1
|
Willoquet B, Mirey G, Labat O, Garofalo M, Puel S, Penary M, Soler L, Vettorazzi A, Vignard J, Oswald IP, Payros D. Roles of cytochromes P450 and ribosome inhibition in the interaction between two preoccupying mycotoxins, aflatoxin B1 and deoxynivalenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176937. [PMID: 39437909 DOI: 10.1016/j.scitotenv.2024.176937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Mycotoxins are a threat to human and animal health. Climate change increases their occurrence and our dietary exposure. Although humans and animals are concomitantly exposed to several mycotoxins, their combined effects are poorly characterised. This study investigated the interaction between aflatoxin B1 (AFB1), the most potent natural carcinogen, and deoxynivalenol (DON), which is among the most prevalent mycotoxins. AFB1 is associated with hepatocellular carcinoma through its bioactivation by cytochrome P450 (CYP450) enzymes; while DON induces ribotoxic stress leading to an alteration of intestinal, immune and hepatic functions. Analysis of DNA damage biomarkers γ-H2AX and 53BP1 revealed that DON reduces the genotoxicity of AFB1. This effect was mimicked with cycloheximide (CHX), another ribosome inhibitor; moreover DOM-1, a DON-derivative lacking ribosome inhibition, did not affect DNA damage. Exposure to DON, alone or in combination with AFB1, decreased the protein levels and/or activities of CYP1A2 and CYP3A4 in a time- and dose-dependent manner. A similar reduction of CYP1A2 and CYP3A4 activities was also observed with CHX. Altogether, these results revealed an original interaction between DON and AFB1, DON inhibiting the genotoxicity of AFB1. The underlying mechanism involves ribosome inhibition by DON and the subsequent impairment of CYP450s, responsible for the bioactivation of AFB1. This work highlights the importance of studying mycotoxins not only individually but also in mixture and of considering food contaminants as part of the exposome.
Collapse
Affiliation(s)
- B Willoquet
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - G Mirey
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - O Labat
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - M Garofalo
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - S Puel
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - M Penary
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - L Soler
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - A Vettorazzi
- Department of Pharmacology and Toxicology, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain
| | - J Vignard
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - I P Oswald
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France.
| | - D Payros
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France.
| |
Collapse
|
2
|
Wu Y, Adeel M, Xia D, Sancar A, Li W. Nucleotide excision repair of aflatoxin-induced DNA damage within the 3D human genome organization. Nucleic Acids Res 2024; 52:11704-11719. [PMID: 39258558 PMCID: PMC11514448 DOI: 10.1093/nar/gkae755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Aflatoxin B1 (AFB1), a potent mycotoxin, is one of the environmental risk factors that cause liver cancer. In the liver, the bioactivated AFB1 intercalates into the DNA double helix to form a bulky DNA adduct which will lead to mutation if left unrepaired. Here, we adapted the tXR-seq method to measure the nucleotide excision repair of AFB1-induced DNA adducts at single-nucleotide resolution on a genome-wide scale, and compared it with repair data obtained from conventional UV-damage XR-seq. Our results showed that transcription-coupled repair plays a major role in the damage removal process. We further analyzed the distribution of nucleotide excision repair sites for AFB1-induced DNA adducts within the 3D human genome organization. Our analysis revealed a heterogeneous AFB1-dG repair across four different organization levels, including chromosome territories, A/B compartments, TADs, and chromatin loops. We found that chromosomes positioned closer to the nuclear center and regions within A compartments have higher levels of nucleotide excision repair. Notably, we observed high repair activity around both TAD boundaries and loop anchors. These findings provide insights into the complex interplay between AFB1-induced DNA damage repair, transcription, and 3D genome organization, shedding light on the mechanisms underlying AFB1-induced mutagenesis.
Collapse
Affiliation(s)
- Yiran Wu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Muhammad Muzammal Adeel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Dian Xia
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Wentao Li
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Furlan V, Tošović J, Bren U. QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds. Foods 2024; 13:2708. [PMID: 39272474 PMCID: PMC11394233 DOI: 10.3390/foods13172708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, a novel quantum mechanics-based protocol for the evaluation of carcinogen-scavenging activity (QM-CSA) is developed. The QM-CSA protocol represents a universal and quantitative approach to evaluate and compare the activation-free energies for alkylation reactions between individual polyphenolic compounds and chemical carcinogens of the epoxy type at physiological conditions by applying two scales: the absolute scale allowing for the comparison with guanine and the relative scale allowing the comparison with glutathione as a reference compound. The devised quantum mechanical methodology was validated by comparing the activation-free energies calculated with 14 DFT functionals in conjunction with two implicit solvation models (SMD and CPCM) and the experimental activation-free energies for reactions between nine investigated chemical carcinogens and guanine. According to the obtained results, the best agreement with experimental data was achieved by applying DFT functionals M11-L and MN12-L in conjunction with the flexible 6-311++G(d,p) basis set and implicit solvation model SMD, and the obtained uncertainties were proven to be similar to the experimental ones. To demonstrate the applicability of the QM-CSA protocol, functionals M11-L, and MN12-L in conjunction with the SMD implicit solvation model were applied to calculate activation-free energies for the reactions of nine investigated chemical carcinogens of the epoxy type with three catechins, namely EGCG, EGC, and (+)-catechin. The order of CSA in this series of catechins in comparison to guanine and glutathione was determined as (+)-catechin > EGC > EGCG. The obtained results, for the first time, demonstrated the evaluation and comparison of CSA in a series of selected catechins with respect to glutathione and guanine. Moreover, the presented results provide valuable insights into the reaction mechanisms and configurations of the corresponding transition states. The novel QM-CSA protocol is also expected to expand the kinetic data for alkylation reactions between various polyphenolic compounds and chemical carcinogens of the epoxy type, which is currently lacking in the scientific literature.
Collapse
Grants
- J1-2471, P2-0046, L2-3175, J4-4633, J1-4398, L2-4430, J3-4498, J7-4638, J1-4414, J3-4497, P2-0438, and I0-E015 Slovenian Research and Innovation Agency (ARIS)
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| | - Jelena Tošović
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
4
|
Cvetanović Kljakić A, Ocvirk M, Rutnik K, Košir IJ, Pavlić B, Mašković P, Mašković J, Teslić N, Stupar A, Uba AI, Zengin G. Exploring the composition and potential uses of four hops varieties through different extraction techniques. Food Chem 2024; 447:138910. [PMID: 38479143 DOI: 10.1016/j.foodchem.2024.138910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Hydrophilic, lipophilic extracts and essential oil of four hops varieties from Slovenia were examined in this study. Lipophilic extracts were obtained by supercritical extraction (SFE), while for hydrophilic extracts ultrasound and microwave extraction were employed. Essential oils were isolated by the hydrodistillation process. The lipophilic composition of essential oils and lipophilic extracts was determined by GC-MS analysis. Monoterpenes and sesquiterpene hydrocarbons were the most abundant class of compounds in oils (62.27-79.65 %), with myrcene being the most abundant constituent. Limonene and trans-caryophyllene were two terpenes determined in all essential oils while only trans-caryophyllene was detected in SFE samples. Antioxidant, antimicrobial, and cytotoxic activity, determined by applying in vitro assays, was more influenced by extraction technique than by varieties. Molecular docking was carried out to gain insight into the potential cancer protein targets BCL-2 and MMP9, whereby humulene epoxide II displayed good binding configuration within the cavities of the two proteins.
Collapse
Affiliation(s)
| | - Miha Ocvirk
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, 3310 Žalec, Slovenia
| | - Ksenija Rutnik
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, 3310 Žalec, Slovenia
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, 3310 Žalec, Slovenia
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Pavle Mašković
- University of Kragujevac, Faculty of Agriculture, Cara Dušana 34, Čačak, Serbia
| | - Jelena Mašković
- University of Kragujevac, Faculty of Agriculture, Cara Dušana 34, Čačak, Serbia
| | - Nemanja Teslić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Alena Stupar
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Istanbul, Turkey
| |
Collapse
|
5
|
Lumsangkul C, Kaewtui P, Huanhong K, Tso KH. Antioxidative and Antimycotoxigenic Efficacies of Thunbergia laurifolia Lindl. for Addressing Aflatoxicosis in Cherry Valley Ducks. Toxins (Basel) 2024; 16:334. [PMID: 39195744 PMCID: PMC11360618 DOI: 10.3390/toxins16080334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to assess the effectiveness of aflatoxin B1 (AFB1) and Thunbergia laurifolia extract (TLE) in the diets of Cherry Valley ducklings. Our investigation covered growth indicators, blood biochemical indices, meat quality, intestinal morphology, immune response, and CP450 enzyme-related gene expression. We conducted the study with 180 seven-day-old Cherry Valley ducks, randomly divided into five dietary treatments. These treatments included a basal diet without AFB1 (T1 group), TLE, or a commercial binder; the basal diet containing 0.1 mg AFB1/kg (T2 group), 0.1 mg AFB1/kg and 100 mg TLE/kg (T3 group), 0.1 mg AFB1/kg and 200 mg TLE/kg (T4 group), and 0.1 mg AFB1/kg and 0.5 g/kg of a commercial binder (T5 group), respectively. Ducklings fed with the T2 diet exhibited lower final body weight (BW), average body weight gain (ADG), and poor feed conversion ratio (FCR) during the 42-day trials. However, all ducklings in the T3, T4, and T5 groups showed significant improvements in final BW, ADG, and FCR compared to the T2 group. Increased alanine transaminase (ALT) concentration and increased expression of CYP1A1 and CYP1A2 indicated hepatotoxicity in ducklings fed the T2 diet. In contrast, ducklings fed T3, T4, and T5 diets all showed a decrease in the expression of CYP1A1 and CYP1A2, but only the T4 treatment group showed improvement in ALT concentration. AFB1 toxicity considerably raised the crypt depth (CD) in both the duodenum and jejunum of the T2 group, while the administration of 200 mg TLE/kg (T4) or a commercial binder (T5) effectively reduced this toxicity. Additionally, the villus width of the jejunum in the T2 treatment group decreased significantly, while all T3, T4, and T5 groups showed improvement in this regard. In summary, T. laurifolia extract can detoxify aflatoxicosis, leading to growth reduction and hepatic toxicosis in Cherry Valley ducklings.
Collapse
Affiliation(s)
- Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
- Multidisciplinary Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Chiang Mai 50200, Thailand
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Phruedrada Kaewtui
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
| | - Kiattisak Huanhong
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
| | - Ko-Hua Tso
- Dr. Bata Ltd., Bajcsy-Zs. u. 139, H-2364 Ócsa, Hungary
| |
Collapse
|
6
|
Yang D, Zhang S, Cao H, Wu H, Liang Y, Teng CB, Yu HF. Detoxification of Aflatoxin B 1 by Phytochemicals in Agriculture and Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14481-14497. [PMID: 38897919 DOI: 10.1021/acs.jafc.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aflatoxin B1 (AFB1), the most toxic and harmful mycotoxin, has a high likelihood of occurring in animal feed and human food, which seriously affects agriculture and food safety and endangers animal and human health. Recently, natural plant products have attracted widespread attention due to their low toxicity, high biocompatibility, and simple composition, indicating significant potential for resisting AFB1. The mechanisms by which these phytochemicals resist toxins mainly involve antioxidative, anti-inflammatory, and antiapoptotic pathways. Moreover, these substances also inhibit the genotoxicity of AFB1 by directly influencing its metabolism in vivo, which contributes to its elimination. Here, we review various phytochemicals that resist AFB1 and their anti-AFB1 mechanisms in different animals, as well as the common characteristics of phytochemicals with anti-AFB1 function. Additionally, the shortcomings of current research and future research directions will be discussed. Overall, this comprehensive summary contributes to the better application of phytochemicals in agriculture and food safety.
Collapse
Affiliation(s)
- Dian Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sihua Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hongda Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Huan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Liang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chun-Bo Teng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
8
|
Kolenc Z, Hribernik T, Langerholc T, Pintarič M, Prevolnik Povše M, Bren U. Antioxidant Activity of Different Hop ( Humulus lupulus L.) Genotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:3436. [PMID: 37836176 PMCID: PMC10575397 DOI: 10.3390/plants12193436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The antioxidant activity (AA) of hop extracts obtained from different hop genotypes (n = 14) was studied. For comparison, the purified β-acids-rich fraction and α-acids-with-β-acids-rich fraction were also used to test the antioxidative potential. The AA of purified hydroacetonic hop extracts was investigated using the Ferric Reducing Ability of Plasma (FRAP), Oxygen Radical Absorption Capacity (ORAC) and Intracellular Antioxidant (IA) methods. The FRAP values in different hop genotypes ranged between 63.5 and 101.6 μmol Trolox equivalent (TE)/g dry weight (DW), the ORAC values ranged between 1069 and 1910 μmol TE/g DW and IA potential values ranged between 52.7 and 118.0 mmol TE/g DW. Significant differences in AA between hop genotypes were observed with all three methods. AAs were determined using three different methods, which did not highly correlate with each other. We also did not find significant correlations between AA and different chemical components, which applies both to AA determined using individual methods as well as the total AA. Based on this fact, we assume that the synergistic or antagonistic effects between hop compounds have a more pronounced effect on AA than the presence and quantity of individual hop compounds.
Collapse
Affiliation(s)
- Zala Kolenc
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
- Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoče, Slovenia; (T.L.); (M.P.)
| | - Tamara Hribernik
- Department of Lifestock Breeding and Nutrition, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoče, Slovenia;
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoče, Slovenia; (T.L.); (M.P.)
| | - Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoče, Slovenia; (T.L.); (M.P.)
| | - Maja Prevolnik Povše
- Department of Animal Science, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoče, Slovenia;
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
- Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
9
|
Zhang J, Li F, Shen S, Yang Z, Ji X, Wang X, Liao X, Zhang Y. More simple, efficient and accurate food research promoted by intermolecular interaction approaches: A review. Food Chem 2023; 416:135726. [PMID: 36893635 DOI: 10.1016/j.foodchem.2023.135726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
The investigation of intermolecular interactions has become increasingly important in many studies, mainly by combining different analytical approaches to reveal the molecular mechanisms behind specific experimental phenomena. From spectroscopic analysis to sophisticated molecular simulation techniques like molecular docking, molecular dynamics (MD) simulation, and quantum chemical calculations (QCC), the mechanisms of intermolecular interactions are gradually being characterized more clearly and accurately, leading to revolutionary advances. This article aims to review the progression in the main techniques involving intermolecular interactions in food research and the corresponding experimental results. Finally, we discuss the significant impact that cutting-edge molecular simulation technologies may have on the future of conducting deeper exploration. Applications of molecular simulation technology may revolutionize the food research, making it possible to design new future foods with precise nutrition and desired properties.
Collapse
Affiliation(s)
- Jinghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Fangwei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Suxia Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Zhaotian Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xingyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China.
| |
Collapse
|
10
|
Deng Y, You L, Wang X, Wu W, Kuca K, Wu Q, Wei W. Deoxynivalenol: Emerging Toxic Mechanisms and Control Strategies, Current and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437258 DOI: 10.1021/acs.jafc.3c02020] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Deoxynivalenol (DON) is the most frequently present mycotoxin contaminant in food and feed, causing a variety of toxic effects in humans and animals. Currently, a series of mechanisms involved in DON toxicity have been identified. In addition to the activation of oxidative stress and the MAPK signaling pathway, DON can activate hypoxia-inducible factor-1α, which further regulates reactive oxygen species production and cancer cell apoptosis. Noncoding RNA and signaling pathways including Wnt/β-catenin, FOXO, and TLR4/NF-κB also participate in DON toxicity. The intestinal microbiota and the brain-gut axis play a crucial role in DON-induced growth inhibition. In view of the synergistic toxic effect of DON and other mycotoxins, strategies to detect DON and control it biologically and the development of enzymes for the biodegradation of various mycotoxins and their introduction in the market are the current and future research hotspots.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
11
|
Lv HW, Wang QL, Luo M, Zhu MD, Liang HM, Li WJ, Cai H, Zhou ZB, Wang H, Tong SQ, Li XN. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch Pharm Res 2023; 46:207-272. [PMID: 37055613 PMCID: PMC10101826 DOI: 10.1007/s12272-023-01443-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Qiao-Liang Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng Luo
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology University, 310014, Hang Zhou, P. R. China
| | - Hui-Min Liang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Hai Cai
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000, Baise, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| |
Collapse
|
12
|
Xanthohumol properties and strategies for extraction from hops and brewery residues: A review. Food Chem 2023; 404:134629. [DOI: 10.1016/j.foodchem.2022.134629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022]
|
13
|
Furlan V, Bren U. Helichrysum italicum: From Extraction, Distillation, and Encapsulation Techniques to Beneficial Health Effects. Foods 2023; 12:802. [PMID: 36832877 PMCID: PMC9957194 DOI: 10.3390/foods12040802] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Helichrysum italicum (family Asteraceae), due to its various beneficial health effects, represents an important plant in the traditional medicine of Mediterranean countries. Currently, there is a renewed interest in this medicinal plant, especially in investigations involving the isolation and identification of its bioactive compounds from extracts and essential oils, as well as in experimental validation of their pharmacological activities. In this paper, we review the current knowledge on the beneficial health effects of Helichrysum italicum extracts, essential oils, and their major bioactive polyphenolic compounds, ranging from antioxidative, anti-inflammatory, and anticarcinogenic activities to their antiviral, antimicrobial, insecticidal, and antiparasitic effects. This review also provides an overview of the most promising extraction and distillation techniques for obtaining high-quality extracts and essential oils from Helichrysum italicum, as well as methods for determining their antioxidative, antimicrobial, anti-inflammatory, and anticarcinogenic activities. Finally, new ideas for in silico studies of molecular mechanisms of bioactive polyphenols from Helichrysum italicum, together with novel suggestions for their improved bioavailability through diverse encapsulation techniques, are introduced.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
14
|
Kolenc Z, Langerholc T, Hostnik G, Ocvirk M, Štumpf S, Pintarič M, Košir IJ, Čerenak A, Garmut A, Bren U. Antimicrobial Properties of Different Hop ( Humulus lupulus) Genotypes. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010120. [PMID: 36616249 PMCID: PMC9824274 DOI: 10.3390/plants12010120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/12/2023]
Abstract
The antimicrobial activity of hop extracts obtained from different hop genotypes were investigated against Staphylococcus aureus and Lactobacillus acidophilus. In this study the pure xanthohumol, purified β-acids rich fraction, as well as α-acids with β-acids rich fraction were used to test antimicrobial activity against Staphylococcus aureus and Lactobacillus acidophilus; whereby, the antimicrobial activity of different hop extracts against Lactobacillus acidophilus was studied for the first time. Microbial susceptibility to purified hydroacetonic extracts from different hop varieties was investigated by the broth microdilution assay to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The hop hydroacetonic extracts were more effective against Staphylococcus aureus than against Lactobacillus acidophilus. Strong inverse correlations of MIC and MBC values were obtained with xanthohumol, cohumulone, n+adhumulone, colupulone and n+adlupulone contents, suggesting that the identified chemical hop compounds are directly responsible for antimicrobial effects. Moreover, the effect of the growth medium strength on the MIC values of hop extracts against Staphylococcus aureus was systematically investigated for the first time. The current study also reveals the effect of different hop extracts on Staphylococcus aureus, which responds to their presence by lag phase extension and generation time prolongation.
Collapse
Affiliation(s)
- Zala Kolenc
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Gregor Hostnik
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
| | - Miha Ocvirk
- Department for Agrochemistry and Brewing, Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia
| | - Sara Štumpf
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
| | - Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Iztok Jože Košir
- Department for Agrochemistry and Brewing, Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia
| | - Andreja Čerenak
- Department for Plants, Soil and the Environment, Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia
| | - Alenka Garmut
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
- Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
15
|
|
16
|
Kores K, Kolenc Z, Furlan V, Bren U. Inverse Molecular Docking Elucidating the Anticarcinogenic Potential of the Hop Natural Product Xanthohumol and Its Metabolites. Foods 2022; 11:foods11091253. [PMID: 35563976 PMCID: PMC9104229 DOI: 10.3390/foods11091253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Natural products from plants exert a promising potential to act as antioxidants, antimicrobials, anti-inflammatory, and anticarcinogenic agents. Xanthohumol, a natural compound from hops, is indeed known for its anticarcinogenic properties. Xanthohumol is converted into three metabolites: isoxanthohumol (non-enzymatically) as well as 8- and 6-prenylnaringenin (enzymatically). An inverse molecular docking approach was applied to xanthohumol and its three metabolites to discern their potential protein targets. The aim of our study was to disclose the potential protein targets of xanthohumol and its metabolites in order to expound on the potential anticarcinogenic mechanisms of xanthohumol based on the found target proteins. The investigated compounds were docked into the predicted binding sites of all human protein structures from the Protein Data Bank, and the best docking poses were examined. Top scoring human protein targets with successfully docked compounds were identified, and their experimental connection with the anticarcinogenic function or cancer was investigated. The obtained results were carefully checked against the existing experimental findings from the scientific literature as well as further validated using retrospective metrics. More than half of the human protein targets of xanthohumol with the highest docking scores have already been connected with the anticarcinogenic function, and four of them (including two important representatives of the matrix metalloproteinase family, MMP-2 and MMP-9) also have a known experimental correlation with xanthohumol. Another important protein target is acyl-protein thioesterase 2, to which xanthohumol, isoxanthohumol, and 6-prenylnaringenin were successfully docked with the lowest docking scores. Moreover, the results for the metabolites show that their most promising protein targets are connected with the anticarcinogenic function as well. We firmly believe that our study can help to elucidate the anticarcinogenic mechanisms of xanthohumol and its metabolites as after consumption, all four compounds can be simultaneously present in the organism.
Collapse
Affiliation(s)
- Katarina Kores
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Zala Kolenc
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Veronika Furlan
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
- Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Correspondence: ; Tel.: +386-2-229-4421
| |
Collapse
|
17
|
Lazzari A, Barbosa HD, Machado Filho ER, Maldonado da Silva LH, Anjo FA, Sato F, Lourenzi Franco Rosa CI, Matumoto Pintro PT. Effect on Bioactive Compounds and Antioxidant Activity in the Brewing Process for Beers Using Rubim and Mastruz as Hop Replacements. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2053638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anderson Lazzari
- Programa de Pós-Graduação em Ciências de Alimentos, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Heloisa Dias Barbosa
- Programa de Pós-Graduação em Ciências de Alimentos, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | | | - Fernando Antônio Anjo
- Programa de Pós-Graduação em Ciências de Alimentos, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Francielle Sato
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | | |
Collapse
|
18
|
PINK1/Parkin-mediated mitophagy as a protective mechanism against AFB 1-induced liver injury in mice. Food Chem Toxicol 2022; 164:113043. [PMID: 35447291 DOI: 10.1016/j.fct.2022.113043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022]
Abstract
Aflatoxin B1 (AFB1) can cause oxidative stress leading to mitochondrial damage and subsequent liver injury. Although it is well-known that damaged mitochondria are eliminated by PINK1/Parkin-mediated mitophagy, this mechanism has not yet been characterized in the context of AFB1-induced liver injury. In this study, male wild-type C57BL/6N mice were divided into groups 1-4, which were then orally administered 0, 0.5, 0.75, and 1 mg/kg body weight AFB1 for 28 d, respectively. Our results demonstrated that oxidative stress, NLRP3-inflammasome activation, and mitochondrial damage were dose-dependently augmented in AFB1-induced liver injury. Additionally, PINK1/Parkin-mediated mitophagy peaked in the groups that had received a mid-dose of AFB1 (0.75 mg/kg), which was attenuated slightly in high-dose groups. Afterward, we further characterized AFB1-induced liver injury by comparing wild-type C57BL/6N mice with Parkin knockout (Parkin-/-) mice. We found that the restricted mitophagy in Parkin-/- mice was associated with increased oxidative stress, NLRP3-inflammasome activation, mitochondrial damage, and liver injury. Taken together, these results indicate that PINK1/Parkin-mediated mitophagy plays an important role in attenuating AFB1-induced liver injury in mice.
Collapse
|
19
|
Rozman M, Štukovnik Z, Sušnik A, Pakseresht A, Hočevar M, Drobne D, Bren U. A HepG2 Cell-Based Biosensor That Uses Stainless Steel Electrodes for Hepatotoxin Detection. BIOSENSORS 2022; 12:bios12030160. [PMID: 35323430 PMCID: PMC8946082 DOI: 10.3390/bios12030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Humans are frequently exposed to environmental hepatotoxins, which can lead to liver failure. Biosensors may be the best candidate for the detection of hepatotoxins because of their high sensitivity and specificity, convenience, time-saving, low cost, and extremely low detection limit. To investigate suitability of HepG2 cells for biosensor use, different methods of adhesion on stainless steel surfaces were investigated, with three groups of experiments performed in vitro. Cytotoxicity assays, which include the resazurin assay, the neutral red assay (NR), and the Coomassie Brilliant Blue (CBB) assay, were used to determine the viability of HepG2 cells exposed to various concentrations of aflatoxin B1 (AFB1) and isoniazid (INH) in parallel. The viability of the HepG2 cells on the stainless steel surface was quantitatively and qualitatively examined with different microscopy techniques. A simple cell-based electrochemical biosensor was developed by evaluating the viability of the HepG2 cells on the stainless steel surface when exposed to various concentrations of AFB1 and INH by using electrochemical impedance spectroscopy (EIS). The results showed that HepG2 cells can adhere to the metal surface and could be used as part of the biosensor to determine simple hepatotoxic samples.
Collapse
Affiliation(s)
- Martin Rozman
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia; (M.R.); (Z.Š.); (A.S.)
- FunGlass—Center for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 91150 Trenčín, Slovakia;
| | - Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia; (M.R.); (Z.Š.); (A.S.)
| | - Ajda Sušnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia; (M.R.); (Z.Š.); (A.S.)
- National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Amirhossein Pakseresht
- FunGlass—Center for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 91150 Trenčín, Slovakia;
| | - Matej Hočevar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.H.); (D.D.)
- Institute of Metals and Technology, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.H.); (D.D.)
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia; (M.R.); (Z.Š.); (A.S.)
- Natural Sciences and Information Technologies, Faculty of Mathematics, University of Primorska, 6000 Koper, Slovenia
- Correspondence:
| |
Collapse
|
20
|
Biological Activities Related to Plant Protection and Environmental Effects of Coumarin Derivatives: QSAR and Molecular Docking Studies. Int J Mol Sci 2021; 22:ijms22147283. [PMID: 34298898 PMCID: PMC8303553 DOI: 10.3390/ijms22147283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/31/2023] Open
Abstract
The aim was to study the inhibitory effects of coumarin derivatives on the plant pathogenic fungi, as well as beneficial bacteria and nematodes. The antifungal assay was performed on four cultures of phytopathogenic fungi by measuring the radial growth of the fungal colonies. Antibacterial activity was determined by the broth microdilution method performed on two beneficial soil organisms. Nematicidal activity was tested on two entomopathogenic nematodes. The quantitative structure-activity relationship (QSAR) model was generated by genetic algorithm, and toxicity was estimated by T.E.S.T. software. The mode of inhibition of enzymes related to the antifungal activity is elucidated by molecular docking. Coumarin derivatives were most effective against Macrophomina phaseolina and Sclerotinia sclerotiorum, but were not harmful against beneficial nematodes and bacteria. A predictive QSAR model was obtained for the activity against M. phaseolina (R2tr = 0.78; R2ext = 0.67; Q2loo = 0.67). A QSAR study showed that multiple electron-withdrawal groups, especially at position C-3, enhanced activities against M. phaseolina, while the hydrophobic benzoyl group at the pyrone ring, and –Br, –OH, –OCH3, at the benzene ring, may increase inhibition of S. sclerotiourum. Tested compounds possibly act inhibitory against plant wall-degrading enzymes, proteinase K. Coumarin derivatives are the potentially active ingredient of environmentally friendly plant-protection products.
Collapse
|