| | | | | | | | | |
Collapse
|
50
|
Nelson BC, Minelli C, Doak SH, Roesslein M. Emerging Standards and Analytical Science for Nanoenabled Medical Products. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:431-452. [PMID: 32084321 PMCID: PMC8221451 DOI: 10.1146/annurev-anchem-091619-102216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development and application of nanotechnology-enabled medical products, including drugs, devices, and in vitro diagnostics, are rapidly expanding in the global marketplace. In this review, the focus is on providing the reader with an introduction to the landscape of commercially available nanotechnology-enabled medical products as well as an overview of the international documentary standards and reference materials that support and facilitate efficient regulatory evaluation and reliable manufacturing of this diverse group of medical products. We describe the materials, test methods, and standards development needs for emerging medical products. Scientific and measurement challenges involved in the development and application of innovative nanoenabled medical products motivate discussion throughout this review.
Collapse
Affiliation(s)
- Bryant C Nelson
- National Institute of Standards and Technology (NIST), Biosystems and Biomaterials Division, Gaithersburg, Maryland 20899, USA;
| | - Caterina Minelli
- National Physical Laboratory, Chemical and Biological Science Department, Teddington TW11 0LW, United Kingdom
| | - Shareen H Doak
- Swansea University Medical School, Institute of Life Sciences, Swansea SA2 8PP, Wales, United Kingdom
| | - Matthias Roesslein
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Materials Meet Life Department, CH-9014 St. Gallen, Switzerland
| |
Collapse
|