1
|
Mahapatra AD, Paul I, Dasgupta S, Roy O, Sarkar S, Ghosh T, Basu S, Chattopadhyay D. Antiviral Potential and In Silico Insights of Polyphenols as Sustainable Phytopharmaceuticals: A Comprehensive Review. Chem Biodivers 2025; 22:e202401913. [PMID: 39648847 DOI: 10.1002/cbdv.202401913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Polyphenols, particularly flavonoids, are reported to have health-promoting, disease-preventing abilities and several polyphenols having a wide spectrum of antiviral activities can be explored for preventive and/or therapeutic purposes. We have compiled the updated literature of diverse polyphenols active against common viral diseases, including herpes, hepatitis, influenza, rota and SARS-corona-viruses. The antiviral activity of bioactive polyphenols depends on the hydroxyl and ester groups of polyphenol molecules, as compounds with five or more hydroxyl groups and three specific methoxy groups showed antiviral potential, like anti-rabies activity. This comprehensive review will explore selective polyphenols isolated from common ethnomedicinal or food plants. Comparing bioactivities of structurally related polyphenols and using bioinformatics studies, we have explored the three most promising phyto-antivirals, including chrysin, resveratrol and quercetin, available in many foods and medicinal plants. Quercetin showed a maximum interaction score with human genes. We also explore the intricate structure-activity relationship between these polyphenols and pathogenic viruses with their mechanisms of antiviral action in selected virus models. Here, we report the promising potential of some phyto-polyphenols in the management of viral diseases through an in-depth analysis of the structure and bioactivity of these compounds.
Collapse
Affiliation(s)
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
- Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, Kolkata, India
| | - Oliva Roy
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Srinjoy Sarkar
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Tusha Ghosh
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sayantan Basu
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Debprasad Chattopadhyay
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, India
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
2
|
Wang L, Li T, Wu C, Fan G, Zhou D, Li X. Unlocking the potential of plant polyphenols: advances in extraction, antibacterial mechanisms, and future applications. Food Sci Biotechnol 2025; 34:1235-1259. [PMID: 40110409 PMCID: PMC11914671 DOI: 10.1007/s10068-024-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 03/22/2025] Open
Abstract
Plant polyphenols are widely distributed in most higher plants, garnering significant attention from researchers due to their remarkable antioxidative, antibacterial, anticancer, and anti-radiation properties. They also offer multiple health benefits for various lifestyle-related diseases and oxidative stress. While there has been considerable research on the extraction and antibacterial application of plant polyphenols, developing a rapid and efficient extraction method remains a persistent challenge. Furthermore, the introduction of novel technologies is imperative to enhance the bioavailability of polyphenolic compounds. This comprehensive review synthesizes recent research findings pertaining to the extraction, antibacterial mechanisms, and applications of plant polyphenols. This research highlights the prevalent issues of low extraction rates of plant polyphenols and the ambiguous antibacterial mechanisms in current research. To address these challenges, this research proposes innovative directions for improving extraction technology and expanding antibacterial applications. Additionally, this review outlines promising future research avenues within the realm of plant polyphenols. Graphical abstract
Collapse
Affiliation(s)
- Lei Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Gongjian Fan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Dandan Zhou
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Xiaojing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| |
Collapse
|
3
|
Ugbaja SC, Mushebenge AGA, Kumalo H, Ngcobo M, Gqaleni N. Potential Benefits of In Silico Methods: A Promising Alternative in Natural Compound's Drug Discovery and Repurposing for HBV Therapy. Pharmaceuticals (Basel) 2025; 18:419. [PMID: 40143195 PMCID: PMC11944881 DOI: 10.3390/ph18030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 01/30/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Hepatitis B virus (HBV) is an important global public health issue. The World Health Organization (WHO) 2024 Global Hepatitis Report estimated that the global prevalence of people living with HBV infection is 254 million, with an estimated prevalence incidence of 1.2 million new HBV infections yearly. Previous studies have shown that natural compounds have antiviral inhibition potentials. In silico methods such as molecular docking, virtual screening, pharmacophore modeling, quantitative structure-activity relationship (QSAR), and molecular dynamic simulations have been successfully applied in identifying bioactive compounds with strong binding energies in HBV treatment targets. The COVID-19 pandemic necessitated the importance of repurposing already approved drugs using in silico methods. This study is aimed at unveiling the benefits of in silico techniques as a potential alternative in natural compounds' drug discovery and repurposing for HBV therapy. Relevant articles from PubMed, Google Scholar, and Web of Science were retrieved and analyzed. Furthermore, this study comprehensively reviewed the literature containing identified bioactive compounds with strong inhibition of essential HBV proteins. Notably, hesperidin, quercetin, kaempferol, myricetin, and flavonoids have shown strong binding energies for hepatitis B surface antigen (HBsAg). The investigation reveals that in silico drug discovery methods offer an understanding of the mechanisms of action, reveal previously overlooked viral targets (including PreS1 Domain of HBsAg and cccDNA (Covalently Closed Circular DNA) regulators, and facilitate the creation of specific inhibitors. The integration of in silico, in vitro, and in vivo techniques is essential for the discovery of new drugs for HBV therapy. The insights further highlight the importance of natural compounds and in silico methods as targets in drug discovery for HBV therapy. Moreover, the combination of natural compounds, an in silico approach, and drug repurposing improves the chances of personalized and precision medicine in HBV treatment. Therefore, we recommend drug repurposing strategies that combine in vitro, in vivo, and in silico approaches to facilitate the discovery of effective HBV drugs.
Collapse
Affiliation(s)
- Samuel Chima Ugbaja
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban 4000, South Africa;
| | - Aganze Gloire-Aimé Mushebenge
- Department of Pharmacology, University of the Free State, Bloemfontein Campus, Bloemfontein 9301, South Africa;
- Faculty of Pharmaceutical Sciences, University of Lubumbashi, Lubumbashi 1825, Democratic Republic of the Congo
| | - Hezekiel Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Mlungisi Ngcobo
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban 4000, South Africa;
| | - Nceba Gqaleni
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban 4000, South Africa;
| |
Collapse
|
4
|
Nazir MM, Farzeen I, Zafar S, Fatima S, Zafar N, Ashraf A, Lebelo SL. Biological potential and therapeutic effectiveness with diverse signaling pathways of phyto-product chicoric acid: a comprehensive review with computational evidence. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03931-4. [PMID: 40014130 DOI: 10.1007/s00210-025-03931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Chicoric acid (CA), a polyphenolic compound found in chicory (Cichorium intybus), shows potential for the management of a number of diseases due to its antioxidant, anticancer, anti-inflammatory, and insulin-sensitizing properties. Chicory, a perennial member of Asteraceae family, is undoubtedly an underestimated vegetable. Currently, its primary usage is concentrated in India, Greece, Italy, and Poland. This review will concentrate on the potential of chicoric acid in different diseases through a study of the literature and in silico research. A comprehensive search of the literature was conducted using specialized and dedicated search engines. Chicoric acid has an impact on several disease types reported in vitro and in vivo. Chicoric acid has surfaced as a promising neuroprotective agent, anticancer, anti-inflammatory, antidiabetics, and antimicrobial exhibiting a broad range of actions that contribute to health and function. Bioactive compound effects on diseases are examined using network pharmacology (ADME, networking, and docking). KEGG analysis and gene ontology demonstrated that chicoric acid works by interfering with many immune system and cancer pathways. Chicoric acid had the best match with receptor proteins 1PXX and 2YCF, which suited the chemical chicoric acid best, with docking scores of - 8.46 and - 9.4, respectively. To sum up, chicoric acid is a new molecule in the medication development process.
Collapse
Affiliation(s)
- Muhammad Muzammil Nazir
- Department of Zoology, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Iqra Farzeen
- Department of Zoology, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Saima Zafar
- Department of Zoology, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Sehrish Fatima
- Department of Zoology, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Nimrah Zafar
- Department of Zoology, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Sogolo Lucky Lebelo
- Director of School, Department of Life and Consumer Sciences, College of Agriculture and Environ-Mental Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
5
|
Klamrak A, Rahman SS, Nopkuesuk N, Nabnueangsap J, Narkpuk J, Janpan P, Saengkun Y, Soonkum T, Sriburin S, Teeravechyan S, Sitthiwong P, Jangpromma N, Kulchat S, Choowongkomon K, Patramanon R, Chaveerach A, Daduang J, Daduang S. Integrative computational analysis of anti-influenza potential in Caesalpinia mimosoides Lamk hydroethanolic extract. Sci Rep 2025; 15:3988. [PMID: 39893295 PMCID: PMC11787316 DOI: 10.1038/s41598-025-87585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
In a recent study, we used chemical analysis to show that the Caesalpinia mimosoides aqueous extract, which contains a high concentration of simple phenolics, has strong anti-influenza activity. We determined through molecular docking methods that its potential target inhibitor is the neuraminidase. Therefore, our study objectives were to evaluate whether the aqueous-ethanol extract (30% v/v) of this plant species exhibits greater antiviral activity than the aqueous plant extract. The C. mimosoides hydroethanolic extract exhibited potent antioxidant activity in the DPPH assay, with an IC50 value of 15.01 µg/mL, comparable to authentic quercetin (IC50 = 12.72 µg/mL) and approximately 4.91 times greater than standard gallic acid (IC50 = 3.06 µg/mL). Through untargeted metabolomic analyses (UPLC-ESI(±)-QTOF-MS/MS) and subsequent stepwise computational metabolomics analyses, we identified the extract as primarily containing simple phenolics (e.g., gallic acid, ellagic acid, shikimic acid, and chlorogenic acid), flavonoid derivatives (e.g., quercetin, taxifolin, myricitrin, and afzelin), and other bioactive components, including dicarboxylic acids and germacrone. The polyphenol-rich extract showed strong anti-influenza activity, with an IC50 of 2.33 µg/mL against the influenza A/PR/8/34 virus and no cytotoxic effects, as indicated by a CC50 greater than 50 µg/mL. This represents an approximately 3.35-fold increase in effectiveness compared to its corresponding aqueous extract (IC50 = 7.81 µg/mL). Furthermore, the extract demonstrated no hemolytic activity, even at a maximum concentration of 2,000 µg/mL, suggesting its potential as a safe antiviral agent. Molecular docking analyses revealed that the identified phytochemicals can simultaneously interact with the "drug-target binding sites" of neuraminidase (NA) and PB2 subunit of influenza RNA polymerase, indicating their potential polypharmacological effects. The antiviral activity of the ethanolic-aqueous extract against other strains is being explored due to the versatile biological effects of phenolic substances.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia, 7000, Bangladesh
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jaran Nabnueangsap
- Salaya Central Instrument Faculty RSPG, Research Management and Development Division, Mahidol University, Bangkok, Thailand
| | - Jaraspim Narkpuk
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yutthakan Saengkun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thananya Soonkum
- Salaya Central Instrument Faculty RSPG, Research Management and Development Division, Mahidol University, Bangkok, Thailand
| | - Supawadee Sriburin
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Poramet Sitthiwong
- Khaoyai Panorama Farm Co., Ltd, 297 M.6, Thanarat Rd., Nongnamdang, Pakchong, Nakhonratchasima, 30130, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Sudha S, Mohanasundaram P, Kumar AS, Mary Saral A. Electrochemical investigation, DNA binding, DFT, and molecular docking analysis of phenolic acids isolated from Macrotyloma uniflorum. J Mol Struct 2025; 1319:139288. [DOI: 10.1016/j.molstruc.2024.139288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Kostikova VA, Esaulkova YL, Ilyina PA, Zarubaev VV, Sheikin VV, Petruk AA, Rubtsova ED, Veklich TN. Antiviral Potential of Spiraea Extracts (Prepared by Repercolation) Against Influenza A (H1N1) Virus. Foods 2024; 13:4008. [PMID: 39766951 PMCID: PMC11727637 DOI: 10.3390/foods13244008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
An antiviral effect of extracts prepared from aerial parts of nine species and from leaves of two species of the genus Spiraea L. was investigated for potential antiviral activity toward influenza A (H1N1) virus. The toxicity of dry extracts was analyzed, and the most selective extract was identified in vitro. The study's material was collected in the Asian part of Russia. The plant extracts were prepared via three-stage countercurrent repercolation involving a complete cycle. All 40%-ethanolic extracts from Spiraea manifested antiviral activity against influenza A (H1N1) virus, with a selectivity index (SI) ranging from 1 to 10. IC50 values indicated that the S. salicifolia L. S15 leaf extract (5.9 µg/mL) has the most pronounced antiviral effect and the lowest toxicity (CC50 = 57.6 µg/mL) among the studied samples. The SI of this extract was 10, which exceeded that of the antiviral agent rimantadine (SI = 6). Biologically active compounds in the extract with the highest antiviral activity were identified using UV spectrometry and high-performance liquid chromatography. The S. salicifolia leaf extract was found to contain phenolic acids (chlorogenic, gentisic, caffeic, ferulic, and cinnamic acids), flavonols (quercetin, quercetin-3-glucuronoside, hyperoside, isoquercitrin, rutin, spiraeoside, avicularin, quercitrin, kaempferol, nicotiflorin, astragalin, and isorhamnetin-3-rutinoside), flavones (orientin, luteolin-7-glucoside, and vitexin), and coumarin. Predominant biologically active compounds in the S. salicifolia S15 leaf extract were such flavonols as rutin (19.3 mg/g), isoquercitrin (16.6 mg/g), isorhamnetin-3-rutinoside (10.6 mg/g), and astragalin (9.5 mg/g). Extraction of S. salicifolia leaves by repercolation is a more suitable method for extracting active ingredients with an antiviral effect.
Collapse
Affiliation(s)
- Vera A. Kostikova
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (CSBG SB RAS), Novosibirsk 630090, Russia; (A.A.P.); (E.D.R.)
| | - Yana L. Esaulkova
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (Y.L.E.); (P.A.I.); (V.V.Z.)
| | - Polina A. Ilyina
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (Y.L.E.); (P.A.I.); (V.V.Z.)
| | - Vladimir V. Zarubaev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (Y.L.E.); (P.A.I.); (V.V.Z.)
| | - Vladimir V. Sheikin
- Department of Pharmaceutical Technology and Biotechnology, Siberian State Medical University, Tomsk 634050, Russia;
| | - Anastasia A. Petruk
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (CSBG SB RAS), Novosibirsk 630090, Russia; (A.A.P.); (E.D.R.)
| | - Ekaterina D. Rubtsova
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (CSBG SB RAS), Novosibirsk 630090, Russia; (A.A.P.); (E.D.R.)
| | - Tatiana N. Veklich
- Amur Branch of Botanical Garden-Institute, Far Eastern Branch of Russian Academy of Sciences, Blagoveshchensk 675000, Russia;
- Zeya State Nature Reserve, Zeya 676246, Russia
| |
Collapse
|
8
|
Davidova S, Galabov AS, Satchanska G. Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols. Microorganisms 2024; 12:2502. [PMID: 39770706 PMCID: PMC11728530 DOI: 10.3390/microorganisms12122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
This review describes the enhanced classification of polyphenols into flavonoids, lignans, phenolic acids, stilbenes, and tannins. Its focus is the natural sources of polyphenols and an in-depth discussion of their antibacterial, antifungal, and antiviral activity. Besides a broad literature overview, this paper contains authors' experimental data according to some daily consumed vegetables such as tomatoes, different varieties of onion, garlic, parsley, and cayenne pepper and the probable relation of these activities to polyphenols. The isolation of polyphenols via conventional and ultrasonic, pressurized liquids and pulse-field extractions, as well as their methods for detection and determination, are interpreted as well. The main mechanisms by which polyphenols inhibit the growth of bacteria, fungi, and viruses, such as protein synthesis, cell membrane destabilization, and ROS production induction, are in focus. Data on polyphenol concentrations and their respective MIC or the inhibition zone diameters of different bacterial and fungal species and suppressing viral replication are depicted. The toxicity of polyphenols in vitro, ex vivo, and in vivo towards microorganisms and human/animal cells, and the safety of the polyphenols applied in clinical and industrial applications are expanded. This review also characterizes the antimicrobial effects of some chemically synthesized polyphenol derivatives. Biotechnological advances are also reported, especially the entrapment of polyphenols in biocompatible nanoparticles to enhance their bioavailability and efficacy. Polyphenols are promising for exploring molecules' novel antimicrobial substances and paving the path for effective novel antimicrobial agents' discovery, taking into consideration their positives and negatives.
Collapse
Affiliation(s)
- Slavena Davidova
- UPIZ “Educational and Research Laboratory”-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria;
| | - Angel S. Galabov
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 26, 1113 Sofia, Bulgaria;
| | - Galina Satchanska
- UPIZ “Educational and Research Laboratory”-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria;
| |
Collapse
|
9
|
Monika P, Chandraprabha MN, Hari Krishna R, Vittal M, Likhitha C, Pooja N, Chaudhary V, C M. Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications. Biotechnol Genet Eng Rev 2024; 40:3379-3407. [PMID: 36117472 DOI: 10.1080/02648725.2022.2122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 12/07/2022]
Abstract
Manufacturing new materials at the nanoscale level is a field that is rapidly expanding with widespread application in advanced science and MMT is effectively used for the technology. Nanoparticles (NP), the building blocks of nanotechnology, exhibit improved properties than the larger counterparts and can be prepared from a variety of metals, including silver, copper, gold, zinc, and others. Phytonanotechnology is gaining major attention as various clinical researches have focused on the excellent properties (physicochemical and biological) of nanoscale phytochemicals and its applications in biological systems. In recent developments, pomegranate (Punica granatum L.) has gained major attention due to the phenolic compounds like apigenin, caffeic acid, chlorogenic acid, cyanidin, ellagic acid, gallic acid, granatin A, granatin B, pelargonidin, punicalagin, punicalin and quercetin found in its peel. Pomegranate Peel Extract (PPE) that aid the synthesis of PPE mediated nanoparticles (PPE-MNPs) like PPE-MAuNPs, PPE-MAgNPs, PPE-MZnONPs, PPE-MCuNPs, PPE-MPtNPs and PPE-MFeNPs has yielded plethora of beneficial properties in both plants and humans. In the current review, we discuss in detail the recent advances in synthesis and characterization of various nanoparticles from PPE. Moreover, the multitude biological properties of PPE-MNPs make up the long list of clinical uses. In addition, we discuss the pharmacokinetics, current advantages, and limitations of PPE-MNPs which can further help in development of more efficient therapeutics. Despite some of the challenges, PPE-MNPs hold a lot of potential for drug delivery and are always a better choice. The convergence of science and engineering has created new hopes, in which phytomedicines will have more efficacy, bioavailability, and less toxicity.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - M N Chandraprabha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - R Hari Krishna
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
- Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Maanya Vittal
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - C Likhitha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - N Pooja
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Manjunatha C
- Department of Chemistry, RV College of Engineering, Bangalore, India
- Centre for Nanomaterials and Devices, RV College of Engineering, Bangalore, India
| |
Collapse
|
10
|
Deja-Sikora E, Gołębiewski M, Hrynkiewicz K. Transcriptomic responses of Solanum tuberosum cv. Pirol to arbuscular mycorrhiza and potato virus Y (PVY) infection. PLANT MOLECULAR BIOLOGY 2024; 114:123. [PMID: 39527333 PMCID: PMC11554710 DOI: 10.1007/s11103-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) serve as both plant symbionts and allies in resisting pathogens and environmental stresses. Mycorrhizal colonization of plant roots can influence the outcomes of plant-pathogen interactions by enhancing specific host defense mechanisms. The transcriptional responses induced by AMF in virus-infected plants remain largely unexplored. In the presented study, we employed a comprehensive transcriptomic approach and qPCR to investigate the molecular determinants underlying the interaction between AMF and potato virus Y (PVY) in Solanum tuberosum L. Our primary goal was to identify the symbiosis- and defense-related determinants activated in mycorrhizal potatoes facing PVY. Through a comparative analysis of mRNA transcriptomes in experimental treatments comprising healthy and PVY-infected potatoes colonized by two AMF species, Rhizophagus regularis or Funneliformis mosseae, we unveiled the overexpression of genes associated with mycorrhiza, including nutrient exchange, lipid transfer, and cell wall remodeling. Furthermore, we identified several differentially expressed genes upregulated in all mycorrhizal treatments that encoded pathogenesis-related proteins involved in plant immune responses, thus verifying the bioprotective role of AMF. We investigated the relationship between mycorrhiza levels and PVY levels in potato leaves and roots. We found accumulation of the virus in the leaves of mycorrhizal plants, but our studies additionally showed a reduced PVY content in potato roots colonized by AMF, which has not been previously demonstrated. Furthermore, we observed that a virus-dependent reduction in nutrient exchange could occur in mycorrhizal roots in the presence of PVY. These findings provide an insights into the interplay between virus and AMF.
Collapse
Affiliation(s)
- Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
11
|
Ren M, Wang X, Ouyang XK, Ling J, Wang N. Protocatechuic acid grafted chitosan/oxidized glucomannan hydrogel with antimicrobial and anti-inflammatory effects for enhancing wound repair. Int J Biol Macromol 2024; 281:136514. [PMID: 39414221 DOI: 10.1016/j.ijbiomac.2024.136514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Oxidative stress, inflammation, and bacterial infection are critical barriers to wound healing. In this work, a composite wound dressing was designed to promote wound healing and reduce complications. A hydrogel with antibacterial, anti-inflammatory, and antioxidant properties was prepared by crosslinking chitosan (CS) and oxidized konjac glucomannan with Mg2+. We named the prepared hydrogel CPO/Mg2+. The proposed hydrogel demonstrated a significant capacity for promoting wound healing. Experimental results indicate that the CPO/Mg2+ composite hydrogel exhibits a bacteriostatic rate of over 95 % against S. aureus and P. aeruginosa. Furthermore, CPO/Mg2+ reduced oxidative damage to L929 cells in an H2O2-induced ROS microenvironment and promoted the polarization of macrophage M2. In vivo full-thickness skin defect experiments revealed that the CPO/Mg2+ composite hydrogel enhances collagen deposition and angiogenesis, achieving a closure rate of over 95 % for infected wounds within 14 days. This novel composite hydrogel offers an effective strategy for the repair of infected wounds.
Collapse
Affiliation(s)
- Miaoyan Ren
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xinhao Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
12
|
Guo Z, Wang Z, Luo Y, Ma L, Hu X, Chen F, Li D, Jia M. Extraction and identification of bioactive compounds from areca nut ( Areca catechu L.) and potential for future applications. FOOD FRONTIERS 2024; 5:1909-1932. [DOI: 10.1002/fft2.443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
AbstractAreca (Areca catechu L.) nut is a tropical plantation fruit cultivated mainly in South and Southeast Asia. As a chewing hobby, it has become the most common psychoactive substance in the world, besides tobacco, alcohol, and caffeine. Areca catechu contains abundant nutrients and active components such as alkaloids, polyphenols, polysaccharides, proteins, and vitamins, which have been reported to have anti‐inflammatory, antioxidant, antibacterial, anti‐depressant, anti‐hypertensive, anti‐fatigue, and other biological properties. However, at present, the resource utilization rate of the whole‐plant areca nut is low, which not only causes resource waste but also damages the environment. Establishing effective, safe, and environmentally friendly techniques and methods is necessary for the comprehensive utilization of A. catechu resources. In this review, we summarized the traditional and advanced methods for the extraction and identification of main bioactive substances in A. catechu and compared the advantages and disadvantages of these methods. Furthermore, the possible trends and perspectives for future use of A. catechu are also discussed. Our objective is to extend the application of this bioactive ingredient to improve the added value, provide valuable information for developing new A. catechu products and derivatives, and improve the comprehensive utilization of areca nut resources.
Collapse
Affiliation(s)
- Ziyuan Guo
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Zihan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Yinghua Luo
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China
| | - Min Jia
- Department of Chinese Medicine Authentication, School of Pharmacy Naval Medical University Shanghai China
| |
Collapse
|
13
|
Zhang J, Fan M, Tang J, Lin X, Liu G, Wen C, Xu X. Possibility and challenge of plant-derived ferritin cages encapsulated polyphenols in the precise nutrition field. Int J Biol Macromol 2024; 275:133579. [PMID: 38964678 DOI: 10.1016/j.ijbiomac.2024.133579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Polyphenols have attracted extensive attention due to their rich functional activities, such as antioxidant, anti-inflammatory and anti-tumor. However, the low solubility and poor stability limit their bioavailability and functional activities. Plant-derived ferritin cages have a unique hollow cage structure that can embed polyphenols to improve their unfavorable properties. Therefore, it is essential to adequately elaborate and summarize plant-derived ferritin cages to maximize their potential benefits in nutritional interventions. This review focuses on the fundamental properties of plant-derived ferritin cages, including the preparation process, purification technology, identification methods, and structural and functional properties. The relevant research on ferritin cages in polyphenol delivery has been summarized, including the delivery of water/lipid soluble polyphenols, modification of ferritin cages, and the interaction between polyphenols and ferritin cages. The research progress, shortcomings and prospects of plant-derived ferritin cages in precise nutrition are introduced. In addition, the relevant research on ferritin in immune response and protein engineering is also discussed to provide the theoretical basis for applying plant-derived ferritin cages in many frontier fields.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Guangling College, Yangzhou University, Yangzhou 225000, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
14
|
Shukla N, Shamim U, Agarwal P, Pandey R, Narayan J. From bench to bedside: potential of translational research in COVID-19 and beyond. Brief Funct Genomics 2024; 23:349-362. [PMID: 37986554 DOI: 10.1093/bfgp/elad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) have been around for more than 3 years now. However, due to constant viral evolution, novel variants are emerging, leaving old treatment protocols redundant. As treatment options dwindle, infection rates continue to rise and seasonal infection surges become progressively common across the world, rapid solutions are required. With genomic and proteomic methods generating enormous amounts of data to expand our understanding of SARS-CoV-2 biology, there is an urgent requirement for the development of novel therapeutic methods that can allow translational research to flourish. In this review, we highlight the current state of COVID-19 in the world and the effects of post-infection sequelae. We present the contribution of translational research in COVID-19, with various current and novel therapeutic approaches, including antivirals, monoclonal antibodies and vaccines, as well as alternate treatment methods such as immunomodulators, currently being studied and reiterate the importance of translational research in the development of various strategies to contain COVID-19.
Collapse
Affiliation(s)
- Nityendra Shukla
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Uzma Shamim
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Preeti Agarwal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Rajesh Pandey
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Jitendra Narayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| |
Collapse
|
15
|
Fatima M, Dar MA, Dhanavade MJ, Abbas SZ, Bukhari MN, Arsalan A, Liao Y, Wan J, Shah Syed Bukhari J, Ouyang Z. Biosynthesis and Pharmacological Activities of the Bioactive Compounds of White Mulberry ( Morus alba): Current Paradigms and Future Challenges. BIOLOGY 2024; 13:506. [PMID: 39056699 PMCID: PMC11274221 DOI: 10.3390/biology13070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Traditional natural products have been the focus of research to explore their medicinal properties. One such medicinally important plant is the white mulberry, Morus alba, widely distributed in the Asian subcontinent. It is one of the most cultivated species of mulberry tree and has attracted more focus from researchers because of its abundance in phytochemicals as well as multipurpose uses. The leaves, fruits and other parts of the white mulberry plant act as a source of valuable bioactive compounds like flavonoids, phenolic acids, terpenoids and alkaloids. These secondary metabolites have manifold healthy uses as they possess antioxidant, anti-inflammatory, antidiabetic, neutrotrophic, and anticancer properties. Despite the increasing scientific interest in this plant, there are very few reviews that highlight the phytochemistry and biological potential of white mulberry for biomedical research. To this end, this review elaborates the phytochemistry, biosynthetic pathways and pharmacological activities of the glycoside flavonoids of Morus alba. A comprehensive analysis of the available literature indicates that Morus alba could emerge as a promising natural agent to combat diverse conditions including diabetes, cancer, inflammation and infectious diseases. To achieve such important objectives, it is crucial to elucidate the biosynthesis and regulation mechanisms of the bioactive compounds in white mulberry as well as the multifaceted pharmacological effects attributed to this plant resource. The present review paper is intended to present a summary of existing scientific data and a guide for further research in the phytochemistry and pharmacology of white mulberry. Further, a biosynthetic pathway analysis of the glycoside flavonoid in mulberry is also given. Lastly, we discuss the pros and cons of the current research to ensure the prudent and effective therapeutic value of mulberry for promoting human and animal health.
Collapse
Affiliation(s)
- Maryam Fatima
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (M.F.)
| | - Mudasir A. Dar
- School of the Environment and Safety Engineering, Biofuel Institute, Jiangsu University, Zhenjiang 212013, China;
| | - Maruti J. Dhanavade
- Department of Microbiology, Bharati Vidyapeeth’s Dr Patangrao Kadam Mahavidyalaya, Sangli 416416, India
| | - Syed Zaghum Abbas
- College of Engineering, Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan Kajang-Puchong, Kajang 43000, Selangor, Malaysia
| | | | - Abdullah Arsalan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangzhen Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingqiong Wan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (M.F.)
| | | | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (M.F.)
| |
Collapse
|
16
|
Duda Ł, Kłosiński KK, Budryn G, Jaśkiewicz A, Kołat D, Kałuzińska-Kołat Ż, Pasieka ZW. Medicinal Use of Chicory (Cichorium intybus L.). Sci Pharm 2024; 92:31. [DOI: 10.3390/scipharm92020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025] Open
Abstract
The aim of this review is to discuss the numerous health-promoting properties of Cichorium intybus L. and bring together a range of publications to broaden knowledge and encourage further research and consideration of the plant use as treatment for a range of conditions. A comprehensive search of articles in Polish and English from 1986–2022 years was carried out in PubMed, Google Scholar and ScienceDirect using the keywords chicory, Cichorium intybus L., sesquiterpene lactones and their synonyms. Articles were checked for titles, abstracts, and full-text reviews. The first part of the review article discusses chicory, the countries in which it is found, its life cycle or modern cultivation methods, as well as its many uses, which will be discussed in more detail later in the article. The increased interest in plants as medicines or supplements is also briefly mentioned, as well as some limits that are associated with the medical use of plants. In the Results and Discussion section, there is a discussion of the numerous health-promoting properties of Cichorium intybus L. as a whole plant, with its collection of all the components, and we then examine the structure and the individual constituents of Cichorium intybus L. Among these, this article discusses those that can be utilized for causal applications in medicine, including sesquiterpene lactones and polyphenols, mainly known for their anti-cancer properties, although, in this article, their other health-promoting properties are also discussed. The article also examines inulin, a major component of Cichorium intybus L. The Discussion and the Conclusions sections propose directions for more detailed research and the range of factors that may affect specific results, which may have safety implications when used as supplements or medications.
Collapse
Affiliation(s)
- Łukasz Duda
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Andrzej Jaśkiewicz
- Department of Sugar Industry and Food Safety Management, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Zbigniew Włodzimierz Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| |
Collapse
|
17
|
Wang X, Han L, Qu S, Feng L, Liang S, Wei C, Liu X, Dang X. New plant polyphenol-derived tannic acid-based chromium-free tanning agent for sustainable and clean leather production. Int J Biol Macromol 2024; 268:131682. [PMID: 38643914 DOI: 10.1016/j.ijbiomac.2024.131682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
This study aimed to prepare a new bio-based chromium-free tanning agent. The green epoxide monocase ethylene glycol diglycidyl ether (EGDE) was grafted with tannic acid (TA) derived from natural plant using the one-pot method to synthesize new plant polyphenol-derived tannic acid-based chromium-free tanning agents (TA-EGDE) with abundant terminal epoxides. FTIR, 1H NMR, XPS, GPC, SEM, and other analytical techniques were used to characterize tanning agents. These consequences manifested that EGDE was successfully grafted with the phenol hydroxyl group of TA. The epoxide value of TA-EGDE showed a tendency to increase and then decrease with increasing EGDE dosage, and the epoxide value of TA-EGDE-2 attained a maximum of 0.262 mol/100 g. GPC analysis showed that the formula weight of the prepared TA-EGDE was partially distributed above 5000 Da. The tanning experiment demonstrated that the shrinkage temperatures (Ts) of the TA-EGDE-tanned leathers were all higher than 81.5 °C. Compared with the traditional commercial chromium-free tanning agent (F-90, TWS), TA-EGDE-tanned leathers exhibited higher Ts and better mechanical properties. The TA-EGDE prepared in this study not only has ecological environmental protection but also provides finished leather with good moisture, heat resistance, and mechanical properties.
Collapse
Affiliation(s)
- Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration, Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Lei Han
- Institute of Biomass and Function Materials & National Demonstration, Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | | | | | - Shuang Liang
- Institute of Biomass and Function Materials & National Demonstration, Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Chao Wei
- Institute of Biomass and Function Materials & National Demonstration, Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xinhua Liu
- Institute of Biomass and Function Materials & National Demonstration, Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration, Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
18
|
Mihaylova D, Dimitrova-Dimova M, Popova A. Dietary Phenolic Compounds-Wellbeing and Perspective Applications. Int J Mol Sci 2024; 25:4769. [PMID: 38731987 PMCID: PMC11084633 DOI: 10.3390/ijms25094769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Contemporary living is continuously leading to poor everyday choices resulting in the manifestation of various diseases. The benefits of plant-based nutrition are undeniable and research on the topic is rising. Modern man is now aware of the possibilities that plant nutrition can provide and is seeking ways to benefit from it. Dietary phenolic compounds are among the easily accessible beneficial substances that can exhibit antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, antifungal, antiparasitic, analgesic, anti-diabetic, anti-atherogenic, antiproliferative, as well as cardio-and neuroprotective activities. Several industries are exploring ways to incorporate biologically active substances in their produce. This review is concentrated on presenting current information about the dietary phenolic compounds and their contribution to maintaining good health. Additionally, this content will demonstrate the importance and prosperity of natural compounds for various fields, i.e., food industry, cosmetology, and biotechnology, among others.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Maria Dimitrova-Dimova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
19
|
Porro C, Benameur T, Cianciulli A, Vacca M, Chiarini M, De Angelis M, Panaro MA. Functional and Therapeutic Potential of Cynara scolymus in Health Benefits. Nutrients 2024; 16:872. [PMID: 38542782 PMCID: PMC10974306 DOI: 10.3390/nu16060872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 01/03/2025] Open
Abstract
Dietary supplements enriched with bioactive compounds represent a promising approach to influence physiological processes and enhance longevity and overall health. Cynara cardunculus var. scolymus serves as a functional food supplement with a high concentration of bioactive compounds, which offers various health-promoting benefits. Several chronic diseases have metabolic, genetic, or inflammatory origins, which are frequently interconnected. Pharmacological treatments, although effective, often result in undesirable side effects. In this context, preventive approaches are gaining increased attention. Recent literature indicates that the consumption of bioactive compounds in the diet can positively influence the organism's biological functions. Polyphenols, well-known for their health benefits, are widely recognized as valuable compounds in preventing/combating various pathologies related to lifestyle, metabolism, and aging. The C. scolymus belonging to the Asteraceae family, is widely used in the food and herbal medicine fields for its beneficial properties. Although the inflorescences (capitula) of the artichoke are used for food and culinary purposes, preparations based on artichoke leaves can be used as an active ingredient in herbal medicines. Cynara scolymus shows potential benefits in different domains. Its nutritional value and health benefits make it a promising candidate for improving overall well-being. C. scolymus exhibits anti-inflammatory, antioxidant, liver-protective, bile-expelling, antimicrobial, and lipid-lowering neuroprotective properties. Different studies demonstrate that oxidative stress is the leading cause of the onset and progression of major human health disorders such as cardiovascular, neurological, metabolic, and cancer diseases. The large amount of polyphenol found in C. scolymus has an antioxidant activity, enabling it to neutralize free radicals, preventing cellular damage. This reduces the subsequent risk of developing conditions such as cancer, diabetes, and cardiovascular diseases. Additionally, these polyphenols demonstrate anti-inflammatory activity, which is closely associated with their antioxidant properties. As a result, C. scolymus has the potential to contribute to the treatment of chronic diseases, including intestinal disorders, cardiovascular diseases, and neurodegenerative pathologies. The current review discussed the nutritional profiles, potential benefits, and pharmacological effects of C. scolymus.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy;
| | - Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.V.); (M.D.A.)
| | - Margherita Chiarini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy;
| |
Collapse
|
20
|
Prieto K, Arévalo C, Lasso P, Carlosama C, Urueña C, Fiorentino S, Barreto A. Plant extracts modulate cellular stress to inhibit replication of mouse Coronavirus MHV-A59. Heliyon 2024; 10:e23403. [PMID: 38169850 PMCID: PMC10758815 DOI: 10.1016/j.heliyon.2023.e23403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The Covid-19 infection outbreak led to a global epidemic, and although several vaccines have been developed, the appearance of mutations has allowed the virus to evade the immune response. Added to this is the existing risk of the appearance of new emerging viruses. Therefore, it is necessary to explore novel antiviral therapies. Here, we investigate the potential in vitro of plant extracts to modulate cellular stress and inhibit murine hepatitis virus (MHV)-A59 replication. L929 cells were treated with P2Et (Caesalpinia spinosa) and Anamu SC (Petiveria alliacea) plant extracts during infection and virus production, ROS (reactive oxygen species), UPR (unfolded protein response), and autophagy were assessed. P2Et inhibited virus replication and attenuated both ROS production and UPR activation induced during infection. In contrast, the sustained presence of Anamu SC during viral adsorption and replication was required to inhibit viral infection, tending to induce pro-oxidant effects, and increasing UPR gene expression. Notably, the loss of the PERK protein resulted in a slight decrease in virus yield, suggesting a potential involvement of this UPR pathway during replication. Intriguingly, both extracts either maintained or increased the calreticulin surface exposure induced during infection. In conclusion, our findings highlight the development of antiviral natural plant extracts that differentially modulate cellular stress.
Collapse
Affiliation(s)
| | | | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Carolina Carlosama
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana. Bogotá, Colombia
| |
Collapse
|
21
|
Mfengwana PMAH. Phytochemical constituents, ferric reducing and radical scavenging activities of helichrysm caespititium. Nat Prod Res 2024:1-6. [PMID: 38194283 DOI: 10.1080/14786419.2023.2301486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Helichrysm caespititium is used for the treatment of viral infections and respiratory ailments. This study aimed to determine the phytochemical constituents and antioxidants (using ABTS, DPPH and FRAP) of H. caespititium water and methanol extracts. The phytochemical analysis revealed the presence of flavonoids, phytosterols, tannins, glycosides etc. Whilst the alkaloids were absent. Quantitative analysis of total phenols using both methanol and water extracts yielded high values of (839,1 and 531) GA/mg indicating rich phytochemical constituents from this plant. Whilst flavonoids from methanol and water extracts yielded (324 and 58) mg GA/mg, respectively. Results obtained from FRAP water and methanol extracts were 20,42% and 2,36% respectively; DPPH water and methanol extracts results were 92,62% and 80,56% respectively; and ABTS water and methanol extracts were 93,64% and 97,68%, respectively. These findings support the potential of H. caespititium as the potential source for the development of antioxidant-based therapies and health-promoting products.
Collapse
|
22
|
Klamrak A, Nabnueangsap J, Narkpuk J, Saengkun Y, Janpan P, Nopkuesuk N, Chaveerach A, Teeravechyan S, Rahman SS, Dobutr T, Sitthiwong P, Maraming P, Nualkaew N, Jangpromma N, Patramanon R, Daduang S, Daduang J. Unveiling the Potent Antiviral and Antioxidant Activities of an Aqueous Extract from Caesalpinia mimosoides Lamk: Cheminformatics and Molecular Docking Approaches. Foods 2023; 13:81. [PMID: 38201109 PMCID: PMC10778375 DOI: 10.3390/foods13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Our group previously demonstrated that Caesalpinia mimosoides Lamk exhibits many profound biological properties, including anticancer, antibacterial, and antioxidant activities. However, its antiviral activity has not yet been investigated. Here, the aqueous extract of C. mimosoides was prepared from the aerial parts (leaves, stalks, and trunks) to see whether it exerts anti-influenza (H1N1) effects and to reduce the organic solvents consumed during extraction, making it a desirable approach for the large-scale production for medical uses. Our plant extract was quantified to contain 7 g of gallic acid (GA) per 100 g of a dry sample, as determined using HPLC analysis. It also exerts potent antioxidant activities comparable to those of authentic GA. According to untargeted metabolomics (UPLC-ESI(-)-QTOF-MS/MS) with the aid of cheminformatics tools (MetFrag (version 2.1), SIRIUS (version 5.8.3), CSI:FingerID (version 4.8), and CANOPUS), the major metabolite was best annotated as "gallic acid", phenolics (e.g., quinic acid, shikimic acid, and protocatechuic acid), sugar derivatives, and dicarboxylic acids were deduced from this plant species for the first time. The aqueous plant extract efficiently inhibited an influenza A (H1N1) virus infection of MDCK cells with an IC50 of 5.14 µg/mL. Of equal importance, hemolytic activity was absent for this plant extract, signifying its applicability as a safe antiviral agent. Molecular docking suggested that GA interacts with conserved residues (e.g., Arg152 and Asp151) located in the catalytic inner shell of the viral neuraminidase (NA), sharing the same pocket as those of anti-neuraminidase drugs, such as laninamivir and oseltamivir. Additionally, other metabolites were also found to potentially interact with the active site and the hydrophobic 430-cavity of the viral surface protein, suggesting a possibly synergistic effect of various phytochemicals. Therefore, the C. mimosoides aqueous extract may be a good candidate for coping with increasing influenza virus resistance to existing antivirals.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Jaraspim Narkpuk
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (J.N.); (S.T.)
| | - Yutthakan Saengkun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (J.N.); (S.T.)
| | - Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia 7000, Bangladesh
| | - Theerawat Dobutr
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Poramet Sitthiwong
- Khaoyai Panorama Farm Co., Ltd., 297 M.6, Thanarat Rd., Nongnamdang, Pakchong, Nakhonratchasima 30130, Thailand;
| | - Pornsuda Maraming
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Jureerut Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
23
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Scheau AE, Savulescu-Fiedler I, Caruntu A, Badarau IA, Caruntu C, Scheau C. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int J Mol Sci 2023; 24:16299. [PMID: 38003488 PMCID: PMC10671393 DOI: 10.3390/ijms242216299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Kaempferol and its derivatives are flavonoids found in various plants, and a considerable number of these have been used in various medical applications worldwide. Kaempferol and its compounds have well-known antioxidant, anti-inflammatory and antimicrobial properties among other health benefits. However, the antiviral properties of kaempferol are notable, and there is a significant number of experimental studies on this topic. Kaempferol compounds were effective against DNA viruses such as hepatitis B virus, viruses of the alphaherpesvirinae family, African swine fever virus, and pseudorabies virus; they were also effective against RNA viruses, namely feline SARS coronavirus, dengue fever virus, Japanese encephalitis virus, influenza virus, enterovirus 71, poliovirus, respiratory syncytial virus, human immunodeficiency virus, calicivirus, and chikungunya virus. On the other hand, no effectiveness against murine norovirus and hepatitis A virus could be determined. The antiviral action mechanisms of kaempferol compounds are various, such as the inhibition of viral polymerases and of viral attachment and entry into host cells. Future research should be focused on further elucidating the antiviral properties of kaempferol compounds from different plants and assessing their potential use to complement the action of antiviral drugs.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
24
|
Monmai C, Kim JS, Chin JH, Lee S, Baek SH. Inhibitory Effects of Polyphenol- and Flavonoid-Enriched Rice Seed Extract on Melanogenesis in Melan-a Cells via MAPK Signaling-Mediated MITF Downregulation. Int J Mol Sci 2023; 24:11841. [PMID: 37511600 PMCID: PMC10380342 DOI: 10.3390/ijms241411841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Melanin production is an important process that prevents the host skin from harmful ultraviolet radiation; however, an overproduction of melanin results in skin diseases. In the present study, we determined the antioxidative and anti-melanogenic activities of polyphenol- and flavonoid-enriched rice seed extracts in melan-a cells. The polyphenol and flavonoid content of Hopum (HP) and Sebok (SB) rice seed extracts was measured. The antioxidant capacity was determined using the ABTS radical scavenging method. SB contained high amounts of polyphenols and flavonoids, which significantly increased antioxidative activity compared with HP. Various concentrations of these extracts were evaluated in a cytotoxicity using melan-a cells. At 100 µg/mL, there was no significant difference for all treatments compared with untreated cells. Therefore, 100 µg/mL was selected as a concentration for the further experiments. SB significantly suppressed the phosphorylation/activation of p-38 MAPK, increased the expression of phosphorylated ERK 1/2 and Akt, and downregulated the microphthalmia-associated transcription factor (MITF). This resulted in decreased levels of tyrosinase and tyrosinase-related protein-1 and -2. These results indicate the potential of polyphenol- and flavonoid-enriched rice seed as a treatment for hyperpigmentation.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Jin-Suk Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Joong Hyoun Chin
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - So-Hyeon Baek
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| |
Collapse
|
25
|
Anikina I, Kamarova A, Issayeva K, Issakhanova S, Mustafayeva N, Insebayeva M, Mukhamedzhanova A, Khan SM, Ahmad Z, Lho LH, Han H, Raposo A. Plant protection from virus: a review of different approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1163270. [PMID: 37377807 PMCID: PMC10291191 DOI: 10.3389/fpls.2023.1163270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
This review analyzes methods for controlling plant viral infection. The high harmfulness of viral diseases and the peculiarities of viral pathogenesis impose special requirements regarding developing methods to prevent phytoviruses. The control of viral infection is complicated by the rapid evolution, variability of viruses, and the peculiarities of their pathogenesis. Viral infection in plants is a complex interdependent process. The creation of transgenic varieties has caused much hope in the fight against viral pathogens. The disadvantages of genetically engineered approaches include the fact that the resistance gained is often highly specific and short-lived, and there are bans in many countries on the use of transgenic varieties. Modern prevention methods, diagnosis, and recovery of planting material are at the forefront of the fight against viral infection. The main techniques used for the healing of virus-infected plants include the apical meristem method, which is combined with thermotherapy and chemotherapy. These methods represent a single biotechnological complex method of plant recovery from viruses in vitro culture. It widely uses this method for obtaining non-virus planting material for various crops. The disadvantages of the tissue culture-based method of health improvement include the possibility of self-clonal variations resulting from the long-term cultivation of plants under in vitro conditions. The possibilities of increasing plant resistance by stimulating their immune system have expanded, which results from the in-depth study of the molecular and genetic bases of plant resistance toward viruses and the investigation of the mechanisms of induction of protective reactions in the plant organism. The existing methods of phytovirus control are ambiguous and require additional research. Further study of the genetic, biochemical, and physiological features of viral pathogenesis and the development of a strategy to increase plant resistance to viruses will allow a new level of phytovirus infection control to be reached.
Collapse
Affiliation(s)
- Irina Anikina
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | - Aidana Kamarova
- Biology and Ecology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | - Kuralay Issayeva
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | | | | | - Madina Insebayeva
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | | | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zeeshan Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Linda Heejung Lho
- College of Business, Division of Tourism and Hotel Management, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, Republic of Korea
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| |
Collapse
|
26
|
Sultan MH, Bedair R, Ragab OG, Abd-ELShafy E, Mahfouz AY, Daigham GE. Biological activities and ecological aspects of Limonium pruinosum (L.) collected from Wadi Hof Eastern Desert, Egypt, as a promising attempt for potential medical applications. BIOMASS CONVERSION AND BIOREFINERY 2023. [DOI: 10.1007/s13399-023-04385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 09/02/2023]
Abstract
Abstract
Very few researchers have focused on the biological efficacy of Limonium plants. In this concern, no investigations were commenced to delve into the in vitro and ex vivo biological actions of Limonium pruinosum in Egypt. Therefore, this work aims to assess for the first time the antimicrobial, antioxidant, and antitumor activities of Limonium pruinosum extract in addition to studying its ability to suppress the transcription of cell cycle–stimulating genes. L. pruinosum ethyl acetate extract exhibits considerable antibacterial and antibiofilm activity versus E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Results revealed that L. pruinosum exerts antioxidant effectiveness concerning DPPH, nitric oxide (NO), and hydroxyl radical (OH) scavenging ability with an IC50 (35.88 ± 2.2, 51.31 ± 1.06, and 65.87 ± 1.19 μg/mL) respectively. The results proved the effectiveness of L. pruinosum in closing wounds in gastric epithelial cells (GES-1) by (79.9343 ± 1.98%) compared with control (68.3637 ± 2.32%) in 48 h. Additionally, L. pruinosum had anticancer activity contrary to breast cancer MCF-7 and liver cancer HepG-2 cell lines with IC50 values of 96.73 ± 2.18 and 81.81 ± 0.99 μg/mL, respectively, while it had no cytotoxic activity against (Wi-38) normal cells. Also, L. pruinosum extract provoked considerable early- and late-apoptotic cell populations and was effective in inducing cell death of MCF-7. Our findings evoked that L. pruinosum has promising antibacterial, antioxidant, and wound healing activities and a good breast tumor suppressor arresting the cell cycle-stimulating genes, which may be an auspicious approach for the treatment of breast cancer.
Collapse
|
27
|
Das K, Das P, Almuqbil M, Asdaq SMB, Nikhil K, Preethi K, Angelinkiruba A, Alomar NF, Al Harbi RM, Al Abdullah WA, Alshehri SM, Laghabi YA, Alsaegh AR, Mohzari Y, Alshehri S, Mannasaheb BA, Rabbani SI. Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: An in-silico approach. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102534. [PMID: 36619666 PMCID: PMC9811905 DOI: 10.1016/j.jksus.2022.102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 05/28/2023]
Abstract
Background and Objective In 2019, a novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) was declared pandemic. Advancement in computational technology has provided rapid and cost-effective techniques to test the efficacy of newer therapeutic agents. This study evaluated some of the potent phytochemicals obtained from AYUSH (Ayurveda, Yoga, Naturopathy, Unani, Siddha, Sowa-Rigpa, and Homeopathy)-listed medicinal plants against SARS-CoV-2 proteins using computational techniques. Materials and methods The potential SARS-CoV-2 protein targets were utilized to study the ligand-protein binding characteristics. The bioactive agents were obtained from ashwagandha, liquorice, amla, neem, tinospora, pepper, and stevia. Ivermectin was utilized as a reference agent to compare its efficacy with phytochemicals. Results The computational analysis suggested that all the bioactive components from the selected plants possessed negative docking scores (ranging from -6.24 to -10.53). The phytoconstituents were well absorbed, distributed in the body except for the CNS, metabolized by liver enzymes, well cleared from the body, and well tolerated. The data suggest that AYUSH-recommended plants demonstrated therapeutic efficacy against SARS CoV-2 virus infection with significantly reduced toxicity. Conclusion The phytoconstituents were found to hinder the early stages of infection, such as absorption and penetration, while ivermectin prevented the passage of genetic material from the cytoplasm to the nucleus. Additional research involving living tissues and clinical trials are suggested to corroborate the computational findings.
Collapse
Affiliation(s)
- Kuntal Das
- NITTE College of Pharmacy, Yelahanka, Bangalore 560064, India
| | - Paramita Das
- Krupanidhi College of Pharmacy, #12/1, Chikkabelandur, Carmelaram Post, Varthur Hobli, Bangalore 560035, India
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - K Nikhil
- Krupanidhi College of Pharmacy, #12/1, Chikkabelandur, Carmelaram Post, Varthur Hobli, Bangalore 560035, India
| | - K Preethi
- Krupanidhi College of Pharmacy, #12/1, Chikkabelandur, Carmelaram Post, Varthur Hobli, Bangalore 560035, India
| | - A Angelinkiruba
- Krupanidhi College of Pharmacy, #12/1, Chikkabelandur, Carmelaram Post, Varthur Hobli, Bangalore 560035, India
| | | | - Rawabi M Al Harbi
- Pharmaceutical Services, King Saud Medical City, Riyadh, Saudi Arabia
| | | | - Sami M Alshehri
- Pharmaceutical Services, King Saud Medical City, Riyadh, Saudi Arabia
| | - Yahya A Laghabi
- Pharmaceutical Services, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ahmed R Alsaegh
- Clinical Pharmacy Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Yahya Mohzari
- Clinical Pharmacy Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | | | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
28
|
Pharmacological Elevation of Cellular Dihydrosphingomyelin Provides a Novel Antiviral Strategy against West Nile Virus Infection. Antimicrob Agents Chemother 2023; 67:e0168722. [PMID: 36920206 PMCID: PMC10112131 DOI: 10.1128/aac.01687-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The flavivirus life cycle is strictly dependent on cellular lipid metabolism. Polyphenols like gallic acid and its derivatives are promising lead compounds for new therapeutic agents as they can exert multiple pharmacological activities, including the alteration of lipid metabolism. The evaluation of our collection of polyphenols against West Nile virus (WNV), a representative medically relevant flavivirus, led to the identification of N,N'-(dodecane-1,12-diyl)bis(3,4,5-trihydroxybenzamide) and its 2,3,4-trihydroxybenzamide regioisomer as selective antivirals with low cytotoxicity and high antiviral activity (half-maximal effective concentrations [EC50s] of 2.2 and 0.24 μM, respectively, in Vero cells; EC50s of 2.2 and 1.9 μM, respectively, in SH-SY5Y cells). These polyphenols also inhibited the multiplication of other flaviviruses, namely, Usutu, dengue, and Zika viruses, exhibiting lower antiviral or negligible antiviral activity against other RNA viruses. The mechanism underlying their antiviral activity against WNV involved the alteration of sphingolipid metabolism. These compounds inhibited ceramide desaturase (Des1), promoting the accumulation of dihydrosphingomyelin (dhSM), a minor component of cellular sphingolipids with important roles in membrane properties. The addition of exogenous dhSM or Des1 blockage by using the reference inhibitor GT-11 {N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanamide} confirmed the involvement of this pathway in WNV infection. These results unveil the potential of novel antiviral strategies based on the modulation of the cellular levels of dhSM and Des1 activity for the control of flavivirus infection.
Collapse
|
29
|
Jachak SM, Goyal A, Dey A, Kulshreshtha S, Deshmukh KN. Experimental Protocols in Phytochemistry and Natural Products: An Ever-Evolving Challenge. THE QUINTESSENCE OF BASIC AND CLINICAL RESEARCH AND SCIENTIFIC PUBLISHING 2023:149-168. [DOI: 10.1007/978-981-99-1284-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Martini D, Marino M, Venturi S, Tucci M, Klimis-Zacas D, Riso P, Porrini M, Del Bo' C. Blueberries and their bioactives in the modulation of oxidative stress, inflammation and cardio/vascular function markers: a systematic review of human intervention studies. J Nutr Biochem 2023; 111:109154. [PMID: 36150681 DOI: 10.1016/j.jnutbio.2022.109154] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Blueberries represent a rich source of (poly)phenols and other bioactive compounds. Numerous in vitro and animal model studies documented the potential health-promoting properties of blueberries and blueberry-bioactives, while little is still known about their effects in humans. The objective of the present systematic review is to provide main evidence and the potential mechanisms of action of blueberry and its (poly)phenols in the regulation of markers related to oxidative stress, inflammation, vascular and cardiometabolic function in health and disease states. A total of 45 human intervention studies were included in this review. Overall, the evidence suggests that blueberries may play a role in the improvement of markers of vascular function. Their effects were observed following both post-prandial and long-term consumption, particularly in subjects with risk factors and/or disease conditions. Conversely, the conflicting results on inflammation, oxidative stress and cardiometabolic risk markers were most likely due to differences among studies in terms of study design, subject characteristics, duration of intervention, dosage, and type of biomarkers analyzed. For these reasons, high-quality, well-designed, human intervention studies are warranted to strengthen the current findings on vascular function and provide more evidence about the impact of blueberries on the different markers considered. In addition, studies focusing on the relationship between the structure and the function of (poly)phenols will be fundamental for a better comprehension of the mechanisms behind the health effects observed.
Collapse
Affiliation(s)
- Daniela Martini
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Mirko Marino
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Samuele Venturi
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Massimiliano Tucci
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | | | - Patrizia Riso
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy.
| | - Marisa Porrini
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Cristian Del Bo'
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| |
Collapse
|
31
|
Hassan STS, Šudomová M, Mazurakova A, Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int J Mol Sci 2022; 23:ijms232213891. [PMID: 36430369 PMCID: PMC9693824 DOI: 10.3390/ijms232213891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.
Collapse
Affiliation(s)
- Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-774-630-604
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
32
|
Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1. Viruses 2022; 14:v14102257. [PMID: 36298811 PMCID: PMC9607631 DOI: 10.3390/v14102257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Ficus rubiginosa plant extract showed antimicrobial activity, but no evidence concerning its antiviral properties was reported. The antiviral activity of the methanolic extract (MeOH) and its n-hexane (H) and ethyl acetate (EA) fractions against Herpes simplex virus-1 (HSV-1), Human coronavirus (HCoV) -229E, and Poliovirus-1 (PV-1) was investigated in the different phases of viral infection in the VERO CCL-81 cell line. To confirm the antiviral efficacy, a qPCR was conducted. The recorded cytotoxic concentration 50% was 513.1, 298.6, and 56.45 µg/mL for MeOH, H, and EA, respectively, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay after 72 h of treatment. The Ficus rubiginosa leaf extract inhibited the replication of HSV-1 in the early stages of infection, showing a complete inhibition up to 0.62, 0.31, and 1.25 µg/mL. Against HCoV-229E, a total inhibition up to 1.25 µg/mL for MeOH and H as well as 5 µg/mL for EA was observed. Otherwise, no activity was recorded against PV-1. The leaf extract could act directly on the viral envelope, destructuring the lipid membrane and/or directly blocking the enriched proteins on the viral surface. The verified gene inhibition suggested that the treatments with M, H, and EA impaired HSV-1 and HCoV-229E replication, with a greater antiviral efficiency against HSV-1 compared to HCoV-229E, possibly due to a greater affinity of Ficus rubiginosa towards membrane glycoproteins and/or the different lipid envelopes.
Collapse
|
33
|
Pisoschi AM, Iordache F, Stanca L, Gajaila I, Ghimpeteanu OM, Geicu OI, Bilteanu L, Serban AI. Antioxidant, Anti-inflammatory, and Immunomodulatory Roles of Nonvitamin Antioxidants in Anti-SARS-CoV-2 Therapy. J Med Chem 2022; 65:12562-12593. [PMID: 36136726 PMCID: PMC9514372 DOI: 10.1021/acs.jmedchem.2c01134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Viral pathologies encompass activation of pro-oxidative pathways and inflammatory burst. Alleviating overproduction of reactive oxygen species and cytokine storm in COVID-19 is essential to counteract the immunogenic damage in endothelium and alveolar membranes. Antioxidants alleviate oxidative stress, cytokine storm, hyperinflammation, and diminish the risk of organ failure. Direct antiviral roles imply: impact on viral spike protein, interference with the ACE2 receptor, inhibition of dipeptidyl peptidase 4, transmembrane protease serine 2 or furin, and impact on of helicase, papain-like protease, 3-chyomotrypsin like protease, and RNA-dependent RNA polymerase. Prooxidative environment favors conformational changes in the receptor binding domain, promoting the affinity of the spike protein for the host receptor. Viral pathologies imply a vicious cycle, oxidative stress promoting inflammatory responses, and vice versa. The same was noticed with respect to the relationship antioxidant impairment-viral replication. Timing, dosage, pro-oxidative activities, mutual influences, and interference with other antioxidants should be carefully regarded. Deficiency is linked to illness severity.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Loredana Stanca
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Iuliana Gajaila
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Oana Margarita Ghimpeteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Ovidiu Ionut Geicu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| | - Liviu Bilteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Molecular Nanotechnology Laboratory,
National Institute for Research and Development in
Microtechnologies, 126A Erou Iancu Nicolae Street, 077190Bucharest,
Romania
| | - Andreea Iren Serban
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| |
Collapse
|
34
|
Trivedi P, Abbas A, Lehmann C, Rupasinghe HPV. Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies. J Xenobiot 2022; 12:289-306. [PMID: 36278757 PMCID: PMC9589987 DOI: 10.3390/jox12040020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
The highly contagious coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic and public health emergency as it has taken the lives of over 5.7 million in more than 180 different countries. This disease is characterized by respiratory tract symptoms, such as dry cough and shortness of breath, as well as other symptoms, including fever, chills, and fatigue. COVID-19 is also characterized by the excessive release of cytokines causing inflammatory injury to the lungs and other organs. It is advised to undergo precautionary measures, such as vaccination, social distancing, use of masks, hygiene, and a healthy diet. This review is aimed at summarizing the pathophysiology of COVID-19 and potential biologically active compounds (bioactive) found in plants and plant food. We conclude that many plant food bioactive compounds exhibit antiviral and anti-inflammatory properties and support in attenuating organ damage due to reduced cytokine release and improving the recovery process from COVID-19 infection.
Collapse
Affiliation(s)
- Purvi Trivedi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3E2, Canada
| | - Amna Abbas
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3E2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3E2, Canada
- Correspondence:
| |
Collapse
|
35
|
Foka FET, Manamela N, Mufamadi SM, Mufhandu HT. Potential of Azadirachta indica as a Capping Agent for Antiviral Nanoparticles against SARS-CoV-2. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5714035. [PMID: 36158879 PMCID: PMC9499809 DOI: 10.1155/2022/5714035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
A rare type of pneumonia later on referred to as COVID-19 was reported in China in December 2019. Investigations revealed that this disease is caused by a coronavirus previously identified as SARS-CoV-2, and since then, it has become a global pandemic with new strains emerging rapidly as a result of genetic mutations. Various therapeutic options are being explored in order to eradicate this pandemic even though approved vaccine candidates are being currently rolled out globally. Most medicinal plant extracts have astonishing properties, and they can therefore be used in the biosynthesis of effective antiviral nanoparticles. In this systematic review, we aimed to highlight the specific attributes that make Azadirachta indica (neem plant) a suitable candidate for the biosynthesis of anti-SARS-CoV-2 nanoparticles. A systematic investigation was therefore carried out in PubMed, Scopus, Web of Science, and AJOL databases with the keywords "Nanoparticles," "Biosynthesis," "Antivirals," "SARS-CoV-2," and "Azadirachta indica." 1216 articles were retrieved by the 21st of February 2022, but we screened studies that reported data on biomedical and antimicrobial assessment of Azadirachta indica extracts. We also screened studies that were reporting nanoparticles possessing antiviral properties against SARS-C0V-2, narrowing our results to 98 reports. Herein, the SARS-CoV-2 viral structure is briefly discussed with nanoparticles of biomedical importance in the design of SARS-CoV-2 antivirals. Most importantly, we focused on the biomedical and antiviral properties of Azadirachta indica extracts that could be of importance in the design of potential anti-SARS-CoV-2 nanoformulations.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of Microbiology, Virology Lab, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, Private Bag, X2046 Mmabatho, South Africa
| | - Nanabi Manamela
- Department of Microbiology, Virology Lab, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, Private Bag, X2046 Mmabatho, South Africa
| | - Steven Maluta Mufamadi
- Faculty of Health Sciences, Medical School, Nelson Mandela University, Missionvale Campus, P.O. Box 77000, Gqeberha 6031, South Africa
| | - Hazel Tumelo Mufhandu
- Department of Microbiology, Virology Lab, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, Private Bag, X2046 Mmabatho, South Africa
| |
Collapse
|
36
|
Grabek-Lejko D, Miłek M, Sidor E, Puchalski C, Dżugan M. Antiviral and Antibacterial Effect of Honey Enriched with Rubus spp. as a Functional Food with Enhanced Antioxidant Properties. Molecules 2022; 27:4859. [PMID: 35956811 PMCID: PMC9370118 DOI: 10.3390/molecules27154859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the effect of blackberry and raspberry fruits (1 and 4%) and leaves (0.5 and 1%) on the biological activities of rape honey. Honey and plant material extracts were analyzed regarding total phenolic, flavonoid, anthocyanin contents, HPTLC and HPLC polyphenol profiles, as well as antioxidant activity. The antiviral potential was analyzed against bacteriophage phi 6-a coronavirus surrogate-whereas antimicrobial was tested against S. aureus and E. coli. Blackberry extracts were more abundant in antioxidants than raspberry extracts, with better properties found for leaves than fruits and for cultivated rather than commercial plants. The addition of both Rubus plant additives significantly increased the antioxidant potential of honey by four-fold (for 4% fruits additive) to five-fold (for 1% of leaves). Honey with the addition of fruits possessed higher antiviral potential compared with raw rape honey (the highest for 4% of raspberry fruit and 1% of blackberry leaf additive). Honey enriched with Rubus materials showed higher antibacterial potential against S. aureus than rape honey and effectively inhibited S. aureus biofilm formation. To summarize, honey enriched with Rubus fruit or leaves are characterized by increased pro-health value and can be recommended as a novel functional food.
Collapse
Affiliation(s)
- Dorota Grabek-Lejko
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland;
| | - Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.M.); (E.S.)
| | - Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.M.); (E.S.)
- Doctoral School, University of Rzeszow, Rejtana 16c, 35-959 Rzeszow, Poland
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland;
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.M.); (E.S.)
| |
Collapse
|
37
|
Nawrot J, Gornowicz-Porowska J, Budzianowski J, Nowak G, Schroeder G, Kurczewska J. Medicinal Herbs in the Relief of Neurological, Cardiovascular, and Respiratory Symptoms after COVID-19 Infection A Literature Review. Cells 2022; 11:1897. [PMID: 35741026 PMCID: PMC9220793 DOI: 10.3390/cells11121897] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
COVID-19 infection causes complications, even in people who have had a mild course of the disease. The most dangerous seem to be neurological ailments: anxiety, depression, mixed anxiety-depressive (MAD) syndromes, and irreversible dementia. These conditions can negatively affect the respiratory system, circulatory system, and heart functioning. We believe that phytotherapy can be helpful in all of these conditions. Clinical trials confirm this possibility. The work presents plant materials (Valeriana officinalis, Melissa officinalis, Passiflora incarnata, Piper methysticum, Humulus lupulus, Ballota nigra, Hypericum perforatum, Rhodiola rosea, Lavandula officinalis, Paullinia cupana, Ginkgo biloba, Murraya koenigii, Crataegus monogyna and oxyacantha, Hedera helix, Polygala senega, Pelargonium sidoides, Lichen islandicus, Plantago lanceolata) and their dominant compounds (valeranon, valtrate, apigenin, citronellal, isovitexin, isoorientin, methysticin, humulone, farnesene, acteoside, hypericin, hyperforin, biapigenin, rosavidin, salidroside, linalool acetate, linalool, caffeine, ginkgolide, bilobalide, mihanimbine, epicatechin, hederacoside C,α-hederine, presegenin, umckalin, 6,7,8-trixydroxybenzopyranone disulfate, fumaroprotocetric acid, protolichesteric acid, aucubin, acteoside) responsible for their activity. It also shows the possibility of reducing post-COVID-19 neurological, respiratory, and cardiovascular complications, which can affect the functioning of the nervous system.
Collapse
Affiliation(s)
- Joanna Nawrot
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.G.-P.); (J.B.); (G.N.)
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.G.-P.); (J.B.); (G.N.)
| | - Jaromir Budzianowski
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.G.-P.); (J.B.); (G.N.)
| | - Gerard Nowak
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.G.-P.); (J.B.); (G.N.)
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu 5, Poznanskiego 8, 61-614 Poznan, Poland; (G.S.); (J.K.)
| | - Joanna Kurczewska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu 5, Poznanskiego 8, 61-614 Poznan, Poland; (G.S.); (J.K.)
| |
Collapse
|
38
|
Ochnik M, Franz D, Sobczyński M, Naporowski P, Banach M, Orzechowska B, Sochocka M. Inhibition of Human Respiratory Influenza A Virus and Human Betacoronavirus-1 by the Blend of Double-Standardized Extracts of Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. Pharmaceuticals (Basel) 2022; 15:ph15050619. [PMID: 35631445 PMCID: PMC9143272 DOI: 10.3390/ph15050619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Viral and bacterial diseases are among the greatest concerns of humankind since ancient times. Despite tremendous pharmacological progress, there is still a need to search for new drugs that could treat or support the healing processes. A rich source of bioactive compounds with antiviral potency include plants such as black chokeberry and elderberry. The aim of this study was to assess the in vitro antiviral ability of an originally designed double-standardized blend of extracts from Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. (EAM-ESN) or separated extracts of A. melanocarpa (EAM) or S. nigra (ESN) against four human respiratory tract viruses: influenza A virus (A/H1N1), betacoronavirus-1 (HCoV-OC43) belonging to the same β-coronaviruses as the current pandemic SARS-CoV-2, human herpesvirus type 1 (HHV-1), and human adenovirus type 5 (HAdV-5). Antiviral assays (AVAs) were used to evaluate the antiviral activity of the plant extracts in a cell-present environment with extracts tested before, simultaneously, or after viral infection. The virus replication was assessed using the CPE scale or luminescent assay. The EAM-ESN blend strongly inhibited A/H1N1 replication as well as HCoV-OC43, while having a limited effect against HHV-1 and HAdV-5. This activity likely depends mostly on the presence of the extract of S. nigra. However, the EAM-ESN blend possesses more effective inhibitory activity toward virus replication than its constituent extracts. A post-infection mechanism of action of the EAM-ESN make this blend the most relevant for potential drugs and supportive treatments; thus, the EAM-ESN blend might be considered as a natural remedy in mild, seasonal respiratory viral infections.
Collapse
Affiliation(s)
- Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Dominika Franz
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Maciej Sobczyński
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Piotr Naporowski
- Laboratory of Medical Microbiology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Mariusz Banach
- Department of Physical Chemistry and Polymer Physical Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Beata Orzechowska
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
- Correspondence: ; Tel.: +48-713-709-924
| |
Collapse
|
39
|
Ellatif SA, Abdel Razik ES, Abu-Serie MM, Mahfouz A, Shater AF, Saleh FM, Hassan MM, Alsanie WF, Altalhi A, Daigham GE, Mahfouz AY. Immunomodulatory Efficacy-Mediated Anti-HCV and Anti-HBV Potential of Kefir Grains; Unveiling the In Vitro Antibacterial, Antifungal, and Wound Healing Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27062016. [PMID: 35335377 PMCID: PMC8951848 DOI: 10.3390/molecules27062016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022]
Abstract
The utilization of fermented foods with health-promoting properties is becoming more popular around the world. Consequently, kefir, a fermented milk beverage made from kefir grains, was shown in numerous studies to be a probiotic product providing significant health benefits. Herein, we assessed the antibacterial and antifungal potential of kefir against a variety of pathogenic bacteria and fungi. This study also showed the effectiveness of kefir in healing wounds in human gastric epithelial cells (GES-1) by (80.78%) compared with control (55.75%) within 48 h. The quantitative polymerase chain reaction (qPCR) results of kefir-treated HCV- or HBV- infected cells found that 200 µg/mL of kefir can eliminate 92.36% of HCV and 75.71% of HBV relative to the untreated infected cells, whereas 800 µg/mL (the highest concentration) completely eradicated HCV and HBV. Moreover, the estimated IC50 values of kefir, at which HCV and HBV were eradicated by 50%, were 63.84 ± 5.81 µg/mL and 224.02 ± 14.36 µg/mL, correspondingly. Kefir can significantly suppress the elevation of TNF-α and upregulate IL-10 and INF-γ in both treated HCV- and HBV-infected cells. High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analysis of kefir revealed the presence of numerous active metabolites which mainly contribute to the antimicrobial, antiviral, and immunomodulatory activities. This study demonstrated, for the first time, the anti-HBV efficacy of kefir while also illustrating the immunomodulatory impact in the treated HBV-infected cells. Accordingly, kefir represents a potent antiviral agent against both viral hepatitis C and B, as well as having antimicrobial and wound healing potential.
Collapse
Affiliation(s)
- Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Elsayed S. Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Ahmed Mahfouz
- National Health Service Foundation Trust (NHS), Manchester University, Manchester M14 5RH, UK;
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.M.H.); (A.A.)
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdullah Altalhi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.M.H.); (A.A.)
| | - Ghadir E. Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11651, Egypt;
| | - Amira Y. Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11651, Egypt;
- Correspondence:
| |
Collapse
|
40
|
Todorova N, Rangelov M, Dincheva I, Badjakov I, Enchev V, Markova N. Potential of hydroxybenzoic acids from Graptopetalum paraguayense for inhibiting of herpes simplex virus DNA polymerase – metabolome profiling, molecular docking and quantum-chemical analysis. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e79467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
According to our previous investigation the total methanol extract from Graptopetalum paraguayense E. Walther demonstrates a significant inhibitory effect on herpes simplex virus type 1 (HSV-1). To clarify what causes this inhibitory activity on HSV-1, a metabolic profile of the plant was performed. Three main fractions: non-polar substances, polar metabolites and phenolic compounds were obtained and gas chromatography–mass spectrometry (GC-MS) analysis was carried out. Since it is well known that phenolic compounds show a significant anti-herpes effect and that viral DNA polymerase (DNApol) appears to play a key role in HSV virus replication, we present a docking and quantum-chemical analysis of the binding of these compounds to viral DNApol amino acids. Fourteen different phenolic acids found by GC-MS analyses, were used in molecular docking simulations. According to the interaction energies of all fourteen ligands in the DNApol pockets based on docking results, density functional theory (DFT) calculations were performed on the five optimally interacting with the receptor acids. It was found that hydroxybenzoic acids from phenolic fraction of Graptopetalum paraguayense E. Walther show a good binding affinity to the amino acids from the active site of the HSV DNApol, but significantly lower than that of acyclovir. The mode of action on virus replication of acyclovir (by DNApol) is different from that of the plant phenolic acids one, probably.
Collapse
|