1
|
Mao H, Xu Y, Lu F, Ma C, Zhu S, Li G, Huang S, Zhang Y, Hou Y. An integrative multi-omics approach reveals metabolic mechanism of flavonoids during anaerobic fermentation of de'ang pickled tea. Food Chem X 2024; 24:102021. [PMID: 39659682 PMCID: PMC11629561 DOI: 10.1016/j.fochx.2024.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
Anaerobic fermentation (AF) is critical process for Yunnan De'ang pickled tea production. Therefore, widely targeted metabolomics and metagenomics were integrated to reveal the AF mechanism. Lactic acid bacteria (LAB) (e.g. Lactiplantibacillus plantarum, Lactobacillus vaccinostercus and Lactobacillus paracollinoides) and yeasts like Candida metapsilosis and Cyberlindnera fabianii dominated in the AF. Based on bacterial community succession and metabolites variation, the whole AF processes were divided into two phases, i.e., before and after four months. A total of 327 characteristic metabolites (VIP >1.0, P < 0.05, and FC > 1.50 or < 0.67) were selected from the AF. Besides amino acids increase, LAB and yeasts also promoted non-galloylated catechins, and several simple flavones/flavonols, flavanones/flavanonols and methoxy flavones/flavonols accumulations along with galloylated catechins, flavonol/flavone glycosides and anthocyanins decrease during the AF. This study would improve the understanding about AF mechanism of tea-leaves from the perspectives of flavonoids metabolism and microbial community succession.
Collapse
Affiliation(s)
- Honglin Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yang Xu
- International College, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Fengmei Lu
- Yunnan Defeng Tea Industry Co., Ltd, Mangshi 678400, Yunnan, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shaoxian Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guoyou Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Siqi Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yi Zhang
- Yunnan Defeng Tea Industry Co., Ltd, Mangshi 678400, Yunnan, China
| | - Yan Hou
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
2
|
Bojórquez-Quintal E, Xotlanihua-Flores D, Bacchetta L, Diretto G, Maccioni O, Frusciante S, Rojas-Abarca LM, Sánchez-Rodríguez E. Bioactive Compounds and Valorization of Coffee By-Products from the Origin: A Circular Economy Model from Local Practices in Zongolica, Mexico. PLANTS (BASEL, SWITZERLAND) 2024; 13:2741. [PMID: 39409611 PMCID: PMC11478550 DOI: 10.3390/plants13192741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The by-products of green coffee processing are rich in compounds that can be recycled for their possible use in the production of beverages, fertilizers and weed control in production areas. The objective of this work was to identify the organic and inorganic bioactive compounds of green coffee and the coffee by-products related to the production of origin, such as dried cascara (skin-pulp), parchment and silverskin (unroasted), in order to investigate the role their biomolecules may have in reuse through practices and local knowledge, not yet valued. The metabolomic profile by HPLC-ESI-HRMS of the aqueous extract of the dried cascara highlighted 93 non-volatile molecules, the highest number reported for dried cascara. They belong to groups of organic acids (12), alkaloids (5), sugars (5), fatty acids (2), diglycerides (1), amino acids (18), phospholipids (7), vitamins (5), phenolic acids (11), flavonoids (8), chlorogenic acids (17), flavones (1) and terpenes (1). For the first time, we report the use of direct analysis in real-time mass spectrometry (DART-MS) for the identification of metabolites in aqueous extracts of dried cascara, parchment, silverskin and green coffee. The DART analysis mainly showed the presence of caffeine and chlorogenic acids in all the extracts; additionally, sugar adducts and antioxidant compounds such as polyphenols were detected. The mineral content (K, Ca, P, S, Mg and Cl) by EDS spectrometry in the by-products and green coffee showed a relatively high content of K in the dried cascara and green coffee, while Ca was detected in double quantity in the silverskin. These metabolomic and mineral profile data allow enhancement of the link between the quality of green coffee and its by-products and the traditional local practices in the crop-growing area. This consolidates the community's experience in reusing by-products, thereby minimizing the impact on the environment and generating additional income for coffee growers' work, in accordance with the principles of circular economy and bioeconomy.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- CONAHCYT, Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico
| | - Damián Xotlanihua-Flores
- Ingeniería en Desarrollo Comunitario, Instituto Tecnológico Superior de Zongolica, Km 4 Carretera a la Compañía S/N, Tepetlitlanapa, Zongolica 95005, Veracruz, Mexico;
| | - Loretta Bacchetta
- Regenerative Circular Bioeconomy Laboratory, AGROS Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (L.B.); (O.M.)
| | - Gianfranco Diretto
- GREEN Biotechnology Laboratory, BIOAG Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Oliviero Maccioni
- Regenerative Circular Bioeconomy Laboratory, AGROS Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (L.B.); (O.M.)
| | - Sarah Frusciante
- GREEN Biotechnology Laboratory, BIOAG Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Luis M. Rojas-Abarca
- Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico; (L.M.R.-A.); (E.S.-R.)
| | - Esteban Sánchez-Rodríguez
- Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico; (L.M.R.-A.); (E.S.-R.)
| |
Collapse
|
3
|
Wang X, Yang S, Gao Q, Dai Y, Tian L, Wen L, Yan H, Yang L, Hou X, Liu P, Zhang L. Multi-omics reveals the phyllosphere microbial community and material transformations in cigars. Front Microbiol 2024; 15:1436382. [PMID: 39144227 PMCID: PMC11322134 DOI: 10.3389/fmicb.2024.1436382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
The quality of fermented plant leaves is closely related to the interleaf microorganisms and their metabolic activities. In this experiment, a multi-omics analysis was applied to investigate the link between the structural composition of the phyllosphere microbial community and the main metabolites during the fermentation process. It was found that the whole fermentation process of cigar leaves could be divided into three stages, in which the Mid-Stage was the most active period of microbial metabolic activities and occupied an important position. Staphylococcus, Brevundimonas, Acinetobacter, Brevibacterium, Pantoea, Aspergillus, Wallemia, Meyerozyma, Sampaiozyma, Adosporium and Trichomonascus played important roles in this fermentation. Staphylococcus and Aspergillus are the microorganisms that play an important role in the fermentation process. Staphylococcus were strongly correlated with lipids and amino acids, despite its low abundance, Stenotrophomonas is importantly associated with terpene and plays a significant role throughout the process. It is worth noting that Wapper exists more characteristic fungal genera than Filler and is more rapid in fermentation progress, which implies that the details of the fermentation process should be adjusted appropriately to ensure stable quality when faced with plant leaves of different genotypes. This experiment explored the relationship between metabolites and microorganisms, and provided a theoretical basis for further optimizing the fermentation process of plant leaves and developing techniques to improve product quality. Biomarker is mostly present in the pre-fermentation phase, but the mid-fermentation phase is the most important part of the process.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Shuai Yang
- Yuxi Zhongyan Tobacco Seed Co., Ltd., Yu’xi, China
| | - Qiang Gao
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Youqing Dai
- Cigar Operating Centre of China Tobacco Shandong Industrial Co., Ltd., Ji’nan, China
| | - Lei Tian
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Liang Wen
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Honghao Yan
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
4
|
Phovisay S, Abdullahi AD, Kham NNN, Unban K, Shetty K, Khanongnuch C. Microbial Population and Physicochemical Properties of Miang Fermented in Bamboo Tubes by the Luar Ethnic Group in Lao PDR. Foods 2024; 13:2109. [PMID: 38998615 PMCID: PMC11241543 DOI: 10.3390/foods13132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Miang is a traditional fermented food made from Assam tea leaves and consumed as a snack. This study investigated the underground Miang fermentation process practiced by the Luar ethnic group in Laos, specifically examining the nutritional composition and microbial dynamics. Lactic acid bacteria and yeast were dominant in the fermentation process, reaching 8.43 and 8.50 log CFU/g after one week before gradually declining, while the coliform bacterial count was at 5.31 log CFU/g in the initial week but became undetectable in the later stages of fermentation. Next-generation sequencing identified Firmicutes (75.02%) and Proteobacteria (23.51%) as the primary phyla. Bacterial genera included Lactobacillus (73.36%) and Acetobacter (21.06%), with fungi mainly represented by Pichia (85.52%) and Candida (13.45%). Fundamental microbes such as Lactobacillus and Acetobacter were predominantly present, alongside Pichia and Candida, in the fungal communities. Microbial activities played a crucial role in generating essential enzymes for Miang's transformation. The nutritional transformation appears to be complete at 5 weeks of fermentation. The moisture content in the final products was approximately 74% and correlated with a change in nitrogen-free extract (NFE) and crude fiber. The fat content showed a slight increase from 1.3% to 2.52%, but protein content slightly declined from 17.21% to 16.05%, whereas ash content did not change significantly. Key polysaccharide-degrading enzymes, particularly pectinase and β-mannanase, were revealed and peaked at 48.32 and 25.32 U/g Miang, respectively. The total polyphenols increased from 103.54 mg/g dry Miang to 144.19-155.52 mg/g during fermentation. The lowered IC50 value indicated an increase in antioxidant activity. A fermentation period of at least 3 weeks proved to be optimal for enhancing antioxidant properties and bioactive compounds, and mitigating the risk of coliform bacteria.
Collapse
Affiliation(s)
- Somsay Phovisay
- Multidisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (A.D.A.); (N.N.N.K.)
| | - Aliyu Dantani Abdullahi
- Multidisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (A.D.A.); (N.N.N.K.)
| | - Nang Nwet Noon Kham
- Multidisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (A.D.A.); (N.N.N.K.)
| | - Kridsada Unban
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kalidas Shetty
- Global Institute of Food Security and International Agriculture (GIFSIA), Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Chartchai Khanongnuch
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Huay Kaew Rd., Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Huay Kaew Rd., Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Khayatan D, Nouri K, Momtaz S, Roufogalis BD, Alidadi M, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Plant-Derived Fermented Products: An Interesting Concept for Human Health. Curr Dev Nutr 2024; 8:102162. [PMID: 38800633 PMCID: PMC11126794 DOI: 10.1016/j.cdnut.2024.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/23/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024] Open
Abstract
The health benefits of fermenting plant-derived products remain an underexplored domain. Plants and other natural products serve as medicinal agents when consumed as part of our diets, and the role of microorganisms in fermentation garners significant scientific interest. The present narrative review investigates the effects of fermentation of substances such as plants, algae, and fungi on their therapeutic and related purposes. Among the microorganisms used in fermentation, lactic acid bacteria are often linked to fermented products, particularly dairy and animal-based ones, and take center stage. These microorganisms are adept at synthesizing vitamins, active peptides, minerals, proteinases, and enzymes. Plant-derived fermented products are a significant source of active peptides, phytochemicals, flavonoids, and bioactive molecules with a profound impact on human health. They exhibit anti-inflammatory, anticarcinogenic, antiatherosclerotic, antidiabetic, antimicrobial, and antioxidant properties, the effects being substantiated by experimental studies. Clinical investigations underscore their effectiveness in managing diverse health conditions. Various studies highlight a synergy between microorganisms and plant-based materials, with fermentation as an innovative method for daily food preparation or a treatment option for specific ailments. These promising findings highlight the need for continued scientific inquiry into the impact of fermentation-derived products in clinical settings. Clinical observations to date have offered valuable insights into health improvement for various disorders. This current narrative review explores the impact of natural and plant-originated fermented products on health and well-being.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Nouri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Mona Alidadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Shin S, Park J, Choi HY, Lee K. Hypotensive and Endothelium-Dependent Vasorelaxant Effects of Grayblue Spicebush Ethanol Extract in Rats. Foods 2023; 12:4282. [PMID: 38231748 DOI: 10.3390/foods12234282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Hypertension is one of the most common chronic diseases, and its prevalence is increasing worldwide. Lindera glauca (Siebold & Zucc.) Blume, known as grayblue spicebush (GS), has been used as food and for medicinal purposes; however, studies about its hypotensive or vasorelaxant effects are lacking. Therefore, the hypotensive effect of an ethanolic extract of the GS branch (GSE) was investigated in 15-week-old spontaneously hypertensive rats (SHRs) using the tail cuff method. The GSE administration group (1000 mg/kg SHR body weight) showed a decrease in their systolic and diastolic blood pressure measured 4 h after its administration. In addition, we investigated its vasorelaxant effect using the thoracic aorta dissected from Sprague-Dawley rats. The GSE (0.5, 1, 2, 5, 10, and 20 μg/mL) showed an endothelium-dependent vasorelaxant effect, and its mechanisms were found to be relevant to the inward rectifier, voltage-dependent, and non-selective K+ channels. Moreover, the GSE (20 μg/mL) showed an inhibitory effect on aortic rings constricted with angiotensin II. Considering its hypotensive and vasorelaxant effects, GSE has potential as a functional food to help treat and prevent high blood pressure. However, further studies on the identification of the active components of GSE and safety evaluations of its use are needed.
Collapse
Affiliation(s)
- Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Kittibunchakul S, Kemsawasd V, Hudthagosol C, Sanporkha P, Sapwarobol S, Suttisansanee U. The Effects of Different Roasting Methods on the Phenolic Contents, Antioxidant Potential, and In Vitro Inhibitory Activities of Sacha Inchi Seeds. Foods 2023; 12:4178. [PMID: 38002234 PMCID: PMC10670140 DOI: 10.3390/foods12224178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Roasted sacha inchi seeds are now commercialized as a health food product, but the influence of roasting methods on their proclaimed health effects has yet to be explored. This study investigated the total phenolic contents (TPCs), antioxidant potential, and inhibitory activities of raw and roasted sacha inchi seeds in vitro. Individual phenolics in raw seeds were also identified in an attempt to explain the bioactivities of the seeds. The results suggested that roasting in a cooking pan, vacuum oven, and tray dryer had distinct impact on TPC in sacha inchi seeds, and thus differentially altered their antioxidant and inhibitory properties. Seeds that underwent roasting exhibited 1.5-2.7-fold higher antioxidant potentials than raw seeds. Certain roasting methods provided the products with anti-α-amylase and anti-cholinesterase activities, while inhibitions of these enzymes were not detected in raw seeds. Roasted seeds also possessed superior anti-lipase and anti-glycation activities when compared with raw seeds (up to 1.7- and 4.8-fold, respectively). The inhibitory properties observed in the seed samples might be attributed to their p-coumaric acid, ferulic acid, and quercetin, as these potential enzyme inhibitors were predominant in raw seeds. The overall results showed that pan-roasting could be used to obtain relatively high health benefits from the antioxidant and inhibitory activities of sacha inchi seeds. The information obtained from this study may serve as the basis for the proper processing of sacha inchi seeds to optimize their functional food and nutraceutical applications.
Collapse
Affiliation(s)
- Suwapat Kittibunchakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (S.K.); (V.K.)
| | - Varongsiri Kemsawasd
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (S.K.); (V.K.)
| | - Chatrapa Hudthagosol
- Faculty of Public Health, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; (C.H.); (P.S.)
| | - Promluck Sanporkha
- Faculty of Public Health, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; (C.H.); (P.S.)
| | - Suwimol Sapwarobol
- Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (S.K.); (V.K.)
| |
Collapse
|
8
|
Jiang N, Ma J, Wang Q, Xu Y, Wei B. Tea intake or consumption and the risk of dementia: a meta-analysis of prospective cohort studies. PeerJ 2023; 11:e15688. [PMID: 37483967 PMCID: PMC10361076 DOI: 10.7717/peerj.15688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
PURPOSE Dementia affects as many as 130 million people, which presents a significant and growing medical burden globally. This meta-analysis aims to assess whether tea intake, tea consumption can reduce the risk of dementia, Alzheimer's disease (AD) and Vascular dementia (VD). PATIENTS AND METHODS Cochrane Library, PubMed and Embase were searched for cohort studies from inception to November 1, 2022. The Newcastle Ottawa Quality Assessment Scale (NOS) was applied to evaluate the risk of bias of the included studies. We extracted the data as the relative risks (RRs) for the outcome of the interest, and conducted the meta-analysis utilizing the random effect model due to the certain heterogeneity. Sensitivity analysis were performed by moving one study at a time, Subgroup-analysis was carried out according to different ages and dementia types. And the funnel plots based on Egger's and Begger's regression tests were used to evaluate publication bias. All statistical analyses were performed using Stata statistical software version 14.0 and R studio version 4.2.0. RESULTS Seven prospective cohort studies covering 410,951 individuals, which were published from 2009 and 2022 were included in this meta-analysis. The methodological quality of these studies was relatively with five out of seven being of high quality and the remaining being of moderate. The pooling analysis shows that the relationship between tea intake or consumption is associated with a reduced risk of all-cause dementia (RR = 0.71, 95% CI [0.57-0.88], I2 = 79.0%, p < 0.01). Further, the subgroup-analysis revealed that tea intake or consumption is associated with a reduced risk of AD (RR = 0.88, 95% CI [0.79-0.99], I2 = 52.6%, p = 0.024) and VD (RR = 0.75, 95% CI [0.66-0.85], I = 0.00%, p < 0.001). Lastly, tea intake or consumption could reduce the risk of all-cause dementia to a greater degree among populations with less physical activity, older age, APOE carriers, and smokers. CONCLUSION Our meta-analysis demonstrated that tea (green tea or black tea) intake or consumption is associated with a significant reduction in the risk of dementia, AD or VD. These findings provide evidence that tea intake or consumption should be recognized as an independent protective factor against the onset of dementia, AD or VD.
Collapse
Affiliation(s)
- Ning Jiang
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Jinlong Ma
- Yanbian University, Yanbian, Jilin, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yuzhen Xu
- The Second Affiliated Hospital, Shandong First Medical University, Taian, Shandong, China
| | - Baojian Wei
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| |
Collapse
|
9
|
Lafeuille B, Tamigneaux É, Berger K, Provencher V, Beaulieu L. Variation of the Nutritional Composition and Bioactive Potential in Edible Macroalga Saccharina latissima Cultivated from Atlantic Canada Subjected to Different Growth and Processing Conditions. Foods 2023; 12:1736. [PMID: 37107531 PMCID: PMC10137355 DOI: 10.3390/foods12081736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Macroalgae are a new food source in the Western world. The purpose of this study was to evaluate the impact of harvest months and food processing on cultivated Saccharina latissima (S. latissima) from Quebec. Seaweeds were harvested in May and June 2019 and processed by blanching, steaming, and drying with a frozen control condition. The chemical (lipids, proteins, ash, carbohydrates, fibers) and mineral (I, K, Na, Ca, Mg, Fe) compositions, the potential bioactive compounds (alginates, fucoidans, laminarans, carotenoids, polyphenols) and in vitro antioxidant potential were investigated. The results showed that May specimens were significantly the richest in proteins, ash, I, Fe, and carotenoids, while June macroalgae contained more carbohydrates. The antioxidant potential of water-soluble extracts (Oxygen Radical Absorbance Capacity [ORAC] analysis-625 µg/mL) showed the highest potential in June samples. Interactions between harvested months and processing were demonstrated. The drying process applied in May specimens appeared to preserve more S. latissima quality, whereas blanching and steaming resulted in a leaching of minerals. Losses of carotenoids and polyphenols were observed with heating treatments. Water-soluble extracts of dried May samples showed the highest antioxidant potential (ORAC analysis) compared to other methods. Thus, the drying process used to treat S. latissima harvested in May seems to be the best that should be selected.
Collapse
Affiliation(s)
- Bétina Lafeuille
- Département de Science des Aliments, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Éric Tamigneaux
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- École des Pêches et de L’aquaculture du Québec, Cégep de la Gaspésie et des Îles, Québec, QC G0C 1V0, Canada
- Merinov, Grande-Rivière, QC G0C 1V0, Canada;
| | | | - Véronique Provencher
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
- École de Nutrition, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Beaulieu
- Département de Science des Aliments, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Cheirsilp B, Mekpan W, Sae-ear N, Billateh A, Boukaew S. Enhancing Functional Properties of Fermented Rice Cake by Using Germinated Black Glutinous Rice, Probiotic Yeast, and Enzyme Technology. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Sentkowska A, Pyrzynska K. Does the Type Matter? Verification of Different Tea Types' Potential in the Synthesis of SeNPs. Antioxidants (Basel) 2022; 11:antiox11122489. [PMID: 36552697 PMCID: PMC9774132 DOI: 10.3390/antiox11122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Selenium nanoparticles (SeNPs) are gaining popularity due to their potential biomedical applications. This work describes their green synthesis using various types of tea. Black, green, red and white tea infusions were tested for the content of polyphenolic compounds and antioxidant properties and then used in the synthesis of SeNPs. In each of the syntheses, nanoparticles with dimensions ranging from 3.9 to 12.5 nm, differing in shape and properties, were obtained. All of them were characterized by a very high ability to neutralize hydroxyl radicals, which was about three-times higher than for the tea infusions from which they were obtained. The main inconvenience in obtaining SeNPs was the difficulties with their purification, which should be a further stage in the described research.
Collapse
Affiliation(s)
- Aleksandra Sentkowska
- Heavy Ion Laboratory, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Correspondence:
| | - Krystyna Pyrzynska
- Department of Chemistry, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
12
|
Fermented Black Tea and Its Relationship with Gut Microbiota and Obesity: A Mini Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fermentation is one of the world’s oldest techniques for food preservation, nutrient enhancement, and alcohol manufacturing. During fermentation, carbohydrates such as glucose and starch are converted into other molecules, such as alcohol and acid, anaerobically through enzymatic action while generating energy for the microorganism or cells involved. Black tea is among the most popular fermented beverages; it is made from the dried tea leaves of the evergreen shrub plant known as Camellia sinensis. The adequate consumption of black tea is beneficial to health as it contains high levels of flavanols, also known as catechins, which act as effective antioxidants and are responsible for protecting the body against the development of illnesses, such as inflammation, diabetes, hypertension, cancer, and obesity. The prevalence of obesity is a severe public health concern associated with the incidence of various serious diseases and is now increasing, including in Malaysia. Advances in ‘omic’ research have allowed researchers to identify the pivotal role of the gut microbiota in the development of obesity. This review explores fermented black tea and its correlation with the regulation of the gut microbiota and obesity.
Collapse
|
13
|
Trisha AT, Shakil MH, Talukdar S, Rovina K, Huda N, Zzaman W. Tea Polyphenols and Their Preventive Measures against Cancer: Current Trends and Directions. Foods 2022; 11:3349. [PMID: 36359962 PMCID: PMC9658101 DOI: 10.3390/foods11213349] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
Cancer is exerting an immense strain on the population and health systems all over the world. Green tea because of its higher simple catechin content (up to 30% on dry weight basis) is greatly popular as an anti-cancer agent which is found to reduce the risks of cancer as well as a range of other diseases. In addition, several in vitro and in vivo studies have shown that green tea possesses copious health benefits like anti-diabetic, anti-obese, anti-inflammatory, neuro-protective, cardio-protective, etc. This review highlights the anti-carcinogenic effects of green tea catechins integrating the recent information to gain a clear concept. Special emphasis was given to the effectiveness of green tea polyphenols (GTP) in the prevention of cancer. Overall, green tea has been found to be effective to reduce the risks of breast cancer, ovarian cancer, liver cancer, colorectal cancer, skin cancer, prostate cancer, oral cancer, etc. However, sufficient information was not found to support that green tea consumption reduces the risk of lung cancer, esophageal cancer, or stomach cancer. The exciting data integrated into this article will increase interest in future researchers to garner more fruitful information on the relevant topics.
Collapse
Affiliation(s)
- Anuva Talukder Trisha
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mynul Hasan Shakil
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Suvro Talukdar
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wahidu Zzaman
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
14
|
Huang S, Chen H, Teng J, Wu Z, Huang L, Wei B, Xia N. Antihyperlipidemic effect and increased antioxidant enzyme levels of aqueous extracts from Liupao tea and green tea in vivo. J Food Sci 2022; 87:4203-4220. [PMID: 35982642 DOI: 10.1111/1750-3841.16274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022]
Abstract
Liupao tea (fermented dark tea) may improve the active function of hyperlipidemia. Utilizing a hyperlipidemia Sprague-Dawley model and UPLC-MS/MS metabolomics, we examined how the effect of Liupao and green tea extracts on hyperlipidemia and antoxidant enzyme levels and compared their constituents. The results showed that the two types of tea could reduce the levels of total cholesterol (TC), total triglyceride, and low-density lipoprotein cholesterol (LDL-C); increase the contents of bile acids and cholesterol in feces; and improve catalase and glutathione peroxidase (GSH-Px) activities. Compared with the model control group, Liupao tea effectively reduced TC and LDL-C levels by 39.53% and 58.55% and increased GSH-Px activity in the liver by 67.07%, which was better than the effect of green tea. A total of 93 compounds were identified from two samples; the amounts of alkaloids and fatty acids increased compared with green tea, and ellagic acid, hypoxanthine, and theophylline with relatively high contents in Liupao tea had a significantly positive correlation with antihyperlipidemic and antioxidant effects. Therefore, Liupao tea had better antihyperlipidemic and antioxidant activities in vivo than green tea, which might be related to the relatively high content of some active substances.
Collapse
Affiliation(s)
- Shuoyuan Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Huan Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Zhengmei Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Baoyao Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Supplementation with Two New Standardized Tea Extracts Prevents the Development of Hypertension in Mice with Metabolic Syndrome. Antioxidants (Basel) 2022; 11:antiox11081573. [PMID: 36009292 PMCID: PMC9404781 DOI: 10.3390/antiox11081573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/20/2022] Open
Abstract
Hypertension is considered to be both a cardiovascular disease and a risk factor for other cardiovascular diseases, such as coronary ischemia or stroke. In many cases, hypertension occurs in the context of metabolic syndrome (MetS), a condition in which other circumstances such as abdominal obesity, dyslipidemia, and insulin resistance are also present. The high incidence of MetS makes necessary the search for new strategies, ideally of natural origin and with fewer side effects than conventional pharmacological treatments. Among them, the tea plant is a good candidate, as it contains several bioactive compounds such as caffeine, volatile terpenes, organic acids, and polyphenols with positive biological effects. The aim of this study was to assess whether two new standardized tea extracts, one of white tea (WTE) and the other of black and green tea (CTE), exert beneficial effects on the cardiovascular alterations associated with MetS. For this purpose, male C57/BL6J mice were fed a standard diet (Controls), a diet high in fats and sugars (HFHS), HFHS supplemented with 1.6% WTE, or HFHS supplemented with 1.6% CTE for 20 weeks. The chromatography results showed that CTE is more concentrated on gallic acid, xanthines and flavan-3-ols than WTE. In vivo, supplementation with WTE and CTE prevented the development of MetS-associated hypertension through improved endothelial function. This improvement was associated with a lower expression of proinflammatory and prooxidant markers, and—in the case of CTE supplementation—also with a higher expression of antioxidant enzymes in arterial tissue. In conclusion, supplementation with WTE and CTE prevents the development of hypertension in obese mice; as such, they could be an interesting strategy to prevent the cardiovascular disorders associated with MetS.
Collapse
|
16
|
Liu L, Shi J, Yuan Y, Yue T. Changes in the metabolite composition and enzyme activity of fermented tea during processing. Food Res Int 2022; 158:111428. [DOI: 10.1016/j.foodres.2022.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
17
|
Supasil R, Suttisansanee U, Santivarangkna C, Tangsuphoom N, Khemthong C, Chupeerach C, On-nom N. Improvement of Sourdough and Bread Qualities by Fermented Water of Asian Pears and Assam Tea Leaves with Co-Cultures of Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Foods 2022; 11:foods11142071. [PMID: 35885314 PMCID: PMC9318377 DOI: 10.3390/foods11142071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Qualities of sourdough and sourdough bread using fermented water from Asian pears and Assam tea leaves with Lactiplantibacillus plantarum 299v and Saccharomyces cerevisiae TISTR 5059 as starter cultures were evaluated. Changes in the growth of lactic acid bacteria and yeast, pH, sourdough height, total phenolic contents (TPCs) and antioxidant activities detected by ORAC, FRAP and DPPH radical scavenging assays were monitored during sourdough production. Mature sourdough was achieved within 4 h after 18 h retard fermentation and used for bread production. The bread was then analyzed to determine chemical and physical properties, nutritional compositions, TPCs, antioxidant activities and sensory properties as well as shelf-life stability. Results showed that fermented water significantly promoted the growth of yeast and increased TPCs and antioxidant activities of sourdough. Compared to common sourdough bread, fermented water sourdough bread resulted in 10% lower sugar and 12% higher dietary fiber with improved consumer acceptability; TPCs and antioxidant activities also increased by 2–3 times. The fermented water sourdough bread maintained microbial quality within the standard range, with adequate TPCs after storage at room temperature for 7 days. Fermented water from Asian pears and Assam tea leaves with L. plantarum 299v and S. cerevisiae TISTR 5059 as starter cultures improved dough fermentation and bread quality.
Collapse
|
18
|
Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers (Basel) 2022; 14:polym14091753. [PMID: 35566922 PMCID: PMC9103973 DOI: 10.3390/polym14091753] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
The addition of polymers in construction is a new tendency and an important step toward the production of structures with better functional properties. This work investigates the addition of polyurea (PU) as a polymeric material in mortars. Polymer mortars were manufactured with the addition of polyurea retained in different sieves (T50 and T100) and different concentrations (2% and 5%). The characterization of the, polyurea (PU)control mortar (PU0%) and manufactured polyurea mortars (PU2%T50, PU5%T50, PU2%T100, and PU5%T100) was conducted by means of morphological analysis, SEM, XRF, TGA, and a compressive strength test of hydraulic mortars. The results show that mortars with polyurea retained in sieve 100 with a particle size of 150 μm exhibit better thermal behavior and a greater resistance to compression with a concentration of 5% polyurea with respect to the other samples. The present work reveals that polyurea retained in sieve 100 can be considered as a polymeric additive for mortars, indicating that it could be a candidate for applications such as construction.
Collapse
|
19
|
Tea Infusions as a Source of Phenolic Compounds in the Human Diet. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phenolic compounds are components with proven beneficial effects on the human body, primarily due to their antioxidant activity. In view of the high consumption of tea and the numerous factors that affect the nutritional value of its infusions, the aim of this study was to identify the effects of tea type and duration of leaf extraction with water on the levels of phenolic compounds and other components that determine biological activity (oxalates, Ca, Na, Cu, and Mn). Based on assays, infusions of red tea prepared for 20 min were found to be the best source of phenolics (202.9 mg/100 mL), whereas the lowest level of these compounds was determined in infusions of black tea extracted from leaves for 30 min (46.9 mg/100 mL). The highest degree of increase in polyphenol content (by approx. 50%) was noted in red and green tea infused for between 10 and 20 min, whereas for black tea, polyphenol levels decreased with time. The biological activity of tea infusions appears to be determined to the greatest extent by the interactions between phenolic compounds and oxalates (r = 0.6209), calcium (r = 0.8516), and sodium (0.8045). A daily intake of three to four mugs (1 L) of tea infusions provides the human body the entire amount of phenolics recommended for health reasons (as regards red tea, this is possible at 1/3 of the volume) and covers the daily requirement for manganese, as well as (partially) copper.
Collapse
|
20
|
Evaluation of Sacha Inchi (Plukenetia volubilis L.) By-Products as Valuable and Sustainable Sources of Health Benefits. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By-products from sacha inchi (Plukenetia volubilis L.) oil extraction as the husk and shell are used as low value fertilizer or animal feed. The nutritive values, antioxidant activities, phenolics, and in vitro health-related activities of the sacha inchi husk and shell were investigated and compared to increase their economic potential as future food sources. Higher protein, carbohydrates, and total dietary fiber content were detected in the husk, while higher fat content and energy were found in the shell. Several phenolics were also detected in both the husk and shell, with p-coumaric acid being the most abundant phenolic in the shell and caffeic acid in the husk. Total phenolic content was 1.6-fold greater in the shell than in the husk, leading to 1.8–2.7-fold higher antioxidant activity and 1.2-fold higher anti-glycation activity. Various types and quantities of phenolics also led to diverse in vitro enzyme inhibitory activities in the husk and shell. Knowledge received from this research might be useful to maximize the utilization of by-products from sacha inchi oil extraction as future food sources with valuable nutritional compositions, phenolics, and potential health benefits. Further investigations on the health properties of the sacha inchi husk and shell should include toxicity, bioaccessibility, and in vivo experiments.
Collapse
|
21
|
Phytochemicals: Dietary Sources, Innovative Extraction, and Health Benefits. Foods 2021; 11:foods11010072. [PMID: 35010198 PMCID: PMC8750245 DOI: 10.3390/foods11010072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Plants are the main natural source of numerous phytochemicals, although only a certain amount have been isolated and identified [...].
Collapse
|
22
|
Wannasaksri W, Temviriyanukul P, Aursalung A, Sahasakul Y, Thangsiri S, Inthachat W, On-Nom N, Chupeerach C, Pruesapan K, Charoenkiatkul S, Suttisansanee U. Influence of Plant Origins and Seasonal Variations on Nutritive Values, Phenolics and Antioxidant Activities of Adenia viridiflora Craib., an Endangered Species from Thailand. Foods 2021; 10:foods10112799. [PMID: 34829080 PMCID: PMC8623237 DOI: 10.3390/foods10112799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
Adenia viridiflora Craib. is an indigenous plant found in Thailand, Cambodia and Vietnam that has become threatened owing to lack of knowledge about its agricultural management. This plant is now rare in the wild and was registered in the Plant Genetic Conservation Project under the initiation of Her Royal Highness Princess Maha Chakri Sirindhorn (RSPG) to promote sustainable conservation and optimally beneficial utilization. A. viridiflora has a long history of utilization as a nutrient-rich source with medicinal properties but scientific evidence of the veracity of these claims is limited. Here, the nutritional compositions, phenolic contents and antioxidant activities of different plant parts (young shoots and old leaves) of A. viridiflora were investigated using plants collected from four areas of Thailand as Kamphaeng Phet (KP), Muang Nakhon Ratchasima (MN), Pakchong Nakhon Ratchasima (PN) and Uthai Thani (UT) at different harvesting periods (March-April, May–June and July–August). Results indicated that young shoots provided higher energy, protein, fat, dietary fiber, phosphorus, sodium, and zinc than old leaves. By contrast, nutrients such as total sugar, vitamin C, carotenoids, potassium, calcium, magnesium, and iron contents were higher in old leaves that also exhibited higher phenolic contents and most antioxidant activities than young shoots. Generally, most nutrients, phenolic contents, and antioxidant activities exhibited no clear trend among different plant origins. The harvesting period of July–August provided a suitable climate for biosynthesis of most nutrients, while high phenolics were mainly found in samples harvested in March–April. No clear trend was observed in the prevalence of antioxidant activities that varied according to assay techniques.
Collapse
Affiliation(s)
- Werawat Wannasaksri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (P.T.); (A.A.); (Y.S.); (S.T.); (W.I.); (N.O.-N.); (C.C.); (S.C.)
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (P.T.); (A.A.); (Y.S.); (S.T.); (W.I.); (N.O.-N.); (C.C.); (S.C.)
| | - Amornrat Aursalung
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (P.T.); (A.A.); (Y.S.); (S.T.); (W.I.); (N.O.-N.); (C.C.); (S.C.)
| | - Yuraporn Sahasakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (P.T.); (A.A.); (Y.S.); (S.T.); (W.I.); (N.O.-N.); (C.C.); (S.C.)
| | - Sirinapa Thangsiri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (P.T.); (A.A.); (Y.S.); (S.T.); (W.I.); (N.O.-N.); (C.C.); (S.C.)
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (P.T.); (A.A.); (Y.S.); (S.T.); (W.I.); (N.O.-N.); (C.C.); (S.C.)
| | - Nattira On-Nom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (P.T.); (A.A.); (Y.S.); (S.T.); (W.I.); (N.O.-N.); (C.C.); (S.C.)
| | - Chaowanee Chupeerach
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (P.T.); (A.A.); (Y.S.); (S.T.); (W.I.); (N.O.-N.); (C.C.); (S.C.)
| | - Kanchana Pruesapan
- Plant Varieties Protection Division, Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand;
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (P.T.); (A.A.); (Y.S.); (S.T.); (W.I.); (N.O.-N.); (C.C.); (S.C.)
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (P.T.); (A.A.); (Y.S.); (S.T.); (W.I.); (N.O.-N.); (C.C.); (S.C.)
- Correspondence: ; Tel.: +66-(0)-2800-2380 (ext. 422)
| |
Collapse
|
23
|
Kittibunchakul S, Yuthaworawit N, Whanmek K, Suttisansanee U, Santivarangkna C. Health beneficial properties of a novel plant-based probiotic drink produced by fermentation of brown rice milk with GABA-producing Lactobacillus pentosus isolated from Thai pickled weed. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
24
|
Xu XY, Zhao CN, Li BY, Tang GY, Shang A, Gan RY, Feng YB, Li HB. Effects and mechanisms of tea on obesity. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34704503 DOI: 10.1080/10408398.2021.1992748] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity has become a global health concern. It increases the risk of several diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, and certain cancers, which threatens human health and increases social economic burden. As one of the most consumed beverages, tea contains various phytochemicals with potent bioactive properties and health-promoting effects, such as antioxidant, immune-regulation, cardiovascular protection and anticancer. Tea and its components are also considered as potential candidates for anti-obesity. Epidemiological studies indicate that regular consumption of tea is beneficial for reducing body fat. In addition, the experimental studies demonstrate that the potential anti-obesity mechanisms of tea are mainly involved in increasing energy expenditure and lipid catabolism, decreasing nutrient digestion and absorption as well as lipid synthesis, and regulating adipocytes, neuroendocrine system and gut microbiota. Moreover, most of clinical studies illustrate that the intake of green tea could reduce body weight and alleviate the obesity. In this review, we focus on the effect of tea and its components on obesity from epidemiological, experimental, and clinical studies, and discuss their potential mechanisms.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Cai-Ning Zhao
- Li Ka Shing Faculty of Medicine, Department of Clinical Oncology, The University of Hong Kong, China Hong Kong
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Guo-Yi Tang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Yi-Bin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
The Effect of Yellow Tea Leaves Camellia sinensis on the Quality of Stored Chocolate Confectionery. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chocolate and tea leaves are considered the most valuable sources of highly bioactive polyphenols due to their potential anti-cancer properties and beneficial effects on the cardiovascular and nervous systems. The objective of the present study was the development of a sensory profiling modality that is correlated with the taste of the chocolate enriched with yellow tea phytochemicals. The additive concentration was optimized in white chocolate and the designed product was evaluated using the sensory profiling method. It was shown that the yellow tea extract in chocolate had a significant effect on the taste and color of the product. Addition of 2.0% yellow tea powdered extract increased the value of color acceptance and caused an intensification of the aromas, particularly the leafy taste, compared to the control samples. The next step of the study was to determine the influence of tea addition in white, milk and dark chocolate subjected to 6 months of storage. The designed chocolates were tested for their activity as antioxidants (DPPH, ABTS and ORAC assay) and cholinesterase inhibitors (AChE, BChE assay). It was confirmed that the yellow tea addition affected the activity of prepared chocolates with respect to radical scavenging activity and was highest for dark chocolate with yellow tea where the values were as follows: 4373 mg Tx/100 g (DPPH), 386 mg Tx/100 g (ABTS) and 4363 µM Tx/100 g (ORAC). An increase in the anti-radical activity of chocolate with yellow tea was found after 3 months of storage, but the subsequent 3 months of storage resulted in its reduction. AChE values ranged from 0.118 to 0.730 [µM eserine/g dw] and from 0.095 to 0.480 [µM eserine/g dw] for BChE assay. Total capacity to inhibit AChE and BChE differed depending on the type of chocolate and was negatively influenced by the half-year storage. Summarizing tested values for individual samples were higher, with increasing content of cocoa liquor and yellow tea extract in the product. The results of the research show that the use of yellow tea in confectionery is promising and may appoint a new direction in functional foods.
Collapse
|
26
|
Hinkaew J, Aursalung A, Sahasakul Y, Tangsuphoom N, Suttisansanee U. A Comparison of the Nutritional and Biochemical Quality of Date Palm Fruits Obtained Using Different Planting Techniques. Molecules 2021; 26:molecules26082245. [PMID: 33924574 PMCID: PMC8069938 DOI: 10.3390/molecules26082245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
Date palm fruit (Phoenix dactylifera L.) is commonly consumed around the world and has recently become an economical crop in Eastern Thailand, especially the Barhi cultivar that can be consumed as fresh fruit. To maintain genetic qualities, date palm is populated through cell culture. This leads to high production costs, while access to this technique is limited. Increasing date palm population by simple seed planting is currently of interest as an alternative for local farmers. Nevertheless, information on nutritive values, bioactive compounds, and health-promoting bioactivities of seed originating from date palm fruit is unavailable. Effects of different planting origins (cell culture origin (CO) and seed origin (SO)) of date palm fruits at the Khalal stage of Barhi cultivar were investigated for nutritive values, bioactive compounds, and in vitro health-promoting properties via key enzyme inhibitions against obesity (lipase), diabetes (α-amylase, α-glucosidase, and dipeptidyl peptidase-IV), Alzheimer's disease (cholinesterases and β-secretase), and hypertension (angiotensin-converting enzyme). Waste seeds as a by-product from date palm production were also examined regarding these properties to increase seed marketing opportunities for future food applications and other health-related products. CO and SO exhibited insignificant differences in energy, fat, and carbohydrate contents. SO had higher protein, dietary fiber, vitamin A, vitamin E, and calcium contents than CO, while CO contained higher contents of fructose, glucose and maltose. Higher phenolic contents in SO led to greater enzyme inhibitory activities than CO. Interestingly, seeds of date palm fruits mostly contained higher nutritive values than the flesh. No carotenoids were detected in seeds but higher phenolic contents resulted in greater enzyme inhibitory activities than recorded for fruit flesh. Results suggest that appropriate planting of date palm can support the development of novel date palm fruit products, leading to expansion of economic opportunities and investment in date palm fruit agriculture.
Collapse
Affiliation(s)
- Jeerawan Hinkaew
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
| | - Amornrat Aursalung
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
| | - Yuraporn Sahasakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Nattapol Tangsuphoom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-(0)-2800-2380 (ext. 422)
| |
Collapse
|
27
|
Przybylska A, Gackowski M, Koba M. Application of Capillary Electrophoresis to the Analysis of Bioactive Compounds in Herbal Raw Materials. Molecules 2021; 26:2135. [PMID: 33917716 PMCID: PMC8068163 DOI: 10.3390/molecules26082135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The article is a summary of scientific reports from the last 16 years (2005-2021) on the use of capillary electrophoresis to analyze polyphenolic compounds, coumarins, amino acids, and alkaloids in teas or different parts of plants used to prepare aqueous infusions, commonly known as "tea" or decoctions. This literature review is based on PRISMA guidelines and articles selected in base of criteria carried out using PICOS (Population, Intervention, Comparison, Outcome, Study type). The analysis showed that over 60% of articles included in this manuscript comes from China. The literature review shows that for the selective electrophoretic separation of polyphenolic and flavonoid compounds, the most frequently used capillary electromigration technique is capillary electrophoresis with ultraviolet detection. Nevertheless, the use of capillary electrophoresis-mass spectrometry allows for the sensitive determination of analytes with a lower limit of detection and gives hope for routine use in the analysis of functional foods. Moreover, using the modifications in electrochemical techniques allows methods sensitivity reduction along with the reduction of analysis time.
Collapse
Affiliation(s)
- Anna Przybylska
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL-85089 Bydgoszcz, Poland; (M.G.); (M.K.)
| | | | | |
Collapse
|
28
|
Tea as a Source of Biologically Active Compounds in the Human Diet. Molecules 2021; 26:molecules26051487. [PMID: 33803306 PMCID: PMC7967157 DOI: 10.3390/molecules26051487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
Due to the different levels of bioactive compounds in tea reported in the literature, the aim of this study was to determine whether commercially available leaf teas could be an important source of phenolics and selected minerals (copper, manganese, iron, zinc, magnesium, calcium, sodium, potassium) and if the differences in the content of these components between various types of tea are significant. It was found that both the amount of these compounds in tea and the antioxidant activity of tea infusions were largely determined by the origin of tea leaves as well as the processing method, which can modify the content of the studied components up to several hundred-fold. The group of green teas was the best source of phenolic compounds (110.73 mg/100 mL) and magnesium (1885 µg/100 mL) and was also characterised by the highest antioxidant activity (59.02%). This type of tea is a great contributor to the daily intake of the studied components. The average consumption of green tea infusions, assumed to be 3–4 cups (1 L) a day, provides the body with health-promoting polyphenol levels significantly exceeding the recommended daily dose. Moreover, drinking one litre of an unfermented tea infusion provides more than three times the recommended daily intake of manganese. Tea infusions can be a fairly adequate, but only a supplementary, source of potassium, zinc, magnesium, and copper in the diet. Moreover, it could be concluded that the antioxidant activity of all the analysed types of tea infusions results not only from the high content of phenolic compounds and manganese but is also related to the presence of magnesium and potassium.
Collapse
|
29
|
Wannasaksri W, On-Nom N, Chupeerach C, Temviriyanukul P, Charoenkiatkul S, Suttisansanee U. In Vitro Phytotherapeutic Properties of Aqueous Extracted Adenia viridiflora Craib. towards Civilization Diseases. Molecules 2021; 26:molecules26041082. [PMID: 33670795 PMCID: PMC7922288 DOI: 10.3390/molecules26041082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023] Open
Abstract
Adenia viridiflora Craib. is an indigenous edible plant that became an endangered species due to limited consumption of the local population with unknown reproduction and growth conditions. The plant is used as a traditional herb; however, its health applications lack scientific-based evidence. A. viridiflora Craib. plant parts (old leaves and young shoots) from four areas as Kamphaeng Phet (KP), Muang Nakhon Ratchasima (MN), Pakchong Nakhon Ratchasima (PN), and Uthai Thani (UT) origins were investigated for phenolic compositions and in vitro health properties through the inhibition of key enzymes relevant to obesity (lipase), diabetes (α-glucosidase and dipeptidyl peptidase-IV), Alzheimer’s disease (cholinesterases and β-secretase), and hypertension (angiotensin-converting enzyme). Phenolics including p-coumaric acid, sinapic acid, naringenin, and apigenin were detected in old leaves and young shoots in all plant origins. Old leaves exhibited higher total phenolic contents (TPCs) and total flavonoid contents (TFCs), leading to higher enzyme inhibitory activities than young shoots. Besides, PN and MN with higher TPCs and TFCs tended to exhibit greater enzyme inhibitory activities than others. These results will be useful to promote this plant as a healthy food with valuable medicinal capacities to support its consumption and agricultural stimulation, leading to sustainable conservation of this endangered species.
Collapse
Affiliation(s)
- Werawat Wannasaksri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
| | - Nattira On-Nom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chaowanee Chupeerach
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-(0)-2800-2380 (ext. 422)
| |
Collapse
|