1
|
Molina-Hernandez JB, Grande-Tovar CD, Neri L, Delgado-Ospina J, Rinaldi M, Cordero-Bueso GA, Chaves-López C. Enhancing postharvest food safety: the essential role of non-thermal technologies in combating fungal contamination and mycotoxins. Front Microbiol 2025; 16:1543716. [PMID: 40135060 PMCID: PMC11934074 DOI: 10.3389/fmicb.2025.1543716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
During the production and storage of agricultural products, molds frequently occur as contaminants that can produce a wide range of secondary metabolites, the most important of which are mycotoxins. To solve these problems, the industry uses various methods, products and processes. This review examines the latest advances in novel non-thermal technologies for post-harvest inactivation of filamentous fungi and reduction of mycotoxins. These technologies include high pressure processes (HPP), ozone treatment, UV light, blue light, pulsed light, pulsed electric fields (PEF), cold atmospheric plasma (CAP), electron beams, ultrasound (US) and nanoparticles. Using data from previous studies, this review provides an overview of the primary mechanisms of action and recent results obtained using these technologies and emphasizes the limitations and challenges associated with each technology. The innovative non-thermal methods discussed here have been shown to be safe and efficient tools for reducing food mold contamination and infection. However, the effectiveness of these technologies is highly dependent on the fungal species and the structural characteristics of the mycotoxins. New findings related to the inactivation of fungi and mycotoxins underline that for a successful application it is essential to carefully determine and optimize certain key parameters in order to achieve satisfactory results. Finally, this review highlights and discusses future directions for non-thermal technologies. It emphasizes that they meet consumer demand for clean and safe food without compromising nutritional and sensory qualities.
Collapse
Affiliation(s)
- Junior Bernardo Molina-Hernandez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Lilia Neri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Colombia
| | | | - Gustavo Adolfo Cordero-Bueso
- Laboratorio de Microbiología, CASEM, Dpto. Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
2
|
Braz M, Pereira C, Freire CSR, Almeida A. A Review on Recent Trends in Bacteriophages for Post-Harvest Food Decontamination. Microorganisms 2025; 13:515. [PMID: 40142412 PMCID: PMC11946132 DOI: 10.3390/microorganisms13030515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Infectious diseases resulting from unsafe food consumption are a global concern. Despite recent advances and control measures in the food industry aimed at fulfilling the growing consumer demand for high-quality and safe food products, infection outbreaks continue to occur. This review stands out by providing an overview of post-harvest food decontamination methods against some of the most important bacterial foodborne pathogens, with particular focus on the advantages and challenges of using phages, including their most recent post-harvest applications directly to food and integration into active food packaging systems, highlighting their potential in providing safer and healthier food products. The already approved commercial phage products and the numerous available studies demonstrate their antibacterial efficacy against some of the most problematic foodborne pathogens in different food products, reinforcing their possible use in the future as a current practice in the food industry for food decontamination. Moreover, the incorporation of phages into packaging materials holds particular promise, providing protection against harsh conditions and enabling their controlled and continuous release into the food matrix. The effectiveness of phage-added packaging materials in reducing the growth of pathogens in food systems has been well-demonstrated. However, there are still some challenges associated with the development of phage-based packaging systems that need to be addressed with future research.
Collapse
Affiliation(s)
- Márcia Braz
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.B.); (C.P.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.B.); (C.P.)
| | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.B.); (C.P.)
| |
Collapse
|
3
|
Scholtz V, Jirešová J, Khun J, Czapka T, Julák J, Klenivskyi M. Overcoming Dormancy of Black Locust ( Robinia pseudoacacia L.) Seeds Using Various Non-Thermal Plasma Sources. PLANTS (BASEL, SWITZERLAND) 2025; 14:728. [PMID: 40094683 PMCID: PMC11902018 DOI: 10.3390/plants14050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Black locust (Fabaceae family) seeds are known for their strong dormant state and are an excellent candidate for studying and developing methods to break dormancy. We investigated overcoming the dormancy using several different sources of non-thermal plasma, which, by modifying, etching, or disrupting the waxy seed coat, allowed water to penetrate the seeds and initiate germination. All plasma sources tested enhanced seed germination to varying degrees, with over 80% germination observed when using a dielectric barrier discharge, while control seeds showed no germination. Non-thermal plasma treatment significantly decreased the water contact angle of the seed surface from an initial 120° (for untreated seeds) to complete wetting when using a dielectric barrier discharge or atmospheric-pressure plasma jet. The experiments indicate two mechanisms for the modification of the waxy seed coat by a non-thermal plasma: hydrophilization of the wax surface through the binding of oxygen particles and etching of narrow channels in the wax layer, allowing water to penetrate the seed.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.J.); (J.K.)
| | - Jana Jirešová
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.J.); (J.K.)
| | - Josef Khun
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.J.); (J.K.)
| | - Tomasz Czapka
- Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
| | - Jaroslav Julák
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.J.); (J.K.)
| | - Myron Klenivskyi
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.J.); (J.K.)
| |
Collapse
|
4
|
Almeida RLJ, Santos NC, Monteiro SS, Monteiro SS, Feitoza JVF, de Almeida Mota MM, da Silva Eduardo R, Sampaio PM, da Costa GA, de Bittencourt Pasquali MA, de Almeida Silva R, Moreira FIN, de Oliveira LM, Dos Santos Pereira T, de Queiroga AXM, Ribeiro CAC. Synergistic effect of ozone treatment with α-amylase on the modification of microstructure and paste properties of japonica rice starch. Food Chem 2025; 465:142145. [PMID: 39581101 DOI: 10.1016/j.foodchem.2024.142145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/29/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The objective was to evaluate the synergistic effect of ozonization and α-amylase on modifying the microstructure and paste properties of starch, using 0.00042 g of ozone/100 g of buffer for various durations. Enzymatic susceptibility was increased, achieving maximum values of 12.73 % with an 11.42 % increase in crystallinity and an average particle size of 10.12 μm for 90 min treated japonica rice starch (JR90). The granules exhibited a polyhedral shape and, with increased intensity of combined treatments, formed clusters and lost their original geometry. Apparent viscosity, rheological, and textural parameters were reduced due to the more efficient action of α-amylase on ozonized starch, as confirmed by the low gelatinization enthalpy value (7.61 J/g). Ozone proved effective in opening starch chains, partially gelatinizing granules, homogenizing the enzymatic medium, and increasing the hydrolysis rate of α-amylase in japonica rice starch.
Collapse
Affiliation(s)
| | - Newton Carlos Santos
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Shênia Santos Monteiro
- Department of Engineering and Natural Resource Management, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Shirley Santos Monteiro
- Department of Phytotechnics and Environmental Sciences, Federal University of Paraiba, Areia, PB, Brazil
| | | | | | - Raphael da Silva Eduardo
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Patrícia Marinho Sampaio
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | - Matheus Augusto de Bittencourt Pasquali
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil; Department of Engineering and Natural Resource Management, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | | | - Lyandra Maria de Oliveira
- Department of soil and water management, Federal Rural University of the Semiarid Region, Mossoró, RN, Brazil
| | - Tamires Dos Santos Pereira
- Department of Agroindustry, Federal Institute of Education, Science and Technology of Piaui, Uruçuí, PI, Brazil
| | | | | |
Collapse
|
5
|
Braz M, Pereira C, Freire CSR, Almeida A. Evaluation of the potential of phage phSE-5 to fight Salmonella Typhimurium in milk, liquid whole egg, and eggshell. J Appl Microbiol 2025; 136:lxaf008. [PMID: 39794278 DOI: 10.1093/jambio/lxaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
AIMS This study aimed to evaluate the potential of phage phSE-5 to inactivate Salmonella enterica serovar Typhimurium in milk (at 4, 10, and 25°C), liquid whole egg, and eggshell (at 25°C for both matrices). METHODS AND RESULTS Since the success of phage treatment in food depends on maintaining phage viability towards different food conditions, firstly the stability of phage phSE-5 at different temperatures and pHs was assessed. The effect of phage phSE-5 against S. Typhimurium was then assessed in vitro (liquid culture medium-TSB) and finally in the selected food matrices. Phage phSE-5 was stable for long storage periods (56 days) at pH 7-8 and 4-25°C. At 25°C, the efficacy of phage phSE-5 was matrix-dependent with differences in the sample, relatively to the bacterial control, of 2.7, 4.6, 1.8, and 1.3 log colony-forming units (CFU) ml-1 in TSB, milk, liquid whole egg, and eggshell, respectively. Also, phage phSE-5 led to reductions relatively to the initial bacterial concentration only in TSB and milk with 1.9 and 2.1 log CFU ml-1 reduction, respectively. Additionally, this phage was more efficient at 25°C in the tested matrices than at 10°C (no reduction and 1.7 log CFU ml-1 reduction in TSB and milk, respectively; maximum difference of 1.7 and 3.3 log CFU ml-1 in TSB and milk, respectively) and 4°C (no bacterial reduction/difference was observed in both TSB and milk). However, the decrease in temperature from 25 to 10°C slowed down bacterial regrowth after phage treatment. CONCLUSIONS Our results show that phages are promising and environmentally friendly candidates for use as biocontrol agents against S. Typhimurium in milk, liquid whole egg, and eggshell, allowing a reduction in energy costs if carried out at 10°C.
Collapse
Affiliation(s)
- Márcia Braz
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
- Department of Chemistry and CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Carmen S R Freire
- Department of Chemistry and CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
6
|
Jia H, Jia Y, Ren F, Liu H. Enhancing bioactive compounds in plant-based foods: Influencing factors and technological advances. Food Chem 2024; 460:140744. [PMID: 39116769 DOI: 10.1016/j.foodchem.2024.140744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Plant-based foods are natural sources of phytochemicals, which exhibit free radical scavenging capacity. However, the bioaccessibility of phytochemicals in foods are limited due to their poor stability and solubility within food matrix. Moreover, chemical degradation induced by processing further diminish the levels of these bioactive compounds. This review explores the impacts of thermal and non-thermal processing on fruits and vegetables, emphasizing the application of emerging technologies to enhance food quality. Innovative non-thermal technologies, which align with sustainable and environmentally friendly principles of green development, are particularly promising. Supercritical CO2 and cold plasma can be applied in extraction of phytochemicals, and these extracts also can be used as natural preservatives in food products, as well as improve the texture and sensory properties of food products, offering significant potential to advance the field of food science and technology while adhering to eco-friendly practices.
Collapse
Affiliation(s)
- Hanbing Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
7
|
Mafe AN, Büsselberg D. Impact of Metabolites from Foodborne Pathogens on Cancer. Foods 2024; 13:3886. [PMID: 39682958 DOI: 10.3390/foods13233886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Foodborne pathogens are microorganisms that cause illness through contamination, presenting significant risks to public health and food safety. This review explores the metabolites produced by these pathogens, including toxins and secondary metabolites, and their implications for human health, particularly concerning cancer risk. We examine various pathogens such as Salmonella sp., Campylobacter sp., Escherichia coli, and Listeria monocytogenes, detailing the specific metabolites of concern and their carcinogenic mechanisms. This study discusses analytical techniques for detecting these metabolites, such as chromatography, spectrometry, and immunoassays, along with the challenges associated with their detection. This study covers effective control strategies, including food processing techniques, sanitation practices, regulatory measures, and emerging technologies in pathogen control. This manuscript considers the broader public health implications of pathogen metabolites, highlighting the importance of robust health policies, public awareness, and education. This review identifies research gaps and innovative approaches, recommending advancements in detection methods, preventive strategies, and policy improvements to better manage the risks associated with foodborne pathogens and their metabolites.
Collapse
Affiliation(s)
- Alice N Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area P.O. Box 22104, Qatar
| |
Collapse
|
8
|
Braz M, Pereira C, Freire CSR, Almeida A. Potential of bacteriophage phT4A as a biocontrol agent against Escherichia coli in food matrices. Int J Food Microbiol 2024; 424:110847. [PMID: 39106593 DOI: 10.1016/j.ijfoodmicro.2024.110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Escherichia coli is one of the most prevalent foodborne pathogens, frequently found in meat and dairy products. Current decontamination methods are often associated with changes in organoleptic characteristics, nutrient loss, and potentially harmful side effects. Furthermore, despite the array of available methods, foodborne outbreaks still frequently occur. For this reason, bacteriophages (or simply phages) emerged as a natural alternative for the biocontrol of bacterial contamination in food without altering their organoleptic properties. In this study, the potential of phage phT4A was assessed in the biocontrol of E. coli in liquid (milk) and solid (ham) food matrices. Firstly, as foods have different pH and temperature values, the influence of these parameters on phage phT4A viability was also assessed to develop an effective protocol. Phage phT4A proved to be stable for long storage periods at pH 7-8 (56 days) and temperatures of 4-37 °C (21 days). Before application of phages to inactivate pathogenic bacteria in food, previous assays were carried out in Tryptic Soy Broth (TSB) to study the dynamics of phage-bacteria interaction. Then, the antibacterial potential of phage phT4A was evaluated in the two food matrices at different temperatures (4, 10 and 25 °C). This phage was more efficient at 25 °C in all tested matrices (maximum inactivation of 6.6, 3.9 and 1.8 log CFU/mL in TSB, milk and ham, respectively) than at 10 °C (maximum decrease of 4.7, 2.1 and 1.0 log CFU/mL in TSB, milk and ham, respectively) and 4 °C (maximum reduction of 2.6 and 0.7 log CFU/mL in TSB and milk, respectively). However, the decrease of temperature from 25 °C to 10 and 4 °C prevented bacterial regrowth. The results suggest that during phage treatment, a balance between an incubation temperature that provide effective results in terms of bacterial inactivation by the phages and at the same time prevents or delays bacterial regrowth, is needed. The application of phage phT4A at a temperature of 10 °C can be an effective strategy in terms of bacterial inactivation, delaying bacterial regrowth and also reducing energy costs.
Collapse
Affiliation(s)
- Márcia Braz
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carmen S R Freire
- Department of Chemistry and CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
B S, C VT, S K, B S, M I. Advancing Fermented Food Products: Exploring Bioprocess Technologies and Overcoming Challenges. FOOD BIOPROCESS TECH 2024; 17:3461-3482. [DOI: 10.1007/s11947-023-03287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2025]
|
10
|
Szymanska I, Matys A, Rybak K, Karwacka M, Witrowa-Rajchert D, Nowacka M. Impact of Ultrasound Pre-Treatment on the Drying Kinetics and Quality of Chicken Breast-A Comparative Study of Convective and Freeze-Drying Methods. Foods 2024; 13:2850. [PMID: 39272615 PMCID: PMC11395696 DOI: 10.3390/foods13172850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Fresh meat has a limited shelf life and is prone to spoilage. Drying serves as a common method for food preservation. Non-thermal techniques such as ultrasound treatment (US) can positively affect the drying processes and alter the final product. The study aimed to evaluate the impact of US pre-treatment on the hot air (HA) and freeze-drying (FD) of chicken breast meat and the quality of the dried products. US pre-treatment had a varied impact depending on the drying method used. The contact US method extended the HA drying time (about 50%) but improved water removal during FD (about 30%) compared to the untreated samples. Both methods resulted in low water content (<8.3%) and low water activity (<0.44). While rehydration properties (RR) and hygroscopicity (H) were not significantly affected by US pre-treatment in HA drying (about 1.35% and about 1.1, respectively), FD noticed differences due to shrinkage and porosity variations (RR: 2.4-3.2%, H: 1.19-1.25). The HA-dried samples exhibited notably greater tissue shrinkage and a darker surface color than the FD meat. Ultrasonic processing holds substantial potential in creating dried meat products with tailored characteristics. Hence, meticulous consideration of processing methods and parameters is of utmost importance.
Collapse
Affiliation(s)
- Iwona Szymanska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Aleksandra Matys
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Magdalena Karwacka
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Malgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| |
Collapse
|
11
|
Yudhistira B, Adi P, Mulyani R, Chang CK, Gavahian M, Hsieh CW. Achieving sustainability in heat drying processing: Leveraging artificial intelligence to maintain food quality and minimize carbon footprint. Compr Rev Food Sci Food Saf 2024; 23:e13413. [PMID: 39137001 DOI: 10.1111/1541-4337.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024]
Abstract
The food industry is a significant contributor to carbon emissions, impacting carbon footprint (CF), specifically during the heat drying process. Conventional heat drying processes need high energy and diminish the nutritional value and sensory quality of food. Therefore, this study aimed to investigate the integration of artificial intelligence (AI) in food processing to enhance quality and reduce CF, with a focus on heat drying, a high energy-consuming method, and offer a promising avenue for the industry to be consistent with sustainable development goals. Our finding shows that AI can maintain food quality, including nutritional and sensory properties of dried products. It determines the optimal drying temperature for improving energy efficiency, yield, and life cycle cost. In addition, dataset training is one of the key challenges in AI applications for food drying. AI needs a vast and high-quality dataset that directly impacts the performance and capabilities of AI models to optimize and automate food drying.
Collapse
Affiliation(s)
- Bara Yudhistira
- Department of Food Science and Technology, Sebelas Maret University, Surakarta City, Central Java, Indonesia
| | - Prakoso Adi
- International Doctoral Program in Agriculture, National Chung Hsing University, Taichung City, Taiwan, Republic of China
- Department of Agricultural Product Technology, Sebelas Maret University, Surakarta City, Central Java, Indonesia
| | - Rizka Mulyani
- International Doctoral Program in Agriculture, National Chung Hsing University, Taichung City, Taiwan, Republic of China
- Department of Agricultural Product Technology, Sebelas Maret University, Surakarta City, Central Java, Indonesia
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
- Department of Food Science, National Ilan University, Yilan City, Taiwan, Republic of China
- Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan, Republic of China
| |
Collapse
|
12
|
Shaik L, Chakraborty S. Sequential Pulsed Light and Ultrasound Treatments for the Inactivation of Saccharomyces cerevisiae and PPO and the Retention of Bioactive Compounds in Sweet Lime Juice. Foods 2024; 13:1996. [PMID: 38998503 PMCID: PMC11241773 DOI: 10.3390/foods13131996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024] Open
Abstract
Designing a pasteurization con dition for sweet lime juice while ensuring microbial safety, enzymatic stability, and high nutritional quality is crucial for satisfying stakeholder demands. The present research investigates the effects of matrix pH, ultrasound treatments, and sequential pulsed light on the microbial population, enzyme activity, and bioactive chemicals in sweet lime juice. The sequential pulsed light (PL: 0.6-0.84 J/cm2) and ultrasound (US: 0.2-0.4 W/cm3) treatments for sweet lime juice were optimized using response surface methodology (RSM). A three-factor full factorial design was used for this purpose. The independent variables encompassed pH (X1), PL effective fluence (X2, J/cm2), and US intensity (X3, W/cm3). The responses assessed included the inactivation of Saccharomyces cerevisiae (Y1, log cfu/mL) and polyphenol oxidase (PPO: Y2 in %) and the retention of vitamin C (Y3, %). The polynomial models were optimized using numerical optimization to attain the maximum desirability value (0.89). The optimized PL + US sample (0.8 J/cm2 + 0.4 W/cm3, respectively) at pH 3.5 resulted in a 5-log cycle reduction in S. cerevisiae count and a 90% inactivation in PPO activity and retained 95% of its vitamin C content. This optimized sample underwent further analysis, including phenolic profiling, assessment of microbial cell morphology, and examination of enzyme conformational changes. After sequential pulsed-light (0.8 J/cm2) and ultrasound (0.4 W/cm3) treatments, yeast cells showed unusual structural changes, indicating additional targets besides membranes. Following PL + US treatment, the PPO composition changed to 2.7 ± 0.1% α-helix, 33.9 ± 0.3% β-sheet, 1.4 ± 0.2% β-turn, and 62 ± 0.7% random coil. Impressively, the optimized PL + US sample maintained a sensory acceptance level similar to that of the untreated sample.
Collapse
Affiliation(s)
- Lubna Shaik
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India
| | - Snehasis Chakraborty
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
13
|
Adhikari J, Araghi LR, Singh R, Adhikari K, Patil BS. Continuous-Flow High-Pressure Homogenization of Blueberry Juice Enhances Anthocyanin and Ascorbic Acid Stability during Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11629-11639. [PMID: 38739462 PMCID: PMC11117402 DOI: 10.1021/acs.jafc.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Blueberries (Vaccinium section Cyanococcus) have a wealth of bioactive compounds, including anthocyanins and other antioxidants, that offer significant health benefits. Preserving these compounds and maintaining the sensory and nutritional qualities of blueberry products such as juice during cold market storage is critical to meet consumer expectations for nutritious, safe, and minimally processed food. In this study, we compared the effects of two preservation processing techniques, high-temperature short-time (HTST) and continuous flow high-pressure homogenization (CFHPH), on blueberry juice quality during storage at 4 °C. Our findings revealed that inlet temperature (Tin) of CFHPH processing at 4 °C favored anthocyanin retention, whereas Tin at 22 °C favored ascorbic acid retention. After 45 days of storage, CFHPH (300 MPa, 1.5 L/min, 4 °C) juice retained up to 54% more anthocyanins compared to control at 0 day. In contrast, HTST treatment (95 °C, 15 s) initially increased anthocyanin concentrations but led to their subsequent degradation over time, while also significantly degrading ascorbic acid. Furthermore, CFHPH (300 MPa, 4 °C) juice had significantly lower polyphenol oxidase activity (>80% less than control), contributing to the overall quality of the juice. This innovative processing technique has the potential to improve commercial blueberry juice, and help meet the rising demand for healthy and appealing food choices.
Collapse
Affiliation(s)
- Jayashan Adhikari
- Vegetable
and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
- Department
of Food Science and Technology, Texas A&M
University, 1500 Research
Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - Lida Rahimi Araghi
- Department
of Food Science and Technology, University
of Georgia, 100 Cedar Street, Athens, Georgia 30602, United States
| | - Rakesh Singh
- Department
of Food Science and Technology, University
of Georgia, 100 Cedar Street, Athens, Georgia 30602, United States
| | - Koushik Adhikari
- Department
of Food Science and Technology, University
of Georgia, 1109 Experiment Street, Griffin, Georgia 30223, United States
| | - Bhimanagouda S. Patil
- Vegetable
and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
- Department
of Food Science and Technology, Texas A&M
University, 1500 Research
Parkway, Suite A120, College Station, Texas 77845-2119, United States
| |
Collapse
|
14
|
Kulišová M, Rabochová M, Lorinčík J, Maťátková O, Brányik T, Hrudka J, Scholtz V, Jarošová Kolouchová I. Comparative assessment of UV-C radiation and non-thermal plasma for inactivation of foodborne fungal spores suspension in vitro. RSC Adv 2024; 14:16835-16845. [PMID: 38784412 PMCID: PMC11114098 DOI: 10.1039/d4ra01689k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Fungal contamination poses a persistent challenge to industries, particularly in food, healthcare, and clinical sectors, due to the remarkable resilience of fungi in withstanding conventional control methods. In this context, our research delves into the comparative efficacy of UV radiation and non-thermal plasma (NTP) on key foodborne fungal contaminants - Alternaria alternata, Aspergillus niger, Fusarium culmorum, and Fusarium graminearum. The study examined the impact of varying doses of UV radiation on the asexual spores of all mentioned fungal strains. Simultaneously, the study compared the effects of UV radiation and NTP on the metabolic activity of cells after spore germination and their subsequent germination ability. The results revealed that UV-C radiation (254 nm) did not significantly suppress the metabolic activity of cells after spore germination. In contrast, NTP exhibited almost 100% effectiveness on both selected spores and their subsequent germination, except for A. niger. In the case of A. niger, the effectiveness of UV-C and NTP was nearly comparable, showing only a 35% decrease in metabolic activity after 48 hours of germination, while the other strains (A. alternata, F. culmorum, F. graminearum) exhibited a reduction of more than 95%. SEM images illustrate the morphological changes in structure of all tested spores after both treatments. This study addresses a crucial gap in existing literature, offering insights into the adaptation possibilities of treated cells and emphasizing the importance of considering exposure duration and nutrient conditions (introduction of fresh medium). The results highlighted the promising antimicrobial potential of NTP, especially for filamentous fungi, paving the way for enhanced sanitation processes with diverse applications.
Collapse
Affiliation(s)
- Markéta Kulišová
- University of Chemistry and Technology, Prague, Department of Biotechnology Technická 5, 166 28, Praha 6 Prague Czech Republic
| | - Michaela Rabochová
- Research Centre Rez, Department of Material Analysis Hlavní 130, 250 68, Husinec-Řež Czech Republic
- Czech Technical University in Prague, Faculty of Biomedical Engineering nám. Sítná 3105 272 01 Kladno Czech Republic
| | - Jan Lorinčík
- Research Centre Rez, Department of Material Analysis Hlavní 130, 250 68, Husinec-Řež Czech Republic
| | - Olga Maťátková
- University of Chemistry and Technology, Prague, Department of Biotechnology Technická 5, 166 28, Praha 6 Prague Czech Republic
| | - Tomáš Brányik
- Research Institute of Brewing and Malting Lípová 15 120 44 Prague Czech Republic
| | - Jan Hrudka
- University of Chemistry and Technology, Prague, Department of Physics and Measurements Technická 5, 166 28, Praha 6 Prague Czech Republic
| | - Vladimír Scholtz
- University of Chemistry and Technology, Prague, Department of Physics and Measurements Technická 5, 166 28, Praha 6 Prague Czech Republic
| | - Irena Jarošová Kolouchová
- University of Chemistry and Technology, Prague, Department of Biotechnology Technická 5, 166 28, Praha 6 Prague Czech Republic
| |
Collapse
|
15
|
Veiga GCD, Mafaldo ÍM, Barão CE, Baú TR, Magnani M, Pimentel TC. Supercritical carbon dioxide technology in food processing: Insightful comprehension of the mechanisms of microbial inactivation and impacts on quality and safety aspects. Compr Rev Food Sci Food Saf 2024; 23:e13345. [PMID: 38638070 DOI: 10.1111/1541-4337.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Supercritical carbon dioxide (SC-CO2) has emerged as a nonthermal technology to guarantee food safety. This review addresses the potential of SC-CO2 technology in food preservation, discussing the microbial inactivation mechanisms and the impact on food products' quality parameters and bioactive compounds. Furthermore, the main advantages and gaps are denoted. SC-CO2 technology application causes adequate microbial reductions (>5 log cfu/mL) of spoilage and pathogenic microorganisms, enzyme inactivation, and improvements in the storage stability in fruit and vegetable products (mainly fruit juices), meat products, and dairy derivatives. SC-CO2-treated products maintain the physicochemical, technological, and sensory properties, bioactive compound concentrations, and biological activity (antioxidant and angiotensin-converting enzyme-inhibitory activities) similar to the untreated products. The optimization of processing parameters (temperature, pressure, CO2 volume, and processing times) is mandatory for achieving the desired results. Further studies should consider the expansion to different food matrices, shelf-life evaluation, bioaccessibility of bioactive compounds, and in vitro and in vivo studies to prove the benefits of using SC-CO2 technology. Moreover, the impact on sensory characteristics and, mainly, the consumer perception of SC-CO2-treated foods need to be elucidated. We highlight the opportunity for studies in postbiotic production. In conclusion, SC-CO2 technology may be used for microbial inactivation to ensure food safety without losing the quality parameters.
Collapse
Affiliation(s)
- Géssica Cristina da Veiga
- Department of Food Science and Technology, Post-Graduation Program in Food Science, State University of Londrina, Londrina, Brazil
| | - Ísis Meireles Mafaldo
- Department of Food Engineering, Laboratory of Microbial Process in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Tahis Regina Baú
- Food Technology Coordination, Federal Institute of Santa Catarina, São Miguel do Oeste, Santa Catarina, Brazil
| | - Marciane Magnani
- Department of Food Engineering, Laboratory of Microbial Process in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatiana Colombo Pimentel
- Department of Food Science and Technology, Post-Graduation Program in Food Science, State University of Londrina, Londrina, Brazil
- Federal Institute of Paraná (IFPR), Campus Paranavaí, Paranavaí, Paraná, Brazil
| |
Collapse
|
16
|
Siddiqui SA, Singh S, Bahmid NA, Sasidharan A. Applying innovative technological interventions in the preservation and packaging of fresh seafood products to minimize spoilage - A systematic review and meta-analysis. Heliyon 2024; 10:e29066. [PMID: 38655319 PMCID: PMC11035943 DOI: 10.1016/j.heliyon.2024.e29066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Seafood, being highly perishable, faces rapid deterioration in freshness, posing spoilage risks and potential health concerns without proper preservation. To combat this, various innovative preservation and packaging technologies have emerged. This review delves into these cutting-edge interventions designed to minimize spoilage and effectively prolong the shelf life of fresh seafood products. Techniques like High-Pressure Processing (HPP), Modified Atmosphere Packaging (MAP), bio-preservation, and active and vacuum packaging have demonstrated the capability to extend the shelf life of seafood products by up to 50%. However, the efficacy of these technologies relies on factors such as the specific type of seafood product and the storage temperature. Hence, careful consideration of these factors is essential in choosing an appropriate preservation and packaging technology.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, Quakenbrück, Germany
| | - Shubhra Singh
- Department of Tropical Agriculture and International cooperation, National Pingtung University of Science and Technology, 91201, Taiwan
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad P.O 682506, Kerala, India
| |
Collapse
|
17
|
Kulišová M, Rabochová M, Lorinčík J, Brányik T, Hrudka J, Scholtz V, Jarošová Kolouchová I. Exploring Non-Thermal Plasma and UV Radiation as Biofilm Control Strategies against Foodborne Filamentous Fungal Contaminants. Foods 2024; 13:1054. [PMID: 38611358 PMCID: PMC11011738 DOI: 10.3390/foods13071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, non-thermal plasma (NTP) has emerged as a promising tool for decontamination and disinfection within the food industry. Given the increasing resistance of microbial biofilms to conventional disinfectants and their adverse environmental effects, this method has significant potential for eliminating biofilm formation or mitigating the metabolic activity of grown biofilms. A comparative study was conducted evaluating the efficacy of UV radiation and NTP in eradicating mature biofilms of four common foodborne filamentous fungal contaminants: Alternaria alternata, Aspergillus niger, Fusarium culmorum, and Fusarium graminearum. The findings reveal that while UV radiation exhibits variable efficacy depending on the duration of exposure and fungal species, NTP induces substantial morphological alterations in biofilms, disrupting hyphae, and reducing extracellular polymeric substance production, particularly in A. alternata and F. culmorum. Notably, scanning electron microscopy analysis demonstrates significant disruption of the hyphae in NTP-treated biofilms, indicating its ability to penetrate the biofilm matrix, which is a promising outcome for biofilm eradication strategies. The use of NTP could offer a more environmentally friendly and potentially more effective alternative to traditional disinfection methods.
Collapse
Affiliation(s)
- Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Michaela Rabochová
- Department of Material Analysis, Research Centre Rez, Hlavní 130, 250 68 Husinec-Řež, Czech Republic; (M.R.); (J.L.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, 272 01 Kladno, Czech Republic
| | - Jan Lorinčík
- Department of Material Analysis, Research Centre Rez, Hlavní 130, 250 68 Husinec-Řež, Czech Republic; (M.R.); (J.L.)
| | - Tomáš Brányik
- Research Institute of Brewing and Malting, Lípová 15, 120 44 Prague, Czech Republic;
| | - Jan Hrudka
- Department of Physics and Measurements, Prague, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.H.); (V.S.)
| | - Vladimír Scholtz
- Department of Physics and Measurements, Prague, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.H.); (V.S.)
| | - Irena Jarošová Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| |
Collapse
|
18
|
Liu Y, Deng J, Zhao T, Yang X, Zhang J, Yang H. Bioavailability and mechanisms of dietary polyphenols affected by non-thermal processing technology in fruits and vegetables. Curr Res Food Sci 2024; 8:100715. [PMID: 38511155 PMCID: PMC10951518 DOI: 10.1016/j.crfs.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Plant polyphenols play an essential role in human health. The bioactivity of polyphenols depends not only on their content but also on their bioavailability in food. The processing techniques, especially non-thermal processing, improve the retention and bioavailability of polyphenolic substances. However, there are limited studies summarizing the relationship between non-thermal processing, the bioavailability of polyphenols, and potential mechanisms. This review aims to summarize the effects of non-thermal processing techniques on the content and bioavailability of polyphenols in fruits and vegetables. Importantly, the disruption of cell walls and membranes, the inhibition of enzyme activities, free radical reactions, plant stress responses, and interactions of polyphenols with the food matrix caused by non-thermal processing are described. This study aims to enhance understanding of the significance of non-thermal processing technology in preserving the nutritional properties of dietary polyphenols in plant-based foods. It also offers theoretical support for the contribution of non-thermal processing technology in improving food nutrition.
Collapse
Affiliation(s)
- Yichen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Juntao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
19
|
Bebek Markovinović A, Stulić V, Putnik P, Bekavac N, Pavlić B, Milošević S, Velebit B, Herceg Z, Bursać Kovačević D. High-Power Ultrasound (HPU) and Pulsed Electric Field (PEF) in the Hurdle Concept for the Preservation of Antioxidant Bioactive Compounds in Strawberry Juice-A Chemometric Evaluation-Part II. Foods 2024; 13:537. [PMID: 38397513 PMCID: PMC10888059 DOI: 10.3390/foods13040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In this work, the influence of high-power ultrasound (HPU) followed by pulsed electric field (PEF) in the hurdle concept (HPU + PEF) on the content of biologically active compounds (BACs) and antioxidant activity in strawberry juices stored at 4 °C/7 days was investigated. The HPU was performed with an amplitude of 25% and pulse of 50% during 2.5, 5.0 and 7.5 min, while the PEF was performed with an electric field strength of 30 kV cm-1 and frequency of 100 Hz during 1.5, 3 and 4.5 min. The results obtained indicate that the synergy of the mechanisms of action for technologies in the hurdle concept plays a critical role in the stability of BACs and antioxidant activity. Juices treated with HPU + PEF hurdle technology and kept at 4 °C for 7 days showed a statistically significant decrease in all BACs, antioxidant capacity and pH. Shorter HPU + PEF treatment times favored the preservation of BACs in juices. Regarding total phenolic compounds, flavonols, condensed tannins and antioxidant capacity, optimization of hurdle parameters showed that a shorter HPU treatment time of 2.5 min provided the best yield of these compounds. In summary, by optimizing and adjusting the parameters of the HPU/PEF technology, it is possible to produce functional strawberry juice.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (V.S.); (N.B.); (Z.H.)
| | - Višnja Stulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (V.S.); (N.B.); (Z.H.)
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Nikša Bekavac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (V.S.); (N.B.); (Z.H.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.); (S.M.)
| | - Sanja Milošević
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.); (S.M.)
| | - Branko Velebit
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia;
| | - Zoran Herceg
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (V.S.); (N.B.); (Z.H.)
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (V.S.); (N.B.); (Z.H.)
| |
Collapse
|
20
|
Fischer E, Cayot P, Cachon R, Cayot N. Effects of ionizing radiation on organic volatile compounds from PEA protein isolate. Heliyon 2023; 9:e22658. [PMID: 38125550 PMCID: PMC10730598 DOI: 10.1016/j.heliyon.2023.e22658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Food irradiation is a preservation technique and in respect with regulations, is applied to a limited number of products. Nevertheless, this technique could be interesting for products sensitive to heat treatment, and to limit alteration caused to their organoleptic characteristics. This study concerns the potential of ionization for vegetable proteins, to limit the damage on the sensory properties that can be caused by thermal treatments. The impact of β-ionizing was measured on the volatile compounds of five pea protein isolates. These isolates were subjected to ionizing radiation of 10 MeV electron beam and the volatile compounds were compared by SPME-GC-MS before and after the treatment. β-Ionization led to a major increase in the total amount of volatiles and to appearance of new compounds. We observed a strong increase in aldehydes, that were reported to be involved in pea off-flavor, and the appearance of dimethyl-disulfide, linked to sulfurous off-notes. Many of the compounds impacted by the treatment were linked to protein and lipid oxidations. Mechanisms explaining the impact of β-ionizing on lipids and protein oxidations were proposed.
Collapse
Affiliation(s)
- Estelle Fischer
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Philippe Cayot
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Rémy Cachon
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Nathalie Cayot
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
21
|
Yang Y, Wang Y, Wei S, Wang X, Zhang J. Effects and Mechanisms of Non-Thermal Plasma-Mediated ROS and Its Applications in Animal Husbandry and Biomedicine. Int J Mol Sci 2023; 24:15889. [PMID: 37958872 PMCID: PMC10648079 DOI: 10.3390/ijms242115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Non-thermal plasma (NTP) is an ionized gas composed of neutral and charged reactive species, electric fields, and ultraviolet radiation. NTP presents a relatively low discharge temperature because it is characterized by the fact that the temperature values of ions and neutral particles are much lower than that of electrons. Reactive species (atoms, radicals, ions, electrons) are produced in NTP and delivered to biological objects induce a set of biochemical processes in cells or tissues. NTP can mediate reactive oxygen species (ROS) levels in an intensity- and time-dependent manner. ROS homeostasis plays an important role in animal health. Relatively low or physiological levels of ROS mediated by NTP promote cell proliferation and differentiation, while high or excessive levels of ROS mediated by NTP cause oxidative stress damage and even cell death. NTP treatment under appropriate conditions not only produces moderate levels of exogenous ROS directly and stimulates intracellular ROS generation, but also can regulate intracellular ROS levels indirectly, which affect the redox state in different cells and tissues of animals. However, the treatment condition of NTP need to be optimized and the potential mechanism of NTP-mediated ROS in different biological targets is still unclear. Over the past ten decades, interest in the application of NTP technology in biology and medical sciences has been rapidly growing. There is significant optimism that NTP can be developed for a wide range of applications such as wound healing, oral treatment, cancer therapy, and biomedical materials because of its safety, non-toxicity, and high efficiency. Moreover, the combined application of NTP with other methods is currently a hot research topic because of more effective effects on sterilization and anti-cancer abilities. Interestingly, NTP technology has presented great application potential in the animal husbandry field in recent years. However, the wide applications of NTP are related to different and complicated mechanisms, and whether NTP-mediated ROS play a critical role in its application need to be clarified. Therefore, this review mainly summarizes the effects of ROS on animal health, the mechanisms of NTP-mediated ROS levels through antioxidant clearance and ROS generation, and the potential applications of NTP-mediated ROS in animal growth and breeding, animal health, animal-derived food safety, and biomedical fields including would healing, oral treatment, cancer therapy, and biomaterials. This will provide a theoretical basis for promoting the healthy development of animal husbandry and the prevention and treatment of diseases in both animals and human beings.
Collapse
Affiliation(s)
| | | | | | | | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.Y.); (Y.W.); (S.W.); (X.W.)
| |
Collapse
|
22
|
Berdejo D, García-Gonzalo D, Oulahal N, Denkova-Kostova R, Shopska V, Kostov G, Degraeve P, Pagan R. Minimal Processing Technologies for Production and Preservation of Tailor-Made Foods §. Food Technol Biotechnol 2023; 61:357-377. [PMID: 38022877 PMCID: PMC10666941 DOI: 10.17113/ftb.61.03.23.8013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/06/2023] [Indexed: 12/01/2023] Open
Abstract
Tailor-made foods, also known as foods with programmable properties, are specialised systems with unique composition prepared by different methods, using the known mechanisms of action of their bioactive ingredients. The development of tailor-made foods involves the evaluation of individual components, including bioactive substances derived from waste products of other productions, such as essential oils. These components are evaluated both individually and in combination within food compositions to achieve specific functionalities. This review focuses on the application of minimal processing technologies for the production and preservation of tailor-made foods. It examines a range of approaches, including traditional and emerging technologies, as well as novel ingredients such as biomolecules from various sources and microorganisms. These approaches are combined according to the principles of hurdle technology to achieve effective synergistic effects that enhance food safety and extend the shelf life of tailor-made foods, while maintaining their functional properties.
Collapse
Affiliation(s)
- Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA (UNIZAR), C. de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA (UNIZAR), C. de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Nadia Oulahal
- Université de Lyon, Université Claude Bernard Lyon 1 (UCBL), ISARA Lyon, BioDyMIA Research Unit, Technopole Alimentec, 155 rue Henri de Boissieu, 01000 Bourg en Bresse, France
| | | | - Vesela Shopska
- University of Food Technologies (UFT), 26 Maritza boulevard, Plovdiv, Bulgaria
| | - Georgi Kostov
- University of Food Technologies (UFT), 26 Maritza boulevard, Plovdiv, Bulgaria
| | - Pascal Degraeve
- Université de Lyon, Université Claude Bernard Lyon 1 (UCBL), ISARA Lyon, BioDyMIA Research Unit, Technopole Alimentec, 155 rue Henri de Boissieu, 01000 Bourg en Bresse, France
| | - Rafael Pagan
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA (UNIZAR), C. de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| |
Collapse
|
23
|
von Hertwig AM, Prestes FS, Nascimento MS. Comparative evaluation of the effectiveness of alcohol-based sanitizers, UV-C radiation and hot air on three-age Salmonella biofilms. Food Microbiol 2023; 113:104278. [PMID: 37098425 DOI: 10.1016/j.fm.2023.104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Dry sanitation is recommended to control contamination and prevent microbial growth and biofilm formation in the low-moisture food manufacturing plants. The objective of this study was to evaluate the effectiveness of dry sanitation protocols on Salmonella three-age biofilms formed on stainless steel (SS) and polypropylene (PP). Biofilms were formed for 24, 48 and 96 h at 37 °C using a cocktail of six Salmonella strains (Muenster, Miami, Glostrup, Javiana, Oranienburg, Yoruba) isolated from the peanut supply chain. Then, the surfaces were exposed to UV-C radiation, hot air (90 °C), 70% ethanol and a commercial product based on isopropyl alcohol for 5, 10, 15 and 30 min. After 30min exposure, on PP the reductions ranged from 3.2 to 4.2 log CFU/cm2 for UV-C, from 2.6 to 3.0 log CFU/cm2 for hot air, from 1.6 to 3.2 log CFU/cm2 for 70% ethanol and from 1.5 to 1.9 log CFU/cm2 for the commercial product. On SS, after the same exposure time, reductions of 1.3-2.2 log CFU/cm2, 2.2 to 3.3 log CFU/cm2, 1.7 to 2.0 log CFU/cm2 and 1.6 to 2.4 log CFU/cm2 were observed for UV-C, hot air, 70% ethanol and commercial product, respectively. UV-C was the only treatment affected by the surface material (p < 0.05) whereas the biofilm age influenced the effectiveness of UV-C and hot air (p < 0.05). For most treatment, there was significant difference among the exposure times (p < 0.05). Overall, the fastest loss in the biofilm viability was noted in the first 5 min, followed by a tail phase. The time predicted by the Weibull model for the first decimal reduction ranged from 0.04 to 9.9 min on PP and from 0.7 to 8.5 min on SS. In addition, the Weibull model indicates that most of treatments (79%) required a long-term exposure time (>30 min) to achieve 3-log reductions of Salmonella biofilms. In summary, UV-C showed the best performance on PP whereas hot air was noted to be the most effective on SS.
Collapse
Affiliation(s)
| | - Flavia S Prestes
- Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
24
|
Zhu M, Fei X, Gong D, Zhang G. Effects of Processing Conditions and Simulated Digestion In Vitro on the Antioxidant Activity, Inhibition of Xanthine Oxidase and Bioaccessibility of Epicatechin Gallate. Foods 2023; 12:2807. [PMID: 37509901 PMCID: PMC10378779 DOI: 10.3390/foods12142807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/18/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
The bioactivity and gastrointestinal stability of epicatechin gallate (ECG) may be affected by processing conditions. Results showed that the antioxidant ability and inhibitory activity on xanthine oxidase (XO) of ECG were higher at low pH values. Appropriate microwave and heating treatments improved the antioxidant (the scavenging rate increased from 71.75% to 92.71% and 80.88% under the microwave and heating treatments) and XO inhibitory activity (the inhibitory rate increased from 47.11% to 56.89% and 51.85% at the microwave and heating treatments) of ECG. The treated ECG led to a more compact structure of XO. Moreover, there may be synergistic antioxidant and inhibitory effects between ECG and its degradation products. The bioaccessibility of ECG after simulated digestion was untreated > microwave > heating, and the microwave-treated ECG still had good XO inhibitory activity after digestion. These findings may provide some significant information for the development of functional foods enriched in catechins.
Collapse
Affiliation(s)
- Miao Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
25
|
Ao B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023; 14:1229838. [PMID: 37520346 PMCID: PMC10373938 DOI: 10.3389/fmicb.2023.1229838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Effective control of foodborne pathogen contamination is a significant challenge to the food industry, but the development of new antibacterial nanotechnologies offers new opportunities. Notably, selenium nanoparticles have been extensively studied and successfully applied in various food fields. Selenium nanoparticles act as food antibacterial agents with a number of benefits, including selenium as an essential trace element in food, prevention of drug resistance induction in foodborne pathogens, and improvement of shelf life and food storage conditions. Compared to physical and chemical methods, biogenic selenium nanoparticles (Bio-SeNPs) are safer and more multifunctional due to the bioactive molecules in Bio-SeNPs. This review includes a summarization of (1) biosynthesized of Bio-SeNPs from different sources (plant extracts, fungi and bacteria) and their antibacterial activity against various foodborne bacteria; (2) the antibacterial mechanisms of Bio-SeNPs, including penetration of cell wall, damage to cell membrane and contents leakage, inhibition of biofilm formation, and induction of oxidative stress; (3) the potential antibacterial applications of Bio-SeNPs as food packaging materials, food additives and fertilizers/feeds for crops and animals in the food industry; and (4) the cytotoxicity and animal toxicity of Bio-SeNPs. The related knowledge contributes to enhancing our understanding of Bio-SeNP applications and makes a valuable contribution to ensuring food safety.
Collapse
|
26
|
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, Zhao H, Fărcaș AC, Coldea TE. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023; 12:838. [PMID: 36832913 PMCID: PMC9957501 DOI: 10.3390/foods12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The food and beverage market has become broader due to globalization and consumer claims. Under the umbrella of consumer demands, legislation, nutritional status, and sustainability, the importance of food and beverage safety must be decisive. A significant sector of food production is related to ensuring fruit and vegetable conservation and utilization through fermentation. In this respect, in this review, we critically analyzed the scientific literature regarding the presence of chemical, microbiological and physical hazards in fruit-based fermented beverages. Furthermore, the potential formation of toxic compounds during processing is also discussed. In managing the risks, biological, physical, and chemical techniques can reduce or eliminate any contaminant from fruit-based fermented beverages. Some of these techniques belong to the technological flow of obtaining the beverages (i.e., mycotoxins bound by microorganisms used in fermentation) or are explicitly applied for a specific risk reduction (i.e., mycotoxin oxidation by ozone). Providing manufacturers with information on potential hazards that could jeopardize the safety of fermented fruit-based drinks and strategies to lower or eliminate these hazards is of paramount importance.
Collapse
Affiliation(s)
- Alexandra Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Ofelia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- Spectroscopy and Chromatography Laboratory, CBP-BI-Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Natalia Barboza
- Food Technology Department, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Jessie Usaga
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Cosmin Pompei Dărab
- Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| |
Collapse
|
27
|
Xue W, Macleod J, Blaxland J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023; 12:foods12040814. [PMID: 36832889 PMCID: PMC9957223 DOI: 10.3390/foods12040814] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The need for microorganism control in the food industry has promoted research in food processing technologies. Ozone is considered to be a promising food preserving technique and has gained great interest due to its strong oxidative properties and significant antimicrobial efficiency, and because its decomposition leaves no residues in foods. In this ozone technology review, the properties and the oxidation potential of ozone, and the intrinsic and extrinsic factors that affect the microorganism inactivation efficiency of both gaseous and aqueous ozone, are explained, as well as the mechanisms of ozone inactivation of foodborne pathogenic bacteria, fungi, mould, and biofilms. This review focuses on the latest scientific studies on the effects of ozone in controlling microorganism growth, maintaining food appearance and sensorial organoleptic qualities, assuring nutrient contents, enhancing the quality of food, and extending food shelf life, e.g., vegetables, fruits, meat, and grain products. The multifunctionality effects of ozone in food processing, in both gaseous and aqueous form, have promoted its use in the food industries to meet the increased consumer preference for a healthy diet and ready-to-eat products, although ozone may present undesirable effects on physicochemical characteristics on certain food products at high concentrations. The combined uses of ozone and other techniques (hurdle technology) have shown a promotive future in food processing. It can be concluded from this review that the application of ozone technology upon food requires increased research; specifically, the use of treatment conditions such as concentration and humidity for food and surface decontamination.
Collapse
Affiliation(s)
- Wenya Xue
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Joshua Macleod
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - James Blaxland
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Correspondence:
| |
Collapse
|
28
|
Doshi P, Šerá B. Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. PLANTS (BASEL, SWITZERLAND) 2023; 12:627. [PMID: 36771708 PMCID: PMC9921801 DOI: 10.3390/plants12030627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Fusarium spp. is a well-studied pathogen with the potential to infect cereals and reduce the yield to maximum if left unchecked. For decades, different control treatments have been tested against different Fusarium spp. and for reducing the mycotoxins they produce and are well documented. Some treatments also involved integrated pest management (IPM) strategies against Fusarium spp. control and mycotoxin degradation produced by them. In this review article, we compiled different control strategies against different Fusarium spp. In addition, special focus is given to the non-thermal plasma (NTP) technique used against Fusarium spp. inactivation. In a separate group, we compiled the literature about the use of NTP in the decontamination of mycotoxins produced by Fusarium spp., and highlighted the possible mechanisms of mycotoxin degradation by NTP. In this review, we concluded that although NTP is an effective treatment, it is a nice area and needs further research. The possibility of a prospective novel IPM strategy against Fusarium spp. is also proposed.
Collapse
|
29
|
Combined Effect of High Hydrostatic Pressure, Sous-Vide Cooking, and Carvacrol on the Quality of Veal, Plant-Based, and Hybrid Patties during Storage. Foods 2023; 12:foods12020289. [PMID: 36673381 PMCID: PMC9858191 DOI: 10.3390/foods12020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The effect of carvacrol added to patties stored at 4 °C for 14 days, previously pressurized and vacuum-cooked (HPP-SVCOOK), was investigated. Three formulations were prepared (veal, plant-based product, and hybrid product). An emulsion made with olive and linseed oils was added. The physicochemical and microbiological qualities were assessed. Microbial tests indicated negligible growth of spoilage organisms in treated patties. No significant effect of carvacrol on the microbial loads of patties was noticed. Sulfite-reducing clostridia and Enterobacteriaceae were absent in the treated patties, whereas, in the treated veal and hybrid samples, 3 and 2 units of log cfu/g reduction for lactic acid bacteria and molds and yeasts were noted, respectively. On day 7 of storage, veal patties exhibited a significant reduction (p < 0.05) in the L* (53.9−49.3), hardness (32.3−21.4 N), springiness (0.8−0.7 N), cohesiveness (0.49−0.46), and chewiness (12.2−7.1) and a hike in the a* value (5.3−9.4). No significant changes in L* (59.1−58.6), a* (8.57−8.61), hardness (11.6−10.6 N), or cohesiveness (0.27−0.26) were observed in plant-based patties over the storage times, whereas reductions in springiness (0.5−0.4), chewiness (1.9−1.3), and b* (26.6−29.1) were noted in them. In hybrid patties, the L* (53.9−52.5) and b* values (24.9−24.3) were consistent but had a significant decrease in a* value (5.9−3.5) along the days of storage under study. The texture parameters of the hybrid patties altered were similar to those of veal patties during the 14-day storage time. In all samples, pH decreased with storage time. HPP-SVCOOK was effective on rendering safe and shelf-stable, ready-to-eat patties regardless of their matrix formulation. The addition of carvacrol had limited effects on the textural qualities of the HPP-SVCOOK products. Future studies need to be undertaken to assess the treated patties’ consumer acceptability and sensory profile. The study provides the basis for the development of novel meat-based and plant-based products that are microbiologically safe, with minimum physicochemical alterations during storage.
Collapse
|
30
|
Alonso VPP, Gonçalves MPMBB, de Brito FAE, Barboza GR, Rocha LDO, Silva NCC. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Compr Rev Food Sci Food Saf 2023; 22:688-713. [PMID: 36464983 DOI: 10.1111/1541-4337.13089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/09/2022]
Abstract
Bacterial biofilm formation in low moisture food processing (LMF) plants is related to matters of food safety, production efficiency, economic loss, and reduced consumer trust. Dry surfaces may appear dry to the naked eye, however, it is common to find a coverage of thin liquid films and microdroplets, known as microscopic surface wetness (MSW). The MSW may favor dry surface biofilm (DSB) formation. DSB formation is similar in other industries, it occurs through the processes of adhesion, production of extracellular polymeric substances, development of microcolonies and maturation, it is mediated by a quorum sensing (QS) system and is followed by dispersal, leading to disaggregation. Species that survive on dry surfaces develop tolerance to different stresses. DSB are recalcitrant and contribute to higher resistance to sanitation, becoming potential sources of contamination, related to the spoilage of processed products and foodborne disease outbreaks. In LMF industries, sanitization is performed using physical methods without the presence of water. Although alternative dry sanitizing methods can be efficiently used, additional studies are still required to develop and assess the effect of emerging technologies, and to propose possible combinations with traditional methods to enhance their effects on the sanitization process. Overall, more information about the different technologies can help to find the most appropriate method/s, contributing to the development of new sanitization protocols. Thus, this review aimed to identify the main characteristics and challenges of biofilm management in low moisture food industries, and summarizes the mechanisms of action of different dry sanitizing methods (alcohol, hot air, UV-C light, pulsed light, gaseous ozone, and cold plasma) and their effects on microbial metabolism.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Maria Paula M B B Gonçalves
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Giovana Rueda Barboza
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
31
|
Paff A, Cockburn DW. Evaluating the efficacy of non-thermal microbial load reduction treatments of heat labile food components for in vitro fermentation experiments. PLoS One 2023; 18:e0283287. [PMID: 36943858 PMCID: PMC10030034 DOI: 10.1371/journal.pone.0283287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Increasingly, in vitro simulated colon fermentations are being used as a pre-clinical step to assess the impacts of foods and drugs on the gut microbiota in a cost-effective manner. One challenge in such systems is that they are potentially susceptible to the influences of contaminating microbes in test materials. Simulated gastric and intestinal digestion can relieve some of these concerns, however, live microbes may remain that can confound analysis. Autoclave treatment of test materials is the surest way to eliminate these microbes but presents problems when using heat labile components such as resistant starch. In this study, liquid chemical sterilant alternatives to moist heat sterilization were explored for treating pulse flours for use during in vitro simulated colon fermentation. Key attributes considered in chemical selection were accessibility, impact on treated food components, and effectiveness of the treatments for reducing microbial load. Three chemicals were selected for evaluation, bleach, alcohol, and hydrogen peroxide, at varying concentrations. Flours chosen for testing were from green lentil, field pea, chickpea, or sprouted green lentil. All treatments significantly reduced microbial loads, though there were still detectable levels of microbes after alcohol treatments. Furthermore, in vitro simulated colon fermentations of the treated pulses showed minimal difference from the untreated control both in terms of microbial composition and short chain fatty acid production. Scanning electron microscopy showed minimal impact of sterilization treatments on the gross structure of the pulse flours. Together these results suggest that bleach and hydrogen peroxide treatments can be effective nonthermal treatments to eliminate contaminating microbes in pulse flours without causing significant damage to starch and other fermentable substrates. This is thus also a promising treatment method for other starchy food substrates, though further testing is required.
Collapse
Affiliation(s)
- Andrew Paff
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Darrell W Cockburn
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
32
|
Kurup AH, Patras A, Bansode RR, Pendyala B, Ravi R, Vergne MJ. Influence of UV-A irradiation on the selected nutrient composition and volatile profiling of whole milk: Safety and quality evaluation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Gabrić D, Kurek M, Ščetar M, Brnčić M, Galić K. Effect of Non-Thermal Food Processing Techniques on Selected Packaging Materials. Polymers (Basel) 2022; 14:polym14235069. [PMID: 36501462 PMCID: PMC9741052 DOI: 10.3390/polym14235069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
In the last decade both scientific and industrial community focuses on food with the highest nutritional and organoleptic quality, together with appropriate safety. Accordingly, strong efforts have been made in finding appropriate emerging technologies for food processing and packaging. Parallel to this, an enormous effort is also made to decrease the negative impact of synthetic polymers not only on food products (migration issues) but on the entire environment (pollution). The science of packaging is also subjected to changes, resulting in development of novel biomaterials, biodegradable or not, with active, smart, edible and intelligent properties. Combining non-thermal processing with new materials opens completely new interdisciplinary area of interest for both food and material scientists. The aim of this review article is to give an insight in the latest research data about synergies between non-thermal processing technologies and selected packaging materials/concepts.
Collapse
|
34
|
Mukhtar K, Nabi BG, Arshad RN, Roobab U, Yaseen B, Ranjha MMAN, Aadil RM, Ibrahim SA. Potential impact of ultrasound, pulsed electric field, high-pressure processing and microfludization against thermal treatments preservation regarding sugarcane juice (Saccharum officinarum). ULTRASONICS SONOCHEMISTRY 2022; 90:106194. [PMID: 36242792 PMCID: PMC9576986 DOI: 10.1016/j.ultsonch.2022.106194] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 06/12/2023]
Abstract
Sugarcane juice (Saccharum officinarum) is a proven nutritious beverage with high levels of antioxidants, polyphenols, and other beneficial nutrients. It has recently gained consumer interest due to its high nutritional profile and alkaline nature. Still, high polyphenolic and sugar content start the fermentation in juice, resulting in dark coloration. Lately, some novel techniques have been introduced to extend shelf life and improve the nutritional value of sugarcane juice. The introduction of such processing technologies is beneficial over conventional processes and essential for producing chemical-free, high-quality, fresh juices. The synergistic impact of these novel technologies is also advantageous for preserving sugarcane juice. In literature, novel thermal, non-thermal and hurdle technologies have been executed to preserve sugarcane juice. These technologies include high hydrostatic pressure (HHP), ultrasound (US), pulsed electric field (PEF), ultraviolet irradiation (UV), ohmic heating (OH), microwave (MW), microfludization and ozone treatment. This review manifests the impact of novel thermal, non-thermal, and synergistic technologies on sugarcane juice processing and preservation characteristics. Non-thermal techniques have been successfully proved effective and showed better results than novel thermal treatments. Because they reduced microbial load and retained nutritional content, while thermal treatments degraded nutrients and flavor of sugarcane juice. Among non-thermal treatments, HHP is the most efficient technique for the preservation of sugarcane juice while OH is preferable in thermal techniques due to less nutritional loss.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Bilal Yaseen
- Department of Food Sciences, Government College University, Sahiwal 57000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, E. Market Street 1601, Greensboro, NC 24711, USA.
| |
Collapse
|
35
|
Protective Effect of Ultrasound-Processed Amazonian Sapota-do-Solimões (Quararibea cordata) Juice on Artemia salina Nauplii. Processes (Basel) 2022. [DOI: 10.3390/pr10091880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Juice processing by non-thermal technology has been extensively studied, aiming at microbial inactivation and quality improvement. However, the knowledge about the possible toxic effects that those technologies can produce in foodstuffs due to the production of reactive oxygen species is still unknown. In this study, sapota-do-Solimões juice processed by ultrasound (2, 6, and 10 min) was evaluated by a toxicity test and protective effect through stress biomarkers (catalase, superoxide dismutase, and lipid peroxidation) using Artemia salina nauplii. The non-thermal processed juice was nontoxic to A. salina. However, the juice fibers imparted some damage to the animal’s body. The ultrasound-processed juice (2 and 6 min) decreased the A. salina mortality to 30% compared to the control assay with H2O2 where mortality was 80% after 48 h of exposure. However, after 72 h of exposure, the A. salina was entirely degraded by H2O2-induced toxicity. Furthermore, the catalase and superoxide dismutase presented the highest activity after A. salina was exposed to the unprocessed juice. Thus, sapota-do-Solimões juice processed by the ultrasound could promote a protective effect on A. salina, revealing this technology’s potential to enhance juice features without toxicity.
Collapse
|
36
|
Sridhar K, Bouhallab S, Croguennec T, Renard D, Lechevalier V. Application of high-pressure and ultrasound technologies for legume proteins as wall material in microencapsulation: New insights and advances. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Lyngdoh Nonglait D, Chukan SM, Arya SS, Bhat MS, Waghmare R. Emerging non‐thermal technologies for enhanced quality and safety of fruit juices. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Donald Lyngdoh Nonglait
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India 400019
| | | | - S. S. Arya
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India 400019
| | - Mohmad Sayeed Bhat
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India 400019
| | - Rosy Waghmare
- Department of Food Engineering College of Food Technology Dr. Punjabrao Deshmukh Krishi Vidyapeeth Yavatmal Maharashtra India 445001
| |
Collapse
|
38
|
Chacha JS, Ofoedu CE, Xiao K. Essential
Oil‐Based
Active
Polymer‐Based
Packaging System: A Review on its Effect on the Antimicrobial, Antioxidant, and Sensory Properties of Beef and Chicken Meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James S. Chacha
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Department of Food Science and Agroprocessing School of Engineering and Technology Sokoine University of Agriculture, P.O. Box 3006, Chuo Kikuu Morogoro Tanzania
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Department of Food Science and Technology, School of Engineering and Engineering Technology Federal University of Technology Imo State Owerri Nigeria
| | - Kaijun Xiao
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| |
Collapse
|
39
|
Qiu X, Chang J, Jin Y, Wu WJ. Pulsed Electric Field Treatments with Nonlethal Field Strength Alter the Properties of Bacterial Spores. J Food Prot 2022; 85:1053-1060. [PMID: 35512130 DOI: 10.4315/jfp-21-447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/02/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Pulsed electric field (PEF) treatment, an alternative to thermal processing in the food industry, is insufficient to inactivate bacterial spores. Although spores that have been treated in this manner remain alive, specific understanding of their physiological properties is limited. The purpose of this study is to describe the morphology, viability, and germination behavior of Bacillus atrophaeus spores treated with PEF. Our findings indicate that nonlethal PEF treatment results in spore deformation, dipicolinic acid (DPA) leakage, and a shorter and more uniform germination lag time (\(\def\upalpha{\unicode[Times]{x3B1}}\)\(\def\upbeta{\unicode[Times]{x3B2}}\)\(\def\upgamma{\unicode[Times]{x3B3}}\)\(\def\updelta{\unicode[Times]{x3B4}}\)\(\def\upvarepsilon{\unicode[Times]{x3B5}}\)\(\def\upzeta{\unicode[Times]{x3B6}}\)\(\def\upeta{\unicode[Times]{x3B7}}\)\(\def\uptheta{\unicode[Times]{x3B8}}\)\(\def\upiota{\unicode[Times]{x3B9}}\)\(\def\upkappa{\unicode[Times]{x3BA}}\)\(\def\uplambda{\unicode[Times]{x3BB}}\)\(\def\upmu{\unicode[Times]{x3BC}}\)\(\def\upnu{\unicode[Times]{x3BD}}\)\(\def\upxi{\unicode[Times]{x3BE}}\)\(\def\upomicron{\unicode[Times]{x3BF}}\)\(\def\uppi{\unicode[Times]{x3C0}}\)\(\def\uprho{\unicode[Times]{x3C1}}\)\(\def\upsigma{\unicode[Times]{x3C3}}\)\(\def\uptau{\unicode[Times]{x3C4}}\)\(\def\upupsilon{\unicode[Times]{x3C5}}\)\(\def\upphi{\unicode[Times]{x3C6}}\)\(\def\upchi{\unicode[Times]{x3C7}}\)\(\def\uppsy{\unicode[Times]{x3C8}}\)\(\def\upomega{\unicode[Times]{x3C9}}\)\(\def\bialpha{\boldsymbol{\alpha}}\)\(\def\bibeta{\boldsymbol{\beta}}\)\(\def\bigamma{\boldsymbol{\gamma}}\)\(\def\bidelta{\boldsymbol{\delta}}\)\(\def\bivarepsilon{\boldsymbol{\varepsilon}}\)\(\def\bizeta{\boldsymbol{\zeta}}\)\(\def\bieta{\boldsymbol{\eta}}\)\(\def\bitheta{\boldsymbol{\theta}}\)\(\def\biiota{\\boldsymbol{\iota}}\)\(\def\bikappa{\boldsymbol{\kappa}}\)\(\def\bilambda{\boldsymbol{\lambda}}\)\(\def\\bimu{\boldsymbol{\mu}}\)\(\def\binu{\boldsymbol{\nu}}\)\(\def\bixi{\boldsymbol{\xi}}\)\(\def\biomicron{\boldsymbol{\micron}}\)\(\def\bipi{\boldsymbol{\pi}}\)\(\def\birho{\boldsymbol{\rho}}\)\(\def\bisigma{\boldsymbol{\sigma}}\)\(\def\bitau{\boldsymbol{\\tau}}\)\(\def\biupsilon{\boldsymbol{\upsilon}}\)\(\def\biphi{\boldsymbol{\phi}}\)\(\def\bichi{\boldsymbol{\chi}}\)\(\def\bipsy{\boldsymbol{\psy}}\)\(\def\biomega{\boldsymbol{\omega}}\)\(\def\bupalpha{\bf{\alpha}}\)\(\def\bupbeta{\bf{\beta}}\)\(\def\bupgamma{\bf{\gamma}}\)\(\def\bupdelta{\bf{\delta}}\)\(\def\bupvarepsilon{\bf{\varepsilon}}\)\(\def\bupzeta{\bf{\zeta}}\)\(\def\bupeta{\bf{\eta}}\)\(\def\buptheta{\bf{\theta}}\)\(\def\bupiota{\bf{\iota}}\)\(\def\bupkappa{\bf{\kappa}}\)\(\def\\buplambda{\bf{\lambda}}\)\(\def\bupmu{\bf{\mu}}\)\(\def\bupnu{\bf{\nu}}\)\(\def\bupxi{\bf{\xi}}\)\(\def\bupomicron{\bf{\micron}}\)\(\def\buppi{\bf{\pi}}\)\(\def\buprho{\bf{\rho}}\)\(\def\bupsigma{\bf{\sigma}}\)\(\def\buptau{\bf{\tau}}\)\(\def\bupupsilon{\bf{\upsilon}}\)\(\def\bupphi{\bf{\phi}}\)\(\def\bupchi{\bf{\chi}}\)\(\def\buppsy{\bf{\psy}}\)\(\def\bupomega{\bf{\omega}}\)\(\def\bGamma{\bf{\Gamma}}\)\(\def\bDelta{\bf{\Delta}}\)\(\def\bTheta{\bf{\Theta}}\)\(\def\bLambda{\bf{\Lambda}}\)\(\def\bXi{\bf{\Xi}}\)\(\def\bPi{\bf{\Pi}}\)\(\def\bSigma{\bf{\Sigma}}\)\(\def\bPhi{\bf{\Phi}}\)\(\def\bPsi{\bf{\Psi}}\)\(\def\bOmega{\bf{\Omega}}\)\({T_{{\rm{lag}}}}\)), but that there is no change in release duration (\(\Delta {T_{{\rm{release}}}}\)), germination ratio, or viability. Based on our findings, we conclude that an intact morphologic state and DPA content are not prerequisites for germination and full viability and that, in contrast to nutrient-induced germination in which initially slowly released DPA triggers subsequent germination events, leaked DPA during PEF treatment does not. Spores that have been subjected to this procedure remain dormant and preserve their full germinability. We found that PEF-treated spores respond to germinants more quickly and with less heterogeneity, possibly because the tiny cracks formed on the spore surface facilitate the germinants' access to the germination receptors situated on the spore's inner membrane. The consensus view that nonlethal PEF has less impact on spores that are still capable of forming CFUs under proper conditions is one-sided. This research advances our understanding of how spores behave following nonlethal PEF treatment and gives information on the topics of nosocomial sterilization, food safety, and public health. HIGHLIGHTS
Collapse
Affiliation(s)
- Xing Qiu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Jinhui Chang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Yong Jin
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China.,Faculty of Business, The Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Wen Jie Wu
- Department of Radiation Physics, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China.,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, People's Republic of China
| |
Collapse
|
40
|
The Effect of Pre-Treatment of Arabica Coffee Beans with Cold Atmospheric Plasma, Microwave Radiation, Slow and Fast Freezing on Antioxidant Activity of Aqueous Coffee Extract. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thermal and non-thermal technologies used in food processing should be not only effective in terms of decontamination and preservation but also minimize undesirable losses of natural bioactive compounds. Arabica (Coffea arabica) is the most cultivated variety of coffee, making it a valuable source of phytonutrients, including antioxidants. In the present study, green and roasted Arabica coffee beans were treated with slow freezing (SF), fast freezing (FF), microwave radiation (MWR) and cold atmospheric plasma (CAP). Moisture content (MC) of coffee beans and antioxidant activity (AOA) of aqueous extracts were measured. Green coffee showed a decrease in MC after MWR treatment, and roasted coffee showed an increase in MC after freezing. After SF and FF at −19 °C for 24 h, all extract samples showed an increase in AOA by 4.1–17.2%. MWR treatment at 800 W for 60 s was accompanied by an increase in the AOA of green coffee extracts by 5.7%, while the changes in the AOA of roasted coffee extracts were insignificant. Sequential combined treatments of SF + MWR and FF + MWR resulted in an additive/synergistic increase in the AOA of green/roasted coffee extracts, up to +23.0%. After CAP treatment with dielectric barrier discharge (DBD) parameters of 1 μs, 15 kV and 200 Hz for 5 and 15 min, green coffee showed a decrease in the extract AOA by 3.8% and 9.7%, respectively, while the changes in the AOA of roasted coffee extracts were insignificant. A high positive correlation (r = 0.89, p < 0.001) between AOA and MC was revealed. The results obtained indicate that SF, FF, MWR and combined treatments may be applied at the pre-extraction stage of coffee bean preparation in order to increase the yield of antioxidant extractives.
Collapse
|
41
|
Jirešová J, Scholtz V, Julák J, Šerá B. Comparison of the Effect of Plasma-Activated Water and Artificially Prepared Plasma-Activated Water on Wheat Grain Properties. PLANTS (BASEL, SWITZERLAND) 2022; 11:1471. [PMID: 35684244 PMCID: PMC9183031 DOI: 10.3390/plants11111471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Recently, much attention has been paid to the use of low-temperature plasmas and plasma-activated water (PAW) in various areas of biological research. In addition to its use in medicine, especially for low-temperature disinfection and sterilization, a number of works using plasma in various fields of agriculture have already appeared. While direct plasma action involves the effects of many highly reactive species with short lifetimes, the use of PAW involves the action of only long-lived particles. A number of articles have shown that the main stable components of PAW are H2O2, O3, HNO2, and HNO3. If so, then it would be faster and much more practical to artificially prepare PAW by directly mixing these chemicals in a given ratio. In this article, we review the literature describing the composition and properties of PAW prepared by various methods. We also draw attention to an otherwise rather neglected fact, that there are no significant differences between the action of PAW and artificially prepared PAW. The effect of PAW on the properties of wheat grains (Triticum aestivum L.) was determined. PAW exposure increased germination, shoot length, and fresh and dry shoot weight. The root length and R/S length, i.e., the ratio between the underground (R) and aboveground (S) length of the wheat seedlings, slightly decreased, while the other parameters changed only irregularly or not at all. Grains artificially inoculated with Escherichia coli were significantly decontaminated after only one hour of exposure to PAW, while Saccharomyces cerevisiae decontamination required soaking for 24 h. The differences between the PAW prepared by plasma treatment and the PAW prepared by artificially mixing the active ingredients, i.e., nitric acid and hydrogen peroxide, proved to be inconsistent and statistically insignificant. Therefore, it may be sufficient for further research to focus only on the effects of artificial PAW.
Collapse
Affiliation(s)
- Jana Jirešová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Jaroslav Julák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00 Prague, Czech Republic;
| | - Božena Šerá
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
42
|
Neoκleous I, Tarapata J, Papademas P. Non-thermal Processing Technologies for Dairy Products: Their Effect on Safety and Quality Characteristics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thermal treatment has always been the processing method of choice for food treatment in order to make it safe for consumption and to extend its shelf life. Over the past years non-thermal processing technologies are gaining momentum and they have been utilized especially as technological advancements have made upscaling and continuous treatment possible. Additionally, non-thermal treatments are usually environmentally friendly and energy-efficient, hence sustainable. On the other hand, challenges exist; initial cost of some non-thermal processes is high, the microbial inactivation needs to be continuously assessed and verified, application to both to solid and liquid foods is not always available, some organoleptic characteristics might be affected. The combination of thermal and non-thermal processing methods that will produce safe foods with minimal effect on nutrients and quality characteristics, while improving the environmental/energy fingerprint might be more plausible.
Collapse
|
43
|
Inactivation of Bacillus subtilis by Curcumin-Mediated Photodynamic Technology through Inducing Oxidative Stress Response. Microorganisms 2022; 10:microorganisms10040802. [PMID: 35456852 PMCID: PMC9026882 DOI: 10.3390/microorganisms10040802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/05/2023] Open
Abstract
Photodynamic sterilization technology (PDT) is widely used in disease therapy, but its application in the food industry is still at the research stage because of the limitations of food-grade photosensitizers. Curcumin exhibits photosensitivity and is widely used as a food additive for its natural color. This study aimed to determine the effect of curcumin-mediated photodynamic technology (Cur-PDT) on Bacillus subtilis and to elucidate the anti-bacterial mechanism involved. First, the effects of curcumin concentration, duration of light irradiation, light intensity, and incubation time on the inactivation of B. subtilis were analyzed. It was found that Cur-PDT inactivated 100% planktonic cells with 50 μmol/L curcumin in 15 min (120 W). Then, the cell morphology, oxidation state and the expression of membrane structure- and DNA damage-related genes of B. subtilis vegetative cells were investigated under different treatment conditions. The membrane permeability of cells was enhanced and the cell membrane structure was damaged upon treatment with Cur-PDT, which were exacerbated with increases of treatment time and curcumin concentration. Meanwhile, the production of reactive oxygen species increased and the activities of the antioxidant enzymes SOD, GPX, and CAT decreased inside the cells. Furthermore, the Cur-PDT treatment significantly downregulated the mRNA of the membrane protein TasA and upregulated the DNA damage recognition protein UvrA and repair protein RecA of B. subtilis. These results suggested that curcumin-mediated PDT could effectively inactivate B. subtilis by inducing cell redox state imbalance, damaging DNA, and disrupting membrane structures.
Collapse
|
44
|
Özaslan ZT, İbanoğlu Ş. Ozonation of corn starch in the presence of guar gum: Rheological, thermal and antioxidant properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Darré M, Vicente AR, Cisneros-Zevallos L, Artés-Hernández F. Postharvest Ultraviolet Radiation in Fruit and Vegetables: Applications and Factors Modulating Its Efficacy on Bioactive Compounds and Microbial Growth. Foods 2022; 11:653. [PMID: 35267286 PMCID: PMC8909097 DOI: 10.3390/foods11050653] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Ultraviolet (UV) radiation has been considered a deleterious agent that living organisms must avoid. However, many of the acclimation changes elicited by UV induce a wide range of positive effects in plant physiology through the elicitation of secondary antioxidant metabolites and natural defenses. Therefore, this fact has changed the original UV conception as a germicide and potentially damaging agent, leading to the concept that it is worthy of application in harvested commodities to take advantage of its beneficial responses. Four decades have already passed since postharvest UV radiation applications began to be studied. During this time, UV treatments have been successfully evaluated for different purposes, including the selection of raw materials, the control of postharvest diseases and human pathogens, the elicitation of nutraceutical compounds, the modulation of ripening and senescence, and the induction of cross-stress tolerance. Besides the microbicide use of UV radiation, the effect that has received most attention is the elicitation of bioactive compounds as a defense mechanism. UV treatments have been shown to induce the accumulation of phytochemicals, including ascorbic acid, carotenoids, glucosinolates, and, more frequently, phenolic compounds. The nature and extent of this elicitation have been reported to depend on several factors, including the product type, maturity, cultivar, UV spectral region, dose, intensity, and radiation exposure pattern. Even though in recent years we have greatly increased our understanding of UV technology, some major issues still need to be addressed. These include defining the operational conditions to maximize UV radiation efficacy, reducing treatment times, and ensuring even radiation exposure, especially under realistic processing conditions. This will make UV treatments move beyond their status as an emerging technology and boost their adoption by industry.
Collapse
Affiliation(s)
- Magalí Darré
- LIPA—Laboratorio de Investigación en Productos Agroindustriales, Universidad Nacional de La Plata, Calle 60 y 119 s/n, La Plata CP 1900, Argentina;
| | - Ariel Roberto Vicente
- LIPA—Laboratorio de Investigación en Productos Agroindustriales, Universidad Nacional de La Plata, Calle 60 y 119 s/n, La Plata CP 1900, Argentina;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
46
|
Marcel MR, Chacha JS, Ofoedu CE. Nutritional evaluation of complementary porridge formulated from orange-fleshed sweet potato, amaranth grain, pumpkin seed, and soybean flours. Food Sci Nutr 2022; 10:536-553. [PMID: 35154690 PMCID: PMC8825733 DOI: 10.1002/fsn3.2675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
Supplementing breastmilk with poor energy and nutrient-dense complementary foodstuffs for young children and infants has resulted in malnutrition, poor growth, and retardation of infant development in many sub-Saharan African countries. Ensuring nutrient adequacy for infants because of their lower consumption requires energy and nutrient-dense food. In this context, the nutritional composition of porridge from complementary flour blends of locally available foodstuffs (orange-fleshed sweet potato, pumpkin seeds, amaranth grains, and soybeans) was carried out. Complementary flours formulated from flour blends of pumpkin seeds, extrusion cooked soybean, and orange-fleshed sweet potato, as well as germinated and extrusion cooked amaranth grains, resulted in varieties of complementary porridges (SAPO1-SAPO5). From these, proximate composition, mineral content (sodium, iron, magnesium, calcium, phosphorus, and zinc), vitamin contents (A and C), and nutrient density of the formulated complementary porridge were determined. Results showed that all the formulated complementary porridge were able to meet the stipulated standards of energy and nutrient (zinc, iron, vitamin A, and protein) densities. Flour blend ratio, germination process, and extrusion cooking significantly (p < .05) influenced the targeted nutrients of interest, as well as the nutrient and energy densities of the formulated complementary porridge. Specifically, the formulated complementary porridge with 40% amaranth grain, 25% orange-fleshed sweet potato, 20% soybean, and 15% pumpkin seed composite mixture had 76.92% compliance level with recommended standards, which assure adequate nutrient complementation to breastfeeding. The present study provides a valuable insight that complementary foods from locally obtainable foodstuffs are potential solutions for mitigating childhood malnutrition and adequate complementation to breastfeeding by proffering the needed energy and nutrient densities required for the immunity, well-being, growth, and development of young children and infants, without fortification.
Collapse
Affiliation(s)
- Mary R. Marcel
- Department of Human Nutrition and Consumer Sciences, College of AgricultureSokoine University of AgricultureMorogoroTanzania
| | - James S. Chacha
- Department of Food Science and Agroprocessing, School of Engineering and TechnologySokoine University of AgricultureMorogoroTanzania
| | - Chigozie E. Ofoedu
- Department of Food Science and Technology, School of Engineering and Engineering TechnologyFederal University of TechnologyOwerriImo StateNigeria
| |
Collapse
|
47
|
Janardhanan R, Virseda P, Huerta-Leidenz N, Beriain MJ. Effect of high–hydrostatic pressure processing and sous-vide cooking on physicochemical traits of Biceps femoris veal patties. Meat Sci 2022; 188:108772. [DOI: 10.1016/j.meatsci.2022.108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 10/19/2022]
|
48
|
Abstract
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Collapse
|
49
|
Scholtz V, Jirešová J, Šerá B, Julák J. A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods 2021; 10:foods10122927. [PMID: 34945478 PMCID: PMC8701285 DOI: 10.3390/foods10122927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023] Open
Abstract
Cereals, an important food for humans and animals, may carry microbial contamination undesirable to the consumer or to the next generation of plants. Currently, non-thermal plasma (NTP) is often considered a new and safe microbicidal agent without or with very low adverse side effects. NTP is a partially or fully ionized gas at room temperature, typically generated by various electric discharges and rich in reactive particles. This review summarizes the effects of NTP on various types of cereals and products. NTP has undisputed beneficial effects with high potential for future practical use in decontamination and disinfection.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Jana Jirešová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
- Correspondence:
| | - Božena Šerá
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Jaroslav Julák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00 Prague, Czech Republic;
| |
Collapse
|
50
|
Rajalingam N, Chae HB, Chu HJ, Kim SR, Hwang I, Hyun JE, Choi SY. Development of Strategies to Minimize the Risk of Listeria monocytogenes Contamination in Radish, Oriental Melon, and Carrots. Foods 2021; 10:foods10092135. [PMID: 34574243 PMCID: PMC8472131 DOI: 10.3390/foods10092135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Contamination by Listeria monocytogenes in packaged produce is a major concern. The purpose of this study was to find natural and affordable sanitizers to reduce L. monocytogenes contamination in agricultural products. Organic acids, ultraviolet-C (UV-C), and ethanol were analyzed either alone or in combination to assess their ability to reduce L. monocytogenes population in radish, oriental melon, and carrot samples. In radish samples, 3% malic acid combined with UV-C at a dosage of 144 mj/cm2 significantly reduced (>4 log CFU/g) the population of L. monocytogenes (1.44 ± 0.5) compared to the control sample (5.14 ± 0.09). In the case of the melon samples, exposure to UV-C at a dosage of 144 mj/cm2 combined with 3% lactic acid (2.73 ± 0.75) or 50% ethanol (2.30 ± 0.01) was effective against L. monocytogenes compared to the control sample (5.10 ± 0.19). In carrot samples, 3% lactic acid combined with 144 mj/cm2 dosage UV-C reduced L. monocytogenes population (4.48 ± 0.25) more than in the control sample (5.85 ± 0.08). These results reveal that sanitizers that are effective for one crop are less effective for another crop indicating that effective prevention methods should be customized for each crop to prevent pathogen cross contamination during postharvest washing.
Collapse
|