1
|
Chaudhary V, Kajla P, Kumari P, Luthra A, Ramniwas S, Rustagi S, Pandiselvam R. Biomaterials for eco-friendly packaging in dairy products: towards a cleaner, greener, and sustainable future. Crit Rev Biotechnol 2025:1-28. [PMID: 40268521 DOI: 10.1080/07388551.2025.2482951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/04/2024] [Accepted: 02/24/2025] [Indexed: 04/25/2025]
Abstract
Milk and milk products are very susceptible to spoilage and therefore, suitable innovative packaging strategies are indispensable to enhance shelf life along with maintaining quality and safety. Transformation in the utilization of packaging materials and technologies in the dairy sector is trending to match and meet the changing demands of consumers aware of this. Smart, intelligent, and active packagings are a few innovative packaging strategies that aim at protracting the shelf stability of milk and milk products while enhancing safety and sensory qualities. Other packaging innovations also include the use of different packaging systems which are not only safe, compatible with food, and stable over a wide range of storage conditions but are more eco-friendly and thus posing the least possible burden on the environment. In this review, the authors attempt to compile innovative green packaging technologies for different dairy products. The properties and applications of biomaterials used for smart, active, and intelligent packaging of milk and milk products, such as: pasteurized milk, evaporated milk, sweetened milk, condensed milk, milk powder, along with: ice cream, butter, coagulated dairy products, and heat-desiccated milk products are briefly discussed. Environmental impact, safety regulations as well as challenges in the implementation of different innovative packaging technologies in the dairy sector are also covered. The use of eco-friendly packaging innovative approaches in terms of improved biodegradability and lesser environmental hazards aims to achieve environmental sustainability goals for a clean and green future.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Parveen Kumari
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Ankur Luthra
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Mohali, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| |
Collapse
|
2
|
Tayebi-Khorrami V, Shahgordi S, Dabbaghi MM, Fadaei MS, Masoumi Shahrbabak S, Fallahianshafiei S, Fadaei MR, Hasnain MS, Nayak AK, Askari VR. From nature to nanotech: Harnessing the power of electrospun polysaccharide-based nanofibers as sustainable packaging. Int J Biol Macromol 2025; 299:140127. [PMID: 39842579 DOI: 10.1016/j.ijbiomac.2025.140127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Today, the applications of natural polysaccharide-based nanofibers are growing in drug delivery and food industries. They also showed their capability as packaging due to biodegradability, mechanical strength, barrier properties, thermal stability, antioxidant, and antimicrobial features. Natural polysaccharides come from different sources, such as plants, microbes, and animals. Natural polysaccharide-based nanofibers can be considered sustainable packaging in contrast to plastic packaging due to their safety and biodegradability. Smart packaging is a new trend in packaging materials, and natural polysaccharides can be applied as smart packaging. They can work as an indicator that confirms food health in food packaging. Electrospinning is one of the most used methods for the fabrication of nanofibers, and it can also be used for the fabrication of natural polysaccharide nanofibers. This method can be scaled up and used to fabricate nanofibers on a large scale. This paper will review recent studies on natural polysaccharide-based nanofiber as packaging materials and their benefits. We also discuss the challenges and limitations of their scale-up and electrospinning process. Furthermore, we will discuss the future perspective of natural polysaccharide-based nanofiber as a new sustainable packaging.
Collapse
Affiliation(s)
- Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Shahgordi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Dabbaghi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Masoumi Shahrbabak
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Md Saquib Hasnain
- Department of Pharmacy, Palamau Institute of Pharmacy, Chianki, Daltonganj, Jharkhand, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Kaczmarek-Szczepańska B, Glajc P, Chmielniak D, Gwizdalska K, Swiontek Brzezinska M, Dembińska K, Shinde AH, Gierszewska M, Łukowicz K, Basta-Kaim A, D’Amora U, Zasada L. Development and Characterization of Biocompatible Chitosan-Aloe Vera Films Functionalized with Gluconolactone and Sorbitol for Advanced Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15196-15207. [PMID: 39999379 PMCID: PMC11912206 DOI: 10.1021/acsami.5c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Chitosan (CTS) has emerged as a promising biopolymer for wound healing due to its biocompatibility, biodegradability, and intrinsic bioactive properties. This study explores the development and characterization of CTS-based films enhanced with natural bioactive agents, aloe vera (A), gluconolactone (GL), and sorbitol (S), to improve their mechanical, antimicrobial, and regenerative performance for potential use in advanced wound care. A series of CTS-based films were fabricated with varying concentrations of A, GL, and S, and their physicochemical, mechanical, and biological properties were comprehensively evaluated. Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) analysis revealed modifications in the film structure attributable to these additives, influencing the surface roughness, hydrophilicity, and thermal stability. Biocidal assays confirmed enhanced antimicrobial activity, particularly in films containing GL and A. Biodegradation studies demonstrated a significant enhancement in microbial decomposition of the films, while cytocompatibility tests confirmed minimal cytotoxic effects and improved cellular response. This research underscores the potential of combining CS with A, GL, and S to engineer multifunctional biomaterials tailored for effectively tackling different phases of the wound healing process, offering a sustainable and biocompatible alternative for clinical applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Patrycja Glajc
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dorota Chmielniak
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Klaudia Gwizdalska
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Maria Swiontek Brzezinska
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Katarzyna Dembińska
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Ambika H. Shinde
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Magdalena Gierszewska
- Department
of Physical Chemistry and Polymer Physical Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
| | - Krzysztof Łukowicz
- Department
of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, PolishAcademy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department
of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, PolishAcademy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Ugo D’Amora
- Institute
of Polymers, Composites and Biomaterials, National Research Council, v.le J.F. Kennedy 54, Mostra d’Oltremare,
Pad. 20, 80125 Naples, Italy
| | - Lidia Zasada
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
4
|
García-Anaya MC, Sepúlveda DR, Acosta-Muñiz CH. Contributing factors to the migration of antimicrobials in active packaging films. Food Res Int 2025; 200:115514. [PMID: 39779145 DOI: 10.1016/j.foodres.2024.115514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Antimicrobial active packaging plays a key role in food quality and safety. The addition of antimicrobial agents in packaging production aims to release these agents from film to food, thereby preventing, reducing, or eliminating the contamination caused by pathogens or food spoilage microorganisms. This review provides an overview of the antimicrobial active packaging and gives an insight of the antimicrobials that have been used to manufacture antimicrobial active films. Additionally, it discusses the findings of studies that have developed active films, identifying the related factors with the release of antimicrobials from film to packaged food, as well as their possible mechanisms of release. Four interrelated factors that affect the release of antimicrobial agents have been identified. The first one addresses the film properties, the second one corresponds to food characteristics, the third one environmental condition, and the last one the attributes of the antimicrobial agent itself. There have been reported two mechanisms for explaining the antimicrobial release. The first mechanism addresses the water as the main regulator, and the second implies a natural diffusion of antimicrobials. The identification of related factors with the release can contribute to optimizing new methods in the design of antimicrobial active packaging.
Collapse
Affiliation(s)
- Mayra C García-Anaya
- Centro de Investigación en Alimentación y Desarrollo, A. C. Departamento de Microbiología y Biología Molecular. Av, Río Conchos S/N Parque Industrial. Z.C. 31570. Cd. Cuauhtémoc, Chihuahua, México
| | - David R Sepúlveda
- Centro de Investigación en Alimentación y Desarrollo, A. C. Departamento de Microbiología y Biología Molecular. Av, Río Conchos S/N Parque Industrial. Z.C. 31570. Cd. Cuauhtémoc, Chihuahua, México
| | - Carlos H Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo, A. C. Departamento de Microbiología y Biología Molecular. Av, Río Conchos S/N Parque Industrial. Z.C. 31570. Cd. Cuauhtémoc, Chihuahua, México.
| |
Collapse
|
5
|
Gajendran VP, Rajamani S. Recent Advancements in Harnessing Lactic Acid Bacterial Metabolites for Fruits and Vegetables Preservation. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10392-3. [PMID: 39514163 DOI: 10.1007/s12602-024-10392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Postharvest losses in fruits and vegetables exert substantial economic and environmental repercussions. Chemical interventions are being widely utilized for the past six decades which may lead to significant health complications. Bioprotection of fruits and vegetables is the need of the hour in which use of lactic acid bacteria (LAB) with GRAS status predominantly stands out. Incorporation of LAB in postharvest fruits and vegetables suppresses the growth of spoilage organisms by synthesizing various antimicrobial compounds such as bacteriocins, organic acids, hydrogen peroxide (H2O2), exopolysaccharides (EPS), and BLIS. For example, Pediococcus acidilactici, Lactobacillus plantarum, and Limosilactobacillus fermentum convert natural sugars in fruits and vegetables to lactic acid and create an acidic environment that do not favour spoilage organisms. LAB can improve the bioavailability of vitamins and minerals and enrich the phenolic profile and bioactivity components. LAB has remarkable physiological characteristics like resistance towards bacteriophage, proteolytic activity, and polysaccharide production which adds to the safety of foods. They modify the sensory properties and preserve the nutritional quality of fruits and vegetables. They can also perform therapeutic role in the intestinal tract as they tolerate low pH, high salt concentration. Thus application of LAB, whether independently or in conjunction with stabilizing agents as edible coatings, is regarded as an exceptionally promising methodology for ensuring safer consumption of fruits and vegetables. This review addresses the most recent research findings that harness the antagonistic property of lactic acid bacterial metabolites, formulations and coatings containing their bioactive compounds for extended shelf life of fruits and vegetables.
Collapse
Affiliation(s)
- Vaishnavi Pratha Gajendran
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Subhashini Rajamani
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
| |
Collapse
|
6
|
Chaudhary V, Kajla P, Lather D, Chaudhary N, Dangi P, Singh P, Pandiselvam R. Bacteriophages: a potential game changer in food processing industry. Crit Rev Biotechnol 2024; 44:1325-1349. [PMID: 38228500 DOI: 10.1080/07388551.2023.2299768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Priya Dangi
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Mathura, Uttar Pradesh, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
7
|
Zhai X, Han J, Chang L, Zhao F, Zhang R, Wang W, Hou H. Effects of starch filling on physicochemical properties, functional activities, and release characteristics of PBAT-based biodegradable active films loaded with tea polyphenols. Int J Biol Macromol 2024; 277:134505. [PMID: 39106933 DOI: 10.1016/j.ijbiomac.2024.134505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
In this work, the modification of poly(butylene adipate-co-terephthalate) (PBAT) was combined with the development of active packaging films. PBAT, starch, plasticizer, and tea polyphenols (TP) were compounded and extrusion-blown into thermoplastic starch (TPS)/PBAT-TP active films. Effects of TPS contents on physicochemical properties, functional activities, biodegradability, and release kinetics of PBAT-based active films were explored. Starch interacted strongly with TP through hydrogen bonding and induced the formation of heterogeneous structures in the films. With the increase in TPS contents, surface hydrophilicity and water vapor permeability of the films increased, while mechanical properties decreased. Blending starch with PBAT greatly accelerated degradation behavior of the films, and the T30P70-TP film achieved complete degradation after 180 days. As TPS contents increased, swelling degree of the films increased and TP release were improved accordingly, resulting in significantly enhanced antioxidant and antimicrobial activities. This work demonstrated that filling starch into PBAT-based active films could achieve different antioxidant and antimicrobial activities of the films by regulating film swelling and release behavior.
Collapse
Affiliation(s)
- Xiaosong Zhai
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Weifang 262700, China
| | - Jinhong Han
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Weifang 262700, China
| | - Liang Chang
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Weifang 262700, China
| | - Fei Zhao
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Weifang 262700, China
| | - Rui Zhang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China.
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an 271018, China.
| |
Collapse
|
8
|
Olawade DB, Wada OZ, Ige AO. Advances and recent trends in plant-based materials and edible films: a mini-review. Front Chem 2024; 12:1441650. [PMID: 39233921 PMCID: PMC11371721 DOI: 10.3389/fchem.2024.1441650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Plant-based materials and edible films have emerged as promising alternatives to conventional packaging materials, offering sustainable and environmentally friendly solutions. This mini-review highlights the significance of plant-based materials derived from polysaccharides, proteins, and lipids, showcasing their renewable and biodegradable nature. The properties of edible films, including mechanical strength, barrier properties, optical characteristics, thermal stability, and shelf-life extension, are explored, showcasing their suitability for food packaging and other applications. Moreover, the application of 3D printing technology allows for customized designs and complex geometries, paving the way for personalized nutrition. Functionalization strategies, such as active and intelligent packaging, incorporation of bioactive compounds, and antimicrobial properties, are also discussed, offering additional functionalities and benefits. Challenges and future directions are identified, emphasizing the importance of sustainability, scalability, regulation, and performance optimization. The potential impact of plant-based materials and edible films is highlighted, ranging from reducing reliance on fossil fuels to mitigating plastic waste and promoting a circular economy. In conclusion, plant-based materials and edible films hold great potential in revolutionizing the packaging industry, offering sustainable alternatives to conventional materials. Embracing these innovations will contribute to reducing plastic waste, promoting a circular economy, and creating a sustainable and resilient planet.
Collapse
Affiliation(s)
- David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom
- Department of Public Health, York St John University, London, United Kingdom
| | - Ojima Z Wada
- Division of Sustainable Development, College of Science and Engineering, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Abimbola O Ige
- Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Yarahmadi A, Dousti B, Karami-Khorramabadi M, Afkhami H. Materials based on biodegradable polymers chitosan/gelatin: a review of potential applications. Front Bioeng Biotechnol 2024; 12:1397668. [PMID: 39157438 PMCID: PMC11327468 DOI: 10.3389/fbioe.2024.1397668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Increased mass manufacturing and the pervasive use of plastics in many facets of daily life have had detrimental effects on the environment. As a result, these worries heighten the possibility of climate change due to the carbon dioxide emissions from burning conventional, non-biodegradable polymers. Accordingly, biodegradable gelatin and chitosan polymers are being created as a sustainable substitute for non-biodegradable polymeric materials in various applications. Chitosan is the only naturally occurring cationic alkaline polysaccharide, a well-known edible polymer derived from chitin. The biological activities of chitosan, such as its antioxidant, anticancer, and antimicrobial qualities, have recently piqued the interest of researchers. Similarly, gelatin is a naturally occurring polymer derived from the hydrolytic breakdown of collagen protein and offers various medicinal advantages owing to its unique amino acid composition. In this review, we present an overview of recent studies focusing on applying chitosan and gelatin polymers in various fields. These include using gelatin and chitosan as food packaging, antioxidants and antimicrobial properties, properties encapsulating biologically active substances, tissue engineering, microencapsulation technology, water treatment, and drug delivery. This review emphasizes the significance of investigating sustainable options for non-biodegradable plastics. It showcases the diverse uses of gelatin and chitosan polymers in tackling environmental issues and driving progress across different industries.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Behrooz Dousti
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mahdi Karami-Khorramabadi
- Department of Mechanical Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Alborz, Iran
| |
Collapse
|
10
|
Pei J, Palanisamy CP, Srinivasan GP, Panagal M, Kumar SSD, Mironescu M. A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. Int J Biol Macromol 2024; 274:133332. [PMID: 38914408 DOI: 10.1016/j.ijbiomac.2024.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania.
| |
Collapse
|
11
|
Rindhe S, Khan A, Priyadarshi R, Chatli M, Wagh R, Kumbhar V, Wankar A, Rhim JW. Application of bacteriophages in biopolymer-based functional food packaging films. Compr Rev Food Sci Food Saf 2024; 23:e13333. [PMID: 38571439 DOI: 10.1111/1541-4337.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Recently, food spoilage caused by pathogens has been increasing. Therefore, applying control strategies is essential. Bacteriophages can potentially reduce this problem due to their host specificity, ability to inhibit bacterial growth, and extend the shelf life of food. When bacteriophages are applied directly to food, their antibacterial activity is lost. In this regard, bacteriophage-loaded biopolymers offer an excellent option to improve food safety by extending their shelf life. Applying bacteriophages in food preservation requires comprehensive and structured information on their isolation, culturing, storage, and encapsulation in biopolymers for active food packaging applications. This review focuses on using bacteriophages in food packaging and preservation. It discusses the methods for phage application on food, their use for polymer formulation and functionalization, and their effect in enhancing food matrix properties to obtain maximum antibacterial activity in food model systems.
Collapse
Affiliation(s)
- Sandeep Rindhe
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Manish Chatli
- Indian Council of Agricultural Research (ICAR)-Central Institute for Research on Goats (CIRG), Makhdoom, India
| | - Rajesh Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary Animal Sciences University, Ludhiana, India
| | - Vishal Kumbhar
- Department of Animal Husbandry, State Government, Maharashtra, India
| | - Alok Wankar
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Devi LS, Jaiswal AK, Jaiswal S. Lipid incorporated biopolymer based edible films and coatings in food packaging: A review. Curr Res Food Sci 2024; 8:100720. [PMID: 38559379 PMCID: PMC10978484 DOI: 10.1016/j.crfs.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
In the evolving landscape of food packaging, lipid-based edible films and coatings are emerging as a sustainable and effective solution for enhancing food quality and prolonging shelf life. This critical review aims to offer a comprehensive overview of the functional properties, roles, and fabrication techniques associated with lipid-based materials in food packaging. It explores the unique advantages of lipids, including waxes, resins, and fatty acids, in providing effective water vapor, gas, and microbial barriers. When integrated with other biopolymers, such as proteins and polysaccharides, lipid-based composite films demonstrate superior thermal, mechanical, and barrier properties. The review also covers the application of these innovative coatings in preserving a wide range of fruits and vegetables, highlighting their role in reducing moisture loss, controlling respiration rates, and maintaining firmness. Furthermore, the safety aspects of lipid-based coatings are discussed to address consumer and regulatory concerns.
Collapse
Affiliation(s)
- L. Susmita Devi
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam, 783370, India
| | - Amit K. Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7, Ireland
- Sustainability and Health Research Hub, Technological University Dublin, City Campus, Grangegorman, Dublin, D07 H6K8, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7, Ireland
- Sustainability and Health Research Hub, Technological University Dublin, City Campus, Grangegorman, Dublin, D07 H6K8, Ireland
| |
Collapse
|
13
|
Abdulla SF, Shams R, Dash KK. Edible packaging as sustainable alternative to synthetic plastic: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32806-z. [PMID: 38462564 DOI: 10.1007/s11356-024-32806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
The choice of an appropriate packaging materials enhances the shelf life and improves quality of food during transportation, storage, and distribution. Development and innovations in food packaging systems have become essential in the food industry. Most widely used packaging materials are non-biodegradable plastics and are harmful to environment and human health. Thus, food industry is replacing non-biodegradable plastics with biodegradable plastics to reduce environmental pollution, health hazards, and food waste. Edible packaging may reduce food waste and keep perishables fresh. This review article compares edible packaging materials to synthetic ones and discusses their pollution-reducing effects. The several types of food packaging discussed in the review include those produced from polysaccharides, proteins, lipids, and composite films. The various characteristics of edible packaging are reviewed, including its barrier qualities, carrier properties, mechanical capabilities, and edibility. The carrier properties describe the capacity to transport and manage the release of active substances, and the edibility indicates acceptance of these items by the customers. Plasticizers, antimicrobials, antioxidants, and emulsifiers were included in the edible packaging to enhance the characteristics of the film. The development and implementation of edible packaging on food products from the laboratory to large-scale industrial levels, as well as their potential industrial applications in the dairy, meat, confectionary, poultry, fish, fruit, and vegetable processing sectors are addressed.
Collapse
Affiliation(s)
- Subhan Farook Abdulla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| |
Collapse
|
14
|
Martins VFR, Pintado ME, Morais RMSC, Morais AMMB. Recent Highlights in Sustainable Bio-Based Edible Films and Coatings for Fruit and Vegetable Applications. Foods 2024; 13:318. [PMID: 38275685 PMCID: PMC10814993 DOI: 10.3390/foods13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The present review paper focuses on recent developments in edible films and coatings made of base compounds from biological sources, namely plants, animals, algae, and microorganisms. These sources include by-products, residues, and wastes from agro-food industries and sea products that contribute to sustainability concerns. Chitosan, derived from animal biological sources, such as crustacean exoskeletons, has been the most studied base compound over the past three years. Polysaccharides typically constitute no more than 3-5% of the film/coating base solution, with some exceptions, like Arabic gum. Proteins and lipids may be present in higher concentrations, such as zein and beeswax. This review also discusses the enrichment of these bio-based films and coatings with various functional and/or bioactive compounds to confer or enhance their functionalities, such as antimicrobial, antioxidant, and anti-enzymatic properties, as well as physical properties. Whenever possible, a comparative analysis among different formulations was performed. The results of the applications of these edible films and coatings to fruit and vegetable products are also described, including shelf life extension, inhibition of microbial growth, and prevention of oxidation. This review also explores novel types of packaging, such as active and intelligent packaging. The potential health benefits of edible films and coatings, as well as the biodegradability of films, are also discussed. Finally, this review addresses recent innovations in the edible films and coatings industry, including the use of nanotechnologies, aerogels, and probiotics, and provides future perspectives and the challenges that the sector is facing.
Collapse
Affiliation(s)
| | | | | | - Alcina M. M. B. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.E.P.); (R.M.S.C.M.)
| |
Collapse
|
15
|
Athanasopoulou E, Bigi F, Maurizzi E, Karellou EIE, Pappas CS, Quartieri A, Tsironi T. Synthesis and characterization of polysaccharide- and protein-based edible films and application as packaging materials for fresh fish fillets. Sci Rep 2024; 14:517. [PMID: 38177403 PMCID: PMC10767132 DOI: 10.1038/s41598-024-51163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
The rising packaging industry together with global demand for sustainable production has increased the interest in developing biodegradable packaging materials. The aim of the study was to develop edible films based on pectin, gelatin, and hydroxypropyl methylcellulose and evaluate their applicability as biodegradable packaging materials for gilthead seabream fillets. Mechanical properties, water barriers, wettability of the films through contact angle measurement, optical, and UV-Vis barrier properties were evaluated for food packaging applications. The effective blend of polysaccharide and protein film-forming solutions was confirmed by the produced films with excellent optical properties, acceptable mechanical properties and adequate barriers to water vapor. The contact angle for pectin based and gelatin based films were higher than 90° indicating the hydrophobic films, while HPMC based films had contact angle lower than 90°. The produced films were tested as alternative and environmentally friendly packaging materials for gilthead seabream fillets during refrigerated storage. All tested packaging conditions resulted in similar shelf-life in packed gilthead seabream fillets (i.e. 7-8 days at 2 °C). The results showed that the developed films may reduce the use of conventional petroleum-based food packaging materials without affecting the shelf-life of fish.
Collapse
Affiliation(s)
- Evmorfia Athanasopoulou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Francesco Bigi
- Packtin, Via Del Chionso, 14/I, 42122, Reggio Emilia, RE, Italy
| | - Enrico Maurizzi
- Department of Life Science, University of Modena and Reggio Emilia, Via John Fitzgerald Kennedy 17/I, 42122, Reggio Emilia, RE, Italy
| | | | - Christos S Pappas
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | | | - Theofania Tsironi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| |
Collapse
|
16
|
Thakur N, Raposo A. Development and application of fruit and vegetable based green films with natural bio-actives in meat and dairy products: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6167-6179. [PMID: 37148159 DOI: 10.1002/jsfa.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
In recent years, foodborne outbreaks and food plastic waste accumulation in the environment have impelled a hunt for new, sustainable, novel and innovatory food packaging interventions to face microbial contamination, food quality and safety. Pollution caused from wastes generated by agricultural activities is one of chief rising concerns of the environmentalists across the globe. A solution to this problem is effective and economic valorization of residues from agriculture sector. It would ensure that the by-products/residues from one activity act as ingredients/raw materials for another industry. An example is fruit and vegetable waste based green films for food packaging. Edible packaging is a well-researched area of science where numerous biomaterials have been already explored. Along with dynamic barrier properties, these biofilms often exhibit antioxidant and antimicrobial properties as function of the bioactive additives (e.g. essential oils) often incorporated in them. Additionally, these films are made competent by use of recent technologies (e.g. encapsulation, nano-emulsions, radio-sensors) to ensure high end performance and meet the principles of sustainability. Livestock products such as meat, poultry and dairy products are highly perishable and depend largely upon the mercy of packaging materials to enhance their shelf life. In this review, all the above-mentioned aspects are thoroughly covered with a view to project fruit and vegetable based green films (FVBGFs) as a potential and viable packaging material for livestock products, along with a discussion on role of bio-additives, technological interventions, properties and potential applications of FVBGFs in livestock products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Livestock Products Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| |
Collapse
|
17
|
Sar T, Kiraz P, Braho V, Harirchi S, Akbas MY. Novel Perspectives on Food-Based Natural Antimicrobials: A Review of Recent Findings Published since 2020. Microorganisms 2023; 11:2234. [PMID: 37764078 PMCID: PMC10536795 DOI: 10.3390/microorganisms11092234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Various fruit and vegetable wastes, particularly peels, seeds, pulp, and unprocessed residues from the food industry, are abundant sources of antioxidants and essential antimicrobial agents. These valuable bioactive compounds recovered from the food industry have a great application in food, agriculture, medicine, and pharmacology. Food-derived natural antimicrobials offer advantages such as diminishing microbial loads and prolonging the shelf life of food products particularly prone to microbial spoilage. They not only enrich the foods with antioxidants but also help prevent microbial contamination, thereby prolonging their shelf life. Similarly, incorporating these natural antimicrobials into food packaging products extends the shelf life of meat products. Moreover, in agricultural practices, these natural antimicrobials act as eco-friendly pesticides, eliminating phytopathogenic microbes responsible for causing plant diseases. In medicine and pharmacology, they are being explored as potential therapeutic agents. This review article is based on current studies conducted in the last four years, evaluating the effectiveness of food-based natural antimicrobials in food, agriculture, medicine, and pharmacology.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (V.B.); (S.H.)
| | - Pelin Kiraz
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Türkiye; (P.K.); (M.Y.A.)
| | - Vjola Braho
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (V.B.); (S.H.)
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (V.B.); (S.H.)
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Türkiye; (P.K.); (M.Y.A.)
| |
Collapse
|
18
|
Sharafi H, Divsalar E, Rezaei Z, Liu SQ, Moradi M. The potential of postbiotics as a novel approach in food packaging and biopreservation: a systematic review of the latest developments. Crit Rev Food Sci Nutr 2023; 64:12524-12554. [PMID: 37667831 DOI: 10.1080/10408398.2023.2253909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metabolic by-products are part of the so-called postbiotics of probiotics and other beneficial microorganisms, particularly lactic acid bacteria, which have gained popularity as a feasible alternative to improving food quality and safety. Postbiotics in dry and liquid forms can be easily integrated into food formulations and packaging materials, exhibiting antimicrobial and antioxidant effects owing to the presence of multiple antimicrobials, such as organic acids, bacteriocins, exopolysaccharides and bioactive peptides. Postbiotics can thus control the growth of pathogens and spoilage microorganisms, thereby extending the shelf life of food products. Because of their ability to be easily manufactured without requiring extensive processing, postbiotics are regarded as a safer and more sustainable alternative to synthetic preservatives, which can have negative environmental consequences. Additionally, food manufacturers can readily adopt postbiotics in food formulations without significant modifications. This systematic review provides an in-depth analysis of studies on the use of postbiotics in the biopreservation and packaging of a wide range of food products. The review evaluates and discusses the types of microorganisms, postbiotics preparation and modification techniques, methods of usage in dairy products, meat, poultry, seafood, fruits, vegetables, bread, and egg, and their effects on food quality and safety.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeinab Rezaei
- Center of Cheshme noshan khorasan (Alis), University of Applied Science and Technology, Chanaran, Iran
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
19
|
Nunes C, Silva M, Farinha D, Sales H, Pontes R, Nunes J. Edible Coatings and Future Trends in Active Food Packaging-Fruits' and Traditional Sausages' Shelf Life Increasing. Foods 2023; 12:3308. [PMID: 37685240 PMCID: PMC10486622 DOI: 10.3390/foods12173308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The global food production industry faces environmental concerns exacerbated by substantial food waste. European countries are striving to reduce food waste towards a circular bioeconomy and sustainable development. To address environmental issues and reduce plastic waste, researchers are developing sustainable active packaging systems, including edible packaging made from industry residues. These innovations aim to increase food safety and quality, extend shelf life, and reduce plastic and food waste. Particularly important in the context of the growing demand for fresh and minimally processed fruits, edible coatings have emerged as a potential solution that offers numerous advantages in maintaining fruit quality. In addition to fruit, edible coatings have also been investigated for animal-based foods to meet the demand for high-quality, chemical-free food and extended shelf life. These products globally consumed can be susceptible to the growth of harmful microorganisms and spoilage. One of the main advantages of using edible coatings is their ability to preserve meat quality and freshness by reducing undesirable physicochemical changes, such as color, texture, and moisture loss. Furthermore, edible coatings also contribute to the development of a circular bioeconomy, promoting sustainability in the food industry. This paper reviews the antimicrobial edible coatings investigated in recent years in minimally processed fruits and traditional sausages. It also approaches bionanocomposites as a recently emerged technology with potential application in food quality and safety.
Collapse
Affiliation(s)
| | | | - Diana Farinha
- Association BLC3–Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição 2, Lagares da Beira, 3405-155 Oliveira do Hospital, Portugal; (C.N.); (M.S.); (H.S.); (R.P.); (J.N.)
| | | | | | | |
Collapse
|
20
|
Rusu AV, Trif M, Rocha JM. Microbial Secondary Metabolites via Fermentation Approaches for Dietary Supplementation Formulations. Molecules 2023; 28:6020. [PMID: 37630272 PMCID: PMC10458110 DOI: 10.3390/molecules28166020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Food supplementation formulations refer to products that are designed to provide additional nutrients to the diet. Vitamins, dietary fibers, minerals and other functional compounds (such as antioxidants) are concentrated in dietary supplements. Specific amounts of dietary compounds are given to the body through food supplements, and these include as well so-called non-essential compounds such as secondary plant bioactive components or microbial natural products in addition to nutrients in the narrower sense. A significant social challenge represents how to moderately use the natural resources in light of the growing world population. In terms of economic production of (especially natural) bioactive molecules, ways of white biotechnology production with various microorganisms have recently been intensively explored. In the current review other relevant dietary supplements and natural substances (e.g., vitamins, amino acids, antioxidants) used in production of dietary supplements formulations and their microbial natural production via fermentative biotechnological approaches are briefly reviewed. Biotechnology plays a crucial role in optimizing fermentation conditions to maximize the yield and quality of the target compounds. Advantages of microbial production include the ability to use renewable feedstocks, high production yields, and the potential for cost-effective large-scale production. Additionally, it can be more environmentally friendly compared to chemical synthesis, as it reduces the reliance on petrochemicals and minimizes waste generation. Educating consumers about the benefits, safety, and production methods of microbial products in general is crucial. Providing clear and accurate information about the science behind microbial production can help address any concerns or misconceptions consumers may have.
Collapse
Affiliation(s)
- Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania;
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
21
|
Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Enzyme-assisted polysaccharides extraction from Calocybe indica: Synergistic antibiofilm and oxidative stability of essential oil nanoemulsion. Int J Biol Macromol 2023; 242:124843. [PMID: 37182620 DOI: 10.1016/j.ijbiomac.2023.124843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Recently, mushroom polysaccharides have been explored to attribute to vital biologically important functions, and several extraction techniques can be employed, therefore, polysaccharides were extracted from the edible mushroom Calocybe indica to explore its functionality. Multiple enzymes viz., cellulase, pectinase, and protease (1:1:1) at temperature 47 °C and pH 4.64 with an extraction time of 2 h yielded 7.24 % polysaccharide content. The thermograph curve of polysaccharides showed two-stage decomposition at a different temperature range and decomposition of polysaccharides initiated with an onset temperature of 226.77 °C and a maximum peak at 248.90 °C. Hydrodistillation processed Eucalyptus globulus leaf oil was characterized using the chromatography technique and eucalyptol, p-cymene, Γ-terpinene, 4-epi-cubebol, spathulenol, viridiflorol, and p-mentha-1,5-dien-8-ol was observed as major components. As well, we formulated nanoemulsion using mushroom polysaccharide and eucalyptus leaf oil with 140.8 nm and evaluated synergistic antimicrobial and antibiofilm activity. MIC and MBC values for Pseudomonas aeruginosa, E. coli, and S. typhi were 12.50-3.125 and 6.25-1.56, and for S. aureus were 6.25, 6.25, 3.125, and 3.125, 3.125, 1.56 and for C. albicans the values were 12.50,12.50, 6.250 and 6.25,6.25, and 3.125 μl/mL respectively. The polysaccharides, essential oil, and nanoemulsion showed remarkable antibiofilm activity against S.aureus with inhibition of 57.42 ± 0.19, 59.62 ± 0.15, and 69.34 ± 0.19 %, while E. coli showed the least antibiofilm activity. However, all three tested samples showed significant (p < 0.05) differences against tested pathogenic microorganisms with inhibition of biofilm formation. Therefore, it could be inferred that the synergistic properties of essential oils with mushroom polysaccharides are a promising strategy to enhance antimicrobial efficacy and control foodborne pathogens.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
22
|
ε-Polylysine Derived from Marine Bacteria-A Possible Natural Preservative for Raw Milk Storage. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Despite the fact that researchers have been working on the preservation of raw milk at room temperature for several decades, most of the processes are limited to the use of chemical preservatives. One of the major problems of raw milk self-life is its spoilage at ambient temperature during the summer season. Therefore, in the present study, research has been conducted to control raw milk spoilage at 4 °C and 35 °C (considered in different regions’ ambient temperatures). ε-Polylysine, a natural preservative approved for food use, was isolated from the fermentation broth of Bacillus licheniformis PL26 grown in an M3G medium, and its antimicrobial preservation properties for milk applications were tested. The raw milk samples containing 0.02% w/v ε-polylysine could be stored at 4 °C for up to 16 days without spoilage, however, raw milk samples without ε-polylysine as preservative spoiled on the 8th day even at 4 °C refrigeration conditions. Raw milk containing 0.02% ε-polylysine in combination with 0.2% sodium bicarbonate (added to avoid acidification) could be stored at ambient temperature (35 °C) for up to 48 h. The changes in milk composition, especially of the casein, lactose, and fat stability, during storage under different conditions with/without ε-polylysine, were studied as well. The present study proves that ε-polylysine can be successfully used as a new biopreservative. Therefore, for the dairy industry, a natural preservative to store milk at room temperature during the summer season, replacing synthetic preservatives derived from renewable sources, can be proposed. Once again, marine bacteria seem to be one of the promising sustainable and renewable sources of biologically active compounds such as new food biopreservatives
Collapse
|
23
|
Sharafi H, Moradi M, Sharafi K. A systematic review and meta-analysis of the use of plant essential oils and extracts in the development of antimicrobial edible films for dairy application. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:179-194. [PMID: 37181858 PMCID: PMC10170464 DOI: 10.30466/vrf.2022.1986122.3730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 05/16/2023]
Abstract
The purpose of this review was to assess the use of plant essential oils and extracts (PEOE) in the development of antimicrobial edible films for dairy application through a systematic review and meta-analysis. All studies published in multiple databases were explored via PRISMA protocol on November 1, 2022. According to the results, the interquartile range of pathogen reduction potential of essential oil (EO) in dairy products, irrespective of EO, film and product type, was 0.10 - 4.70 log CFU g-1 per % concentration. The findings from 38 articles indicate that among all EOs or their compounds, Zataria multiflora Boiss in protein film, thyme in protein film, Z. multiflora Boiss EO in protein film, Trans-cinnamaldehyde in carbohydrate film and lemongrass EO in protein film had extraordinary pathogen reduction potential on important foodborne pathogens. In the case of plant extract, fish gelatin film with Lepidium sativum extract, whey protein isolate film loaded with oregano EO and carboxymethyl cellulose film with clove EOs had the highest antimicrobial effect on mesophilic bacteria (9.50 log CFU g-1 per % concentration), yeast-mold (2.63 log CFU g-1 per % concentration) and mesophilic/ psychrophilic counts (> 9.06 log CFU g-1 per % concentration), respectively. Listeria monocytogenes is the primary species of interest; whereas, mesophiles and mold-yeast populations were the most investigated microbiota/mycobiota in cheese with PEOE-incorporated film. In light of these findings, the choice of PEOE at appropriate concentrations with the selection of appropriate edible film may improve the safety, sensory, and shelf life of dairy products.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
- Correspondence Mehran Moradi. DVM, PhD Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran E-mail:
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
24
|
García-Anaya MC, Sepúlveda DR, Zamudio-Flores PB, Acosta-Muñiz CH. Bacteriophages as additives in edible films and coatings. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Elgadir MA, Mariod AA. Gelatin and Chitosan as Meat By-Products and Their Recent Applications. Foods 2022; 12:60. [PMID: 36613275 PMCID: PMC9818858 DOI: 10.3390/foods12010060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Meat by-products such as bones, skin, horns, hooves, feet, skull, etc., are produced from slaughtered mammals. Innovative solutions are very important to achieving sustainability and obtaining the added value of meat by-products with the least impact on the environment. Gelatin, which is obtained from products high in collagen, such as dried skin and bones, is used in food processing, and pharmaceuticals. Chitosan is derived from chitin and is well recognized as an edible polymer. It is a natural product that is non-toxic and environmentally friendly. Recently, chitosan has attracted researchers' interests due to its biological activities, including antimicrobial, antitumor, and antioxidant properties. In this review, article, we highlighted the recent available information on the application of gelatin and chitosan as antioxidants, antimicrobials, food edible coating, enzyme immobilization, biologically active compound encapsulation, water treatment, and cancer diagnosis.
Collapse
Affiliation(s)
- M. Abd Elgadir
- Department of Food Science & Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdalbasit Adam Mariod
- Department of Biology, College of Science and Arts, Alkamil Branch, University of Jeddah, Alkamil 21931, Saudi Arabia
- Indigenous Knowledge and Heritage Centre, Ghibaish College of Science and Technology, Ghibaish P.O. Box 100, Sudan
| |
Collapse
|
26
|
Roy S, Ezati P, Priyadarshi R, Biswas D, Rhim JW. Recent advances in metal sulfide nanoparticle-added bionanocomposite films for food packaging applications. Crit Rev Food Sci Nutr 2022; 64:4660-4673. [PMID: 36368310 DOI: 10.1080/10408398.2022.2144794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Metal sulfide nanoparticles have recently attracted much attention due to their unique physical and functional properties. Metal sulfide nanoparticles used as optoelectronic and biomedical materials in the past decades are promising for making functional nanocomposite films due to their low toxicity and strong antibacterial activity. Recently, copper sulfide and zinc sulfide nanomaterials have been used to produce food packaging films for active packaging. Metal sulfide nanoparticles added as nanofillers are attracting attention in packaging applications due to their excellent potential to improve mechanical, barrier properties, and antibacterial activity. This review covers the fabrication process and important applications of metal sulfide nanoparticles. The development of metal sulfides reinforcing mainly copper sulfide and zinc sulfide nanomaterials as multifunctional nanofillers in bio-based films for active packaging applications has been comprehensively reviewed. As the recognition of metal sulfide nanoparticles as a functional filler increases, the development and application potential of active packaging films using them is expected to increase.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, India
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
27
|
|
28
|
Shao L, Xi Y, Weng Y. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules 2022; 27:molecules27185953. [PMID: 36144687 PMCID: PMC9502505 DOI: 10.3390/molecules27185953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
In order to reduce environmental pollution and resource waste, food packaging materials should not only have good biodegradable ability but also effective antibacterial properties. Poly(lactic acid) (PLA) is the most commonly used biopolymer for food packaging applications. PLA has good physical properties, mechanical properties, biodegradability, and cell compatibility but does not have inherent antibacterial properties. Therefore, antibacterial packaging materials based on PLA need to add antibacterial agents to the polymer matrix. Natural antibacterial agents are widely used in food packaging materials due to their low toxicity. The high volatility of natural antibacterial agents restricts their application in food packaging materials. Therefore, appropriate processing methods are particularly important. This review introduces PLA-based natural antibacterial food packaging, and the composition and application of natural antibacterial agents are discussed. The properties of natural antibacterial agents, the technology of binding with the matrix, and the effect of inhibiting various bacteria are summarized.
Collapse
Affiliation(s)
- Linying Shao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuewei Xi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| |
Collapse
|
29
|
Chaudhary V, Kajla P, Kumari P, Bangar SP, Rusu A, Trif M, Lorenzo JM. Milk protein-based active edible packaging for food applications: An eco-friendly approach. Front Nutr 2022; 9:942524. [PMID: 35990328 PMCID: PMC9385027 DOI: 10.3389/fnut.2022.942524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Whey and casein proteins, in particular, have shown considerable promise in replacing fossil-based plastics in a variety of food applications, such as for O2 susceptible foods, thereby, rendering milk proteins certainly one of the most quality-assured biopolymers in the packaging discipline. Properties like excellent gas barrier properties, proficiency to develop self-supporting films, adequate availability, and superb biodegradability have aroused great attention toward whey and other milk proteins in recent years. High thermal stability, non-toxicity, the ability to form strong inter cross-links, and micelle formation, all these attributes make it a suitable material for outstanding biodegradability. The unique structural and functional properties of milk proteins make them a suitable candidate for tailoring novel active package techniques for satisfying the needs of the food and nutraceutical industries. Milk proteins, especially whey proteins, serve as excellent carriers of various ingredients which are incorporated in films/coatings to strengthen barrier properties and enhance functional properties viz. antioxidant and antimicrobial. In this review, the latest techniques pertaining to the conceptualization of active package models/ systems using milk proteins have been discussed. Physical and other functional properties of milk protein-based active packaging systems are also reviewed. This review provides an overview of recent applications of milk protein-sourced active edible packages in the food packaging business.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Parveen Kumari
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, United States
| | - Alexandru Rusu
- Department of Food Science, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, Stuhr, Germany
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
30
|
Siroha AK, Bangar SP, Sandhu KS, Lorenzo JM, Trif M. Octenyl Succinic Anhydride Modified Pearl Millet Starches: An Approach for Development of Films/Coatings. Polymers (Basel) 2022; 14:polym14122478. [PMID: 35746054 PMCID: PMC9227896 DOI: 10.3390/polym14122478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Pearl millet starches were modified at pH 8.0 using 3.0% octenyl succinic anhydride (OSA), and their pasting, rheological properties, and in vitro digestibility were analyzed. The degree of substitution (D.C.) of OSA-modified starches varied from 0.010 to 0.025. The amylose content decreased after modification, while the reverse was observed for swelling power. After OSA modification, the pasting viscosities (peak, trough, setback (cP)) of the modified starches increased compared to their native counterparts. G′ (storage modulus) and G″ (loss modulus) decreased significantly (p < 0.05) compared to their native counterparts during heating. Yield stress (σo), consistency (K), and flow behavior index (n) varied from 9.8 to 87.2 Pa, 30.4 to 91.0 Pa.s., and 0.25 to 0.47, respectively. For starch pastes, steady shear properties showed n < 1, indicating shear-thinning and pseudoplastic behavior. The readily digestible starch (RDS) and slowly digestible starch (SDS) contents decreased, while the resistant starch (R.S.) content increased. After OSA treatment, the solubility power of the starches increased; this property of OSA starches speeds up the biodegradability process for the films, and it helps to maintain a healthy environment.
Collapse
Affiliation(s)
- Anil Kumar Siroha
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
- Correspondence:
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Monica Trif
- CENCIRA Agrofood Research and Innovation Centre, 400650 Cluj-Napoca, Romania;
| |
Collapse
|
31
|
Electrospun Smart Oxygen Indicating Tag for Modified Atmosphere Packaging Applications: Fabrication, Characterization and Storage Stability. Polymers (Basel) 2022; 14:polym14102108. [PMID: 35631990 PMCID: PMC9143945 DOI: 10.3390/polym14102108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Pack integrity is essential for the success of modified atmosphere packaging of food products. Colorimetric oxygen leak indicators or tags are simple and smart tools that can depict the presence or absence of oxygen within a package. However, not many bio-based electrospun materials were explored for this purpose. Ultraviolet light-activated kappa-carrageenan-based smart oxygen indicating tag was developed using the electrospinning technique in this study and its stability during storage was determined. Kappa-carrageenan was used with redox dye, sacrificial electron donor, photocatalyst, and solvent for preparing oxygen indicating electrospun tag. Parameters of electrospinning namely flow rate of the polymer solution, the distance between spinneret and collector, and voltage applied were optimized using Taguchi L9 orthogonal design. Rheological and microstructural studies revealed that the electrospinning solution was pseudoplastic and the mat fibers were compact and non-woven with an average fiber size of 1–2 microns. Oxygen sensitivity at different oxygen concentrations revealed that the tag was sensitive enough to detect as low as 0.4% oxygen. The developed tag was stable for at least 60 days when stored in dark at 25 °C and 65% RH. The developed mat could be highly useful in modified atmosphere packaging applications to check seal integrity in oxygen devoid packages.
Collapse
|
32
|
Ramos da Silva L, Velasco JI, Fakhouri FM. Bioactive Films Based on Starch from White, Red, and Black Rice to Food Application. Polymers (Basel) 2022; 14:polym14040835. [PMID: 35215746 PMCID: PMC8963109 DOI: 10.3390/polym14040835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023] Open
Abstract
Packages from renewable sources have been the focus of many studies, due to the consumer needs for high-quality food, environmental concern related to the inadequate discard of packaging, low percentage of packaging recycling, and starch application by a viable method. Thus, this work aimed to develop bioactive packages based on white, red, and black rice starch and analyze the influence of macromolecule and plasticizer type, even its blends, on the characteristics of films. Films were characterized by color, opacity, thickness, water solubility, water vapor permeability, and bioactive properties. The use of rice starch in the development of edible and/or biodegradable films was feasible, with all the formulations tested presenting a homogeneous matrix and the films obtained varying in hue, to the naked eye, as a function of the starch used. Variation of the type of starch and plasticizer, as well as the concentrations of the same, resulted in films with differences in all studied properties. Films prepared with 5% of starch and 30% of sorbitol showed phenolic compounds and antioxidant capacity, using the DPPH and ABTS methods, indicating that these can be considered bioactive packages and also suitable for food application.
Collapse
Affiliation(s)
- Luan Ramos da Silva
- Faculty of Engineering, Federal University of Grande Dourados (FAEN/UFGD), Dourados 79804-970, Brazil;
- Faculty of Food Engineering, University of Campinas (FEA/UNICAMP), Campinas 13083-970, Brazil
| | - José Ignacio Velasco
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC BarcelonaTech), Calle Colon, 11, 08221 Terrassa, Spain;
| | - Farayde Matta Fakhouri
- Faculty of Engineering, Federal University of Grande Dourados (FAEN/UFGD), Dourados 79804-970, Brazil;
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC BarcelonaTech), Calle Colon, 11, 08221 Terrassa, Spain;
- Correspondence:
| |
Collapse
|
33
|
Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers (Basel) 2022; 14:polym14040829. [PMID: 35215741 PMCID: PMC8878437 DOI: 10.3390/polym14040829] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Due to their complete non-biodegradability, current food packages have resulted in major environmental issues. Today’s smart consumer is looking for alternatives that are environmentally friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established fact that complete replacement with environmentally friendly packaging materials is unattainable, and bio-based plastics should be the future of the food packaging industry. Natural biopolymers and nanotechnological interventions allow the creation of new, high-performance, light-weight, and environmentally friendly composite materials, which can replace non-biodegradable plastic packaging materials. This review summarizes the recent advancements in smart biogenic packaging, focusing on the shift from conventional to natural packaging, properties of various biogenic packaging materials, and the amalgamation of technologies, such as nanotechnology and encapsulation; to develop active and intelligent biogenic systems, such as the use of biosensors in food packaging. Lastly, challenges and opportunities in biogenic packaging are described, for their application in sustainable food packing systems.
Collapse
|
34
|
Soybean Oil Enriched with Antioxidants Extracted from Watermelon (Citrullus colocynthis) Skin Sap and Coated in Hydrogel Beads via Ionotropic Gelation. COATINGS 2021. [DOI: 10.3390/coatings11111370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many plants and fruits are rich in antioxidant and antimicrobial compounds, such as phenolic compounds. Watermelon is one example, as various parts of the fruit present interesting phytochemical profiles. This study demonstrates that a natural C. colocynthis (watermelon) (W) skin sap (SS) extract can effectively improve the oxidative stability of microencapsulated soybean (SB) oil. By employing a combination of alginate–xanthan gums (AXG) in a matrix hydrogel bead model with WSS extract, high encapsulation efficiency can be obtained (86%). The effects of process variables on the ultrasound-assisted extraction (UAE) of phenolic compounds from watermelon (W) skin sap (SS) using the response surface methodology (RSM), as an optimized and efficient extraction process, are compared with the effects of a conventional extraction method, namely the percolation method. The WSS extracts are obtained via UAE and RSM or the conventional percolation extraction method. The two obtained extracts and synthetic antioxidant butylated hydroxytolune (BHT) are added to SB oil separately and their antioxidant effects are tested and compared. The results show the improved oxidative stability of SB oil containing the extract obtained via the optimized method (20–30%) compared to the SB oil samples containing extract obtained via the percolation extraction method, synthetic antioxidant (BHT), and SB oil only as the control (no antioxidant added). According to existing studies, we assume that the use of WSS as an effective antioxidant will ensure the prolonged stability of encapsulated SB oil in hydrogel beads, as it is well known that extended storage under different conditions may lead to severe lipid oxidation.
Collapse
|