1
|
Nie W, Zhong W, Qian L, Zhong H, Hou Y, Xu H, Qi S, Dai L, Han X, Yang X, Xu R, He Y, Lin D, Gao F. Oral chitosan-cyclodextrin "shell-core" nanoparticles co-loaded Rhein and chlorogenic acid for ulcerative colitis treatment. Int J Biol Macromol 2025; 288:138493. [PMID: 39647762 DOI: 10.1016/j.ijbiomac.2024.138493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The food-derived ingredients Rhein (RH) and chlorogenic acid (CGA) have DEMONSTRATED a potential synergistic effect in the treatment of ulcerative colitis (UC) through their anti-inflammatory and antioxidant properties. However, the oral co-delivery of RH and CGA faces challenges such as differences in hydrophilicity and hydrophobicity, gastrointestinal instability, and inadequate colonic targeting. To address these issues, shell-core nanoparticles were developed for the co-encapsulation of RH and CGA (CP@CGA-FA/TA@RH NPs). These nanoparticles utilize cyclodextrin-based polymers and folate-amantadine polymers to form a supramolecular core that targets macrophages for anti-inflammatory action with RH, while chitosan cross-link to CGA in the outer shell provides microenvironment-sensitive antioxidant release. The results indicate that CP@CGA-FA/TA@RH NPs could effectively inhibit the classical TLR4/MyD88/NF-κB-mediated anti-inflammatory pathway and activate the Nrf2/HO-1-mediated antioxidant pathway, offering a novel approach to UC treatment. Q-value analysis confirms the substantial co-medication effect between RH and CGA. This study is the first to develop a nano-system combining two food-derived ingredients for the integrated treatment of UC.
Collapse
Affiliation(s)
- Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Wenzhen Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Lin Qian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Huiyun Zhong
- Sichuan Vocational College of Health and Rehabilitation, Zigong 643000, China
| | - Yusen Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Haiting Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Xinyue Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Dasheng Lin
- Chengdu Huashen Technology Group Co., Ltd., Chengdu 611137, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
2
|
Edo GI, Mafe AN, Ali ABM, Akpoghelie PO, Yousif E, Apameio JI, Isoje EF, Igbuku UA, Garba Y, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Chitosan and its derivatives: A novel approach to gut microbiota modulation and immune system enhancement. Int J Biol Macromol 2025; 289:138633. [PMID: 39675606 DOI: 10.1016/j.ijbiomac.2024.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a biopolymer derived from the deacetylation of chitin found in crustacean shells and certain fungi, has attracted considerable attention for its promising health benefits, particularly in gut microbiota maintenance and immune system modulation. This review critically examines chitosan's multifaceted role in supporting gut health and enhancing immunity, beginning with a comprehensive overview of its sources, chemical structure, and its dual function as a dietary supplement and biomaterial. Chitosan's prebiotic effects are highlighted, with a focus on its ability to selectively stimulate beneficial gut bacteria, such as Bifidobacteria and Lactobacillus, while enhancing gut barrier integrity and inhibiting the growth of pathogenic microorganisms. The review delves deeply into chitosan's immunomodulatory mechanisms, including its impact on antigen-presenting cells, cytokine profiles, and systemic immune responses. A detailed comparative analysis assesses chitosan's efficacy relative to other prebiotics and immunomodulatory agents, examining challenges related to bioavailability and metabolic activity. Beyond its role in gut health, this review explores chitosan's potential as a dual-action agent that not only supports gut microbiota but also fortifies immune resilience. It introduces emerging research on novel chitosan derivatives, such as chitooligosaccharides, and evaluates their enhanced bioactivity for functional food applications. Special attention is given to sustainability, with an exploration of alternative, plant-based sources of chitosan and their implications for both health and environmental stewardship. Also, the review identifies new research avenues, such as the growing interest in chitosan's role in the gut-brain axis and its potential mental health benefits through microbial interactions. By addressing these innovative areas, the review aims to shift the focus from basic health effects to chitosan's broader impact on public health. The findings encourage further exploration, particularly through human trials, and emphasize chitosan's untapped potential in revolutionizing health and disease management.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria; Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, Iraq
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Jesse Innocent Apameio
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Yasal Garba
- Department of Information Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus; Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
3
|
Edo GI, Mafe AN, Razooqi NF, Umelo EC, Gaaz TS, Isoje EF, Igbuku UA, Akpoghelie PO, Opiti RA, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Advances in bio-polymer coatings for probiotic microencapsulation: chitosan and beyond for enhanced stability and controlled release. Des Monomers Polym 2024; 28:1-34. [PMID: 39777298 PMCID: PMC11703421 DOI: 10.1080/15685551.2024.2448122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
This review paper analyzes recent advancements in bio-polymer coatings for probiotic microencapsulation, with a particular emphasis on chitosan and its synergistic combinations with other materials. Probiotic microencapsulation is essential for protecting probiotics from environmental stresses, enhancing their stability, and ensuring effective delivery to the gut. The review begins with an overview of probiotic microencapsulation, highlighting its significance in safeguarding probiotics through processing, storage, and gastrointestinal transit. Advances in chitosan-based encapsulation are explored, including the integration of chitosan with other bio-polymers such as alginate, gelatin, and pectin, as well as the application of nanotechnology and innovative encapsulation techniques like spray drying and layer-by-layer assembly. Detailed mechanistic insights are integrated, illustrating how chitosan influences gut microbiota by promoting beneficial bacteria and suppressing pathogens, thus enhancing its role as a prebiotic or synbiotic. Furthermore, the review delves into chitosan's immunomodulatory effects, particularly in the context of inflammatory bowel disease (IBD) and autoimmune diseases, describing the immune signaling pathways influenced by chitosan and linking gut microbiota changes to improvements in systemic immunity. Recent clinical trials and human studies assessing the efficacy of chitosan-coated probiotics are presented, alongside a discussion of practical applications and a comparison of in vitro and in vivo findings to highlight real-world relevance. The sustainability of chitosan sources and their environmental impact are addressed, along with the novel concept of chitosan's role in the gut-brain axis. Finally, the review emphasizes future research needs, including the development of personalized probiotic therapies and the exploration of novel bio-polymers and encapsulation techniques.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Nawar. F. Razooqi
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Ebuka Chukwuma Umelo
- Department of Healthcare Organisation Management, Cyprus International University, Nicosia, Turkey
| | - Tayser Sumer Gaaz
- Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Rapheal Ajiri Opiti
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S. Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Lee JH, Son H, Subramaniyam S, Lim HJ, Park S, Choi RY, Kim IW, Seo M, Kweon HY, Kim Y, Kim SW, Choi JS, Shin Y. Impact of Edible Insect Polysaccharides on Mouse Gut Microbiota: A Study on White-Spotted Flower Chafer Larva ( Protaetia brevitarsis seulensis) and Silkworm Pupa ( Bombyx mori). Foods 2024; 14:6. [PMID: 39796296 PMCID: PMC11720208 DOI: 10.3390/foods14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The increasing global population and the environmental consequences of meat consumption have led to the exploration of alternative sources of protein. Edible insects have gained attention as a sustainable and nutritionally rich meat alternative. We investigated the effects of two commonly consumed insects, Protaetia brevitarsis seulensis larva and Bombyx mori pupa, on beneficial gut microbiota growth, using whole 16s metagenome sequencing to assess diet-associated changes. Seven-week-old female C57BL/6J mice were administered the edible insects, along with fracto-oligosaccharide (FOS) as a positive control and sham (phosphate buffer saline (PBS)) as a negative control, to assess the relative abundance of insect-diet-associated gut microbes. In total, 567 genera and 470 species were observed, and among these, 15 bacterial genera were differentially abundant in all three groups. These results show that among the two insects, Bombyx mori pupa polysaccharides have a greater ability to regulate beneficial probiotics and next-generation probiotics. In particular, Lactococcus garvieae, which has promising effects on the gastrointestinal tracts of humans and animals, was significantly enriched in both Protaetia brevitarsis seulensis larva and Bombyx mori pupa polysaccharides, similar to fracto-oligosaccharide. The results suggest that the consumption of these insects, particularly polysaccharides, can enhance the growth of beneficial gut microbes, potentially leading to improved overall health in healthy populations.
Collapse
Affiliation(s)
- Joon-Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Hyojung Son
- Research and Development Center, Insilicogen Inc., Yongin 16954, Republic of Korea
| | | | - Hyun-Jung Lim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Sohyun Park
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Ra-Yeong Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - In-Woo Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Hae-Yong Kweon
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Yongsoon Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Jong-Soon Choi
- Department of Family Medicine, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Younhee Shin
- Research and Development Center, Insilicogen Inc., Yongin 16954, Republic of Korea
| |
Collapse
|
5
|
Magara HJO, Hugel S, Fisher BL. Effect of Feed on the Growth Performance, Nutrition Content and Cost of Raising the Field Cricket ( Gryllus madagascarensis) as a Sustainable Nutrient Source in Madagascar. Foods 2024; 13:3139. [PMID: 39410175 PMCID: PMC11475400 DOI: 10.3390/foods13193139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The field cricket, Gryllus madagascarensis, is a sustainable and nutritious food resource that has the potential to mitigate global malnutrition. Feeds provided to this cricket can influence its growth parameters, nutritional content, and the cost of raising it for food. The current study aimed to evaluate the effects of feeds formulated from weeds, agro-byproducts, and chicken feed (control) on the growth parameters and nutritional content of G. madagascarensis. The formulated feeds included CFB (25.0% protein), CFC (24.5% protein), CFD (24.0% protein), CFE (23.5% protein), CFF (22.5% protein), CFG (21.5% protein), CFH (20.0% protein), CFI (14.5% protein), and CFJ (13.5% protein), and chicken feed (CFA) (28% protein) was used as the control. The formulation of the feeds was based on the acceptability and protein content of the 12 selected weeds and agro-byproducts. Proximate, mineral, and fatty acid analyses were conducted to determine the nutrient content of each feed, as well as the crickets raised on these feeds. The fastest development time was recorded with CFE and CFC. The highest survivorship (98%) was observed in CFG, CFE, and CFC. The highest body mass (1.15 g) and body length (26.80 mm) were observed in crickets fed CFG. By comparison, crickets fed control feed averaged a body mass of 0.81 g and a body length of 23.55 mm. The feed conversion ratio for G. madagascarensis fed CFG, CFE, and CFC was 1.71. Crickets raised on CFH and CFG had the lowest cost of feeding per kg live mass gain. Crickets fed on CFF had the highest quantity of protein (67%), followed by those fed CFG (65% protein); crickets with the lowest protein content (50%) were fed CFJ. Crickets fed on CFG had the highest mineral content. Linoleic acid, oleic acid, and palmitic acid were the major fatty acids. The findings indicate that formulated feeds from weeds and agro-byproducts have great potential to be used as an alternative feed source for crickets for two reasons: their capacity to positively influence the biology and nutrition of the cricket, and they can serve as an inexpensive replacement for chicken feed.
Collapse
Affiliation(s)
- Henlay J. O. Magara
- Department of Feed Development, Madagascar Biodiversity Center, Antananarivo 101, Madagascar; (S.H.); (B.L.F.)
| | - Sylvain Hugel
- Department of Feed Development, Madagascar Biodiversity Center, Antananarivo 101, Madagascar; (S.H.); (B.L.F.)
- Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 CNRS-Université de Strasbourg, 67087 Strasbourg, France
| | - Brian L. Fisher
- Department of Feed Development, Madagascar Biodiversity Center, Antananarivo 101, Madagascar; (S.H.); (B.L.F.)
- Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| |
Collapse
|
6
|
Lisboa HM, Nascimento A, Arruda A, Sarinho A, Lima J, Batista L, Dantas MF, Andrade R. Unlocking the Potential of Insect-Based Proteins: Sustainable Solutions for Global Food Security and Nutrition. Foods 2024; 13:1846. [PMID: 38928788 PMCID: PMC11203160 DOI: 10.3390/foods13121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The present review highlights the potential of insect-based proteins to address the growing need for sustainable and secure food systems. The key findings suggest that edible insects offer a viable and environmentally friendly alternative to traditional livestock, requiring significantly less land, water, and feed while emitting lower levels of greenhouse gases. Insect farming can also reduce waste and recycle nutrients, supporting circular economy models. Nutritionally, insects provide high-quality protein, essential amino acids, and beneficial fats, making them valuable to human diets. Despite these benefits, this review emphasizes the need for comprehensive regulatory frameworks to ensure food safety, manage potential allergenicity, and mitigate contamination risks from pathogens and environmental toxins. Additionally, developing innovative processing technologies can enhance the palatability and marketability of insect-based products, promoting consumer acceptance. This review concludes that with appropriate regulatory support and technological advancements, insect-based proteins have the potential to significantly contribute to global food security and sustainability efforts.
Collapse
Affiliation(s)
- Hugo M. Lisboa
- Unidade Academica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso, 882, Campina Grande 58429-900, PB, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kibet S, Mudalungu CM, Ochieng BO, Mokaya HO, Kimani NM, Tanga CM. Nutritional composition of edible wood borer beetle larvae in Kenya. PLoS One 2024; 19:e0304944. [PMID: 38843212 PMCID: PMC11156320 DOI: 10.1371/journal.pone.0304944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Exploration of edible insects as sustainable alternative nutrient-dense sources such as nutraceuticals have attracted more and more global attention recently. However, research on wood borer beetles have largely been overlooked. This study assessed the entomo-chemical properties of Titoceres jaspideus (Cerambycidae) and Passalus punctiger (Passalidae), which are widely consumed in many African countries, including Kenya. The crude protein content of the beetle larvae ranged between 27.5-39.8 mg BSA/g. In comparison with those of cereals, amino acids such as lysine (7.9-9.9 mg/g), methionine (0.48-0.64 mg/g) and threonine (2.31-2.55 mg/g) were considerably high in the larvae. Methyl-5Z,8Z,11Z,14Z-eicosatetraenoate and methyl-9Z-octadecenoate were the predominant polyunsaturated and monounsaturated fatty acids, respectively. High total phenols (>4.4 mg GAE/g), flavonoids (>3.6 mg QE/g) and anti-oxidative activities (>67%) were recorded for both larvae. This implies that increasing the consumption of wood-borer beetle larvae would positively impact the state of the natural environment and reduce the problem of malnutrition in the society. Thus, applying these strategies to develop insect food in a more familiar form can help to make insect-enriched foods more appealing to consumers, facilitating their widespread adoption as a sustainable and nutritious food source.
Collapse
Affiliation(s)
- Shadrack Kibet
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | - Cynthia M. Mudalungu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- School of Chemistry and Material Science, The Technical University of Kenya, Nairobi, Kenya
| | - Brian O. Ochieng
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Hosea O. Mokaya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Njogu M. Kimani
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | - Chrysantus M. Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
8
|
Yadav D, Prashanth KVH, Negi PS. Low molecular weight chitosan from Pleurotus ostreatus waste and its prebiotic potential. Int J Biol Macromol 2024; 267:131419. [PMID: 38583831 DOI: 10.1016/j.ijbiomac.2024.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The booming mushroom industry envisages economic merits, and massive unutilized waste production (∼ 20 %) creates an opportunity for valorization. Chitosan, a bioactive polysaccharide, has drawn immense attention for its invaluable therapeutic potential. Thus, the present study was conducted to extract chitosan from mushroom waste (MCH) for its prebiotic potential. The structural characterization of MCH was carried out using NMR, FTIR, and XRD. The CP/MAS-13CNMR spectrum of MCH appeared at δ 57.67 (C2), 61.19 (C6), 75.39 (C3/C5), 83.53 (C4), 105.13 (C1), 23.69 (CH3), and 174.19 (C = O) ppm. The FTIR showed characteristic peaks at 3361 cm-1, 1582 cm-1, and 1262 cm-1 attributed to -NH stretching, amide II, and amide III bands of MCH. XRD interpretation of MCH exhibited a single strong reflection at 2θ =20.19, which may correspond to the "form-II" polymorph. The extracted MCH (∼ 47 kDa) exhibited varying degrees of deacetylation from 79 to 84 %. The prebiotic activity score of 0.73 to 0.82 was observed for MCH (1 %) when supplemented with probiotic strains (Lactobacillus casei, L. helveticus, L. plantarum, and L. rhamnosus). MCH enhanced the growth of Lactobacillus strains and SCFA's levels, particularly in L. rhamnosus. The MCH also inhibited the growth of pathogenic strains (MIC of 0.125 and 0.25 mg/mL against E. coli and S. aureus, respectively) and enhanced the adhesion efficiency of probiotics (3 to 8 % at 1 % MCH supplementation). L. rhamnosus efficiency was higher against pathogens in the presence of MCH, as indicated by anti-adhesion assays. These findings suggested that extracted polysaccharides from mushroom waste can be used as a prebiotic for ameliorating intestinal dysbiosis.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K V Harish Prashanth
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Muthee MW, Khamis FM, Cheseto X, Tanga CM, Subramanian S, Egonyu JP. Effect of cooking methods on nutritional value and microbial safety of edible rhinoceros beetle grubs ( Oryctes sp.). Heliyon 2024; 10:e25331. [PMID: 38863875 PMCID: PMC11165241 DOI: 10.1016/j.heliyon.2024.e25331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 06/13/2024] Open
Abstract
Although edible rhinoceros beetle (Oryctes sp.) larvae are popularly consumed in many countries worldwide, they are prepared using different methods such as boiling, roasting, toasting, and deep-frying, whose effect on nutritional value and microbial safety is scarcely known. Here we investigated the effect of these methods on the nutritional value and microbial safety of Oryctes sp. larvae. Our hypothesis was that cooking the grubs using the four methods had no effect on their nutritional content and microbial loads and diversity. The grubs were analyzed for proximate composition, and fatty and amino acid profiles using standard chemical procedures; and microbial safety using standard culturing procedures. Deep-frying reduced protein and carbohydrate content, but elevated fat content. Boiling lowered ash content, but increased fibre and carbohydrate composition. Roasting and toasting increased protein and ash contents, respectively. Forty fatty acids were detected in the larvae, of which levels of only five were not significantly affected by cooking method, while the levels of the others were differentially affected by the different cooking methods. Amino acid profiles and levels were largely comparable across treatments, but lysine and arginine were higher in all cooked grubs than raw form. All the cooking methods eliminated Enterobacteriaceae, Shigella sp. and Campylobacter sp. from the grubs. Except boiling, all methods reduced total viable count to safe levels. Salmonella sp. were only eliminated by toasting and roasting; while boiling promoted growth of yeast and moulds. Staphylococcus aureus levels exceeded safety limits in all the cooking methods. These findings offer guidance on the type of method to use in preparing the grubs for desired nutritional and safety outcomes.
Collapse
Affiliation(s)
- Marliyn W. Muthee
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 – 00100, Nairobi, Kenya
| | - Fathiya M. Khamis
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 – 00100, Nairobi, Kenya
| | - Xavier Cheseto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 – 00100, Nairobi, Kenya
| | - Chrysantus M. Tanga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 – 00100, Nairobi, Kenya
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 – 00100, Nairobi, Kenya
| | | |
Collapse
|
10
|
Li M, Mao C, Li X, Jiang L, Zhang W, Li M, Liu H, Fang Y, Liu S, Yang G, Hou X. Edible Insects: A New Sustainable Nutritional Resource Worth Promoting. Foods 2023; 12:4073. [PMID: 38002131 PMCID: PMC10670618 DOI: 10.3390/foods12224073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Edible insects are a highly nutritious source of protein and are enjoyed by people all over the world. Insects contain various other nutrients and beneficial compounds, such as lipids, vitamins and minerals, chitin, phenolic compounds, and antimicrobial peptides, which contribute to good health. The practice of insect farming is far more resource-efficient compared to traditional agriculture and animal husbandry, requiring less land, energy, and water, and resulting in a significantly lower carbon footprint. In fact, insects are 12 to 25 times more efficient than animals in converting low-protein feed into protein. When it comes to protein production per unit area, insect farming only requires about one-eighth of the land needed for beef production. Moreover, insect farming generates minimal waste, as insects can consume food and biomass that would otherwise go to waste, contributing to a circular economy that promotes resource recycling and reuse. Insects can be fed with agricultural waste, such as unused plant stems and food scraps. Additionally, the excrement produced by insects can be used as fertilizer for crops, completing the circular chain. Despite the undeniable sustainability and nutritional benefits of consuming insects, widespread acceptance of incorporating insects into our daily diets still has a long way to go. This paper provides a comprehensive overview of the nutritional value of edible insects, the development of farming and processing technologies, and the problems faced in the marketing of edible insect products and insect foods to improve the reference for how people choose edible insects.
Collapse
Affiliation(s)
- Mengjiao Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Chengjuan Mao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Xin Li
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Wen Zhang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Mengying Li
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Huixue Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
11
|
Kang Y, Oba PM, Gaulke CA, Sánchez-Sánchez L, Swanson KS. Dietary Inclusion of Yellow Mealworms (T. molitor) and Lesser Mealworms (A. diaperinus) Modifies Intestinal Microbiota Populations of Diet-Induced Obesity Mice. J Nutr 2023; 153:3220-3236. [PMID: 37714334 DOI: 10.1016/j.tjnut.2023.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Insect-based proteins are high-quality alternatives to support the shift toward more sustainable and healthy diets. Additionally, insects contain chitin and have unique fatty acid profiles. Studies have shown that mealworms may beneficially affect metabolism, but limited information is known regarding their effects on gut microbiota. OBJECTIVES We determined the effects of defatted yellow mealworm (Tenebrio molitor) and whole lesser mealworm (Alphitobius diaperinus) meals on the intestinal microbiota of diet-induced obesity mice. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD; 46% kcal) to induce obesity. Obese mice were then randomly assigned to treatments (n = 10/group) and fed for 8 wk: HFD, HFD with casein protein; B50, HFD with 50% protein from whole lesser mealworm; B100, HFD with 100% protein from whole lesser mealworm; Y50, HFD with 50% protein from defatted yellow mealworm; Y100, HFD with 100% protein from defatted yellow mealworm. Lean mice (n = 10) fed a low-fat-diet (10% kcal) were included. Fresh feces were collected at baseline and every 2 wk, with cecal digesta collected at kill. Fecal and cecal DNA was analyzed for microbiota using 16S rRNA MiSeq Illumina sequencing. RESULTS In feces and cecal digesta, mice fed mealworms had greater (P < 0.05) bacterial alpha diversity, with changes occurring in a time-dependent manner (P < 0.05). Beta diversity analyses of cecal samples showed a clear separation of treatments, with a time-based separation shown in fecal samples. Widespread microbial differences were observed, with over 45 genera altered (P < 0.05) by diet in cecal digesta. In feces, over 50 genera and 40 genera were altered (P < 0.05) by diet and time, respectively. CONCLUSION Mealworm consumption changes the intestinal microbiota of obese mice, increasing alpha diversity measures and shifting bacterial taxa. More investigation is required to determine what mealworm components are responsible and how they may be linked with the metabolic benefits observed in mealworm-fed mice.
Collapse
Affiliation(s)
- Yifei Kang
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christopher A Gaulke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
12
|
Arama D, Kinyuru J, Ng'ang'a J, Kiage-Mokua B, Ochieng BO, Tanga CM. Unraveling the physicochemical attributes of three cricket ( Gryllus bimaculatus)-enriched biscuit products and implications on consumers' preference and willingness to pay. Lebensm Wiss Technol 2023; 185:115171. [PMID: 37675440 PMCID: PMC10477817 DOI: 10.1016/j.lwt.2023.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 09/08/2023]
Abstract
Disgust and neophobia elicited by whole insect products, has necessitated the need to mask insect-based food products. The physico-chemical parameters, sensory acceptance, and willingness to pay (WTP) for wheat biscuits supplemented with cricket powder was evaluated. The biscuits' color intensity correlated with the cricket inclusion levels. Spread ration of cricket-enriched-biscuits increased (1.0-1.2-folds), while the hardness and fracturability decreased (1.0-1.3-folds and 1.0-1.2 folds, respectively) compared to the control biscuit. Cricket-biscuits exhibited 1.2-1.7, 1.1-3.7, 1.2-3.0 and 1.1-1.2-folds higher (p < 0.05) protein, ash, fiber, and fat, respectively. Ca, Fe, and Zn were 1.1-3.7, 1.1-1.2 and 1.4-4.0-folds higher, respectively, for cricket-based biscuits. Monounsaturated and polyunsaturated fatty acids proportionally increased with increasing cricket flour. On a likert scale, 71.4%, 71.9%, 38.4% and 57.5% of the caregivers and 38.6%, 58.3%, 40.0% and 34.0% for children (3-5 years) strongly preferred the color, texture, taste and aroma, respectively, of the cricket-based biscuits. Forty-seven (47%) of the caretakers were WTP a premium of 37 Kenyan shillings (0.34 USD) for cricket-based biscuits. Our findings demonstrated that integration of cricket flour into existing market-driven consumer familiar food products significantly increased acceptability and WTP, thus promising potential to contribute to improved food and nutritional security.
Collapse
Affiliation(s)
- Divina Arama
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Human Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, City Square Nairobi, Kenya
| | - John Kinyuru
- Department of Human Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, City Square Nairobi, Kenya
| | - Jeremiah Ng'ang'a
- Department of Human Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, City Square Nairobi, Kenya
| | - Beatrice Kiage-Mokua
- Department of Human Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, City Square Nairobi, Kenya
| | - Brian O. Ochieng
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
13
|
Khalifah A, Abdalla S, Rageb M, Maruccio L, Ciani F, El-Sabrout K. Could Insect Products Provide a Safe and Sustainable Feed Alternative for the Poultry Industry? A Comprehensive Review. Animals (Basel) 2023; 13:1534. [PMID: 37174571 PMCID: PMC10177474 DOI: 10.3390/ani13091534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The planet is home to more than 2000 species of edible insects, some of which have been consumed as food for many years. Recently, edible insect products have been gradually increasing in several countries, such as Italy and Egypt, as novel feed resources for humans and animals due to their availability, potential economic benefits, and high nutritive value. The insect industry can provide a new solution for livestock nutrition and offer many additional advantages, but there are obstacles to overcome, such as some nutritional organizations that forbid its usage. Nevertheless, previous research indicates that different insect species could be used safely as nutraceuticals in poultry farming to improve broiler growth performance (>3%) and layer egg production (>5%). Among these species, there are various products and extracts that can be used in poultry nutrition in a sustainable manner. This review provides an outline of insect composition, nutrient values, application in poultry feed, safety, and guidelines, and finally, the future perspectives of insects as an alternative feed source in poultry diets.
Collapse
Affiliation(s)
- Ayman Khalifah
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
| | - Sara Abdalla
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
| | - Mai Rageb
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Naples, Italy
| | - Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Naples, Italy
| | - Karim El-Sabrout
- Department of Poultry Production, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
14
|
Stull VJ, Weir TL. Chitin and omega-3 fatty acids in edible insects have underexplored benefits for the gut microbiome and human health. NATURE FOOD 2023; 4:283-287. [PMID: 37117549 DOI: 10.1038/s43016-023-00728-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/02/2023] [Indexed: 04/30/2023]
Abstract
A healthy gut microbiome is critical for nutrient metabolism, pathogen inhibition and immune regulation, and is highly influenced by diet. Edible insects are good sources of protein and micronutrients, but unlike other animal-derived foods, they also contain both dietary fibre and omega-3 fatty acids that can modulate gut microbiota. Here we explore the potential impacts of insect consumption on the microbiome. Laboratory, animal and human studies indicate that insect fibre in the form of chitin and its derivatives can modify gut microbiota with beneficial outcomes. Some insects also contain favourable omega-3/omega-6 ratios. We identify gaps in the literature-especially a dearth of human studies-that must be addressed to better understand health impacts of entomophagy. Insects, already eaten across the globe, can be farmed using fewer resources than conventional livestock. Widening the research scope offers an opportunity to advance use of edible insects to address interconnected environmental and health challenges.
Collapse
Affiliation(s)
- Valerie J Stull
- Center for Sustainability and the Global Environment, University of Wisconsin-Madison, Madison, WI, USA.
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
15
|
Bartkiene E, Zokaityte E, Starkute V, Zokaityte G, Kaminskaite A, Mockus E, Klupsaite D, Cernauskas D, Rocha JM, Özogul F, Guiné RPF. Crickets ( Acheta domesticus) as Wheat Bread Ingredient: Influence on Bread Quality and Safety Characteristics. Foods 2023; 12:foods12020325. [PMID: 36673418 PMCID: PMC9858247 DOI: 10.3390/foods12020325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to assess respondents' opinions on the choice of edible insects as a food, and to evaluate the influence of cricket flour (ECF) (10, 20, 30%) on the quality of wheat bread (WB). Whereas ECF is an additional source of acrylamide precursors, in order to reduce acrylamide formation in WB, fermentation of ECF with Lactiplantibacillus plantarum-No.122 was applied. It was established that 70.7% of the respondents had never eaten insects and more than 30% would not choose them. However, ECF was suitable substrate for fermentation (lactobacilli count 8.24 log10CFU/g, pH-4.26). In addition, fermentation reduced the total biogenic amines content in ECF (by 13.1%). The highest specific volume showed WB, prepared with fermented ECF (10, 20, 30%). All the tested WB showed similar overall acceptability (on average, 7.9 points). However, the highest intensity of emotion "happy" was induced by the WB, prepared with fermented ECF. Most of the WB with non-treated and fermented ECF showed higher acrylamide concentration (except WB with 10% of fermented ECF), in comparison with the control. Finally, fermentation is recommended for ECF inclusion in the main WB formula because fermentation improves not only quality but also reduces acrylamide concentration in WB.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-60135837
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Gintare Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Aura Kaminskaite
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Darius Cernauskas
- Food Institute, Kaunas University of Technology, Radvilenu Road 19, LT-50254 Kaunas, Lithuania
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
16
|
El Amerany F, Rhazi M, Balcke G, Wahbi S, Meddich A, Taourirte M, Hause B. The Effect of Chitosan on Plant Physiology, Wound Response, and Fruit Quality of Tomato. Polymers (Basel) 2022; 14:polym14225006. [PMID: 36433133 PMCID: PMC9692869 DOI: 10.3390/polym14225006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In agriculture, chitosan has become popular as a metabolic enhancer; however, no deep information has been obtained yet regarding its mechanisms on vegetative tissues. This work was conducted to test the impact of chitosan applied at different plant growth stages on plant development, physiology, and response to wounding as well as fruit shape and composition. Five concentrations of chitosan were tested on tomato. The most effective chitosan doses that increased leaf number, leaf area, plant biomass, and stomatal conductance were 0.75 and 1 mg mL-1. Chitosan (1 mg mL-1) applied as foliar spray increased the levels of jasmonoyl-isoleucine and abscisic acid in wounded roots. The application of this dose at vegetative and flowering stages increased chlorophyll fluorescence (Fv/Fm) values, whereas application at the fruit maturation stage reduced the Fv/Fm values. This decline was positively correlated with fruit shape and negatively correlated with the pH and the content of soluble sugars, lycopene, total flavonoids, and nitrogen in fruits. Moreover, the levels of primary metabolites derived from glycolysis, such as inositol phosphate, lactic acid, and ascorbic acid, increased in response to treatment of plants with 1 mg mL-1- chitosan. Thus, chitosan application affects various plant processes by influencing stomata aperture, cell division and expansion, fruit maturation, mineral assimilation, and defense responses.
Collapse
Affiliation(s)
- Fatima El Amerany
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 6120 Halle (Saale), Germany
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Department of Biology, Higher Normal School, Cadi Ayyad University, P.O. Box 575, Marrakech 40000, Morocco
- Laboratory of Sustainable Development and Health Research, Department of Chemistry, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, P.O. Box 549, Marrakech 40000, Morocco
- Correspondence: ; Tel.: +212-639-419364
| | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Department of Biology, Higher Normal School, Cadi Ayyad University, P.O. Box 575, Marrakech 40000, Morocco
| | - Gerd Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 6120 Halle (Saale), Germany
| | - Said Wahbi
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre Agro Biotech-URL-CNRST-05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Abdelilah Meddich
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre Agro Biotech-URL-CNRST-05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Moha Taourirte
- Laboratory of Sustainable Development and Health Research, Department of Chemistry, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, P.O. Box 549, Marrakech 40000, Morocco
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre Agro Biotech-URL-CNRST-05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 6120 Halle (Saale), Germany
| |
Collapse
|
17
|
Interest in Insects as Food and Feed: It Does Not Wane in the Public Domain. Foods 2022. [PMCID: PMC9601936 DOI: 10.3390/foods11203184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Nazir N, Badri ZA, Bhat NA, Bhat FA, Sultan P, Bhat TA, Rather MA, Sakina A. Effect of the combination of biological, chemical control and agronomic technique in integrated management pea root rot and its productivity. Sci Rep 2022; 12:11348. [PMID: 35790796 PMCID: PMC9256638 DOI: 10.1038/s41598-022-15580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Root rot of pea caused by Fusarium spp. is one of the important diseases of pea (Pisum sativum L.). The causal fungus of the disease isolated from naturally infected pea plants was identified as Fusarium solani f. sp. pisi (Jones). Evaluation of four bio agents and nine fungicides was done in vitro against Fusarium solani. Trichoderma harzianum was the most effective bio agent in inhibiting the mycelial growth of F. solani by (82.62%). Carbendazim 50 WP was the most effective fungicide in inhibiting the mycelial growth of F. solani by (91.06%). Carbendazim at the rate of 0.1% and T. harzianum at concentration of 109 cfu when used as seed treatment under field conditions were evaluated along with three planting techniques v.i.z, raised beds, ridges and flat beds. It was found that Carbendazim at the rate of 0.1% when given as seed treatment in raised beds exhibited the lowest disease incidence (10.97%), intensity (2.89%) and the maximum pod yield (89.63 q ha-1) as compared to control.
Collapse
Affiliation(s)
- Nargis Nazir
- Division of Plant Pathology, Faculty of Agriculture, SKUAST- K, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Zaffar Afroz Badri
- Krishi Vigyan Kendra Malangpora, Pulwama, Jammu and Kashmir, 192301, India
| | - Nazir Ahmad Bhat
- Mountain Research Centre for Field Crops, Khudwani, Kulgam, Jammu and Kashmir, 192101, India
| | - Farooq Ahmad Bhat
- Division of Plant Pathology, Faculty of Agriculture, SKUAST- K, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | | | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, SKUAST-K, Shalimar, 190025, India.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, SKUAST-K, Rangil, Ganderbal, 191201, India
| | | |
Collapse
|
19
|
Guan Z, Feng Q. Chitosan and Chitooligosaccharide: The Promising Non-Plant-Derived Prebiotics with Multiple Biological Activities. Int J Mol Sci 2022; 23:ijms23126761. [PMID: 35743209 PMCID: PMC9223384 DOI: 10.3390/ijms23126761] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
Biodegradable chitin is the second-most abundant natural polysaccharide, widely existing in the exoskeletons of crabs, shrimps, insects, and the cell walls of fungi. Chitosan and chitooligosaccharide (COS, also named chitosan oligosaccharide) are the two most important deacetylated derivatives of chitin. Compared with chitin, chitosan and COS not only have more satisfactory physicochemical properties but also exhibit additional biological activities, which cause them to be widely applied in the fields of food, medicine, and agriculture. Additionally, due to their significant ability to improve gut microbiota, chitosan and COS are deemed prospective prebiotics. Here, we introduced the production, physicochemical properties, applications, and pharmacokinetic characteristics of chitosan and COS. Furthermore, we summarized the latest research on their antioxidant, anti-inflammatory, and antimicrobial activities. Research progress on the prebiotic functions of chitosan and COS is particularly reviewed. We creatively analyzed and discussed the mechanisms and correlations underlying these activities of chitosan and COS and their physicochemical properties. Our work enriched people's understanding of these non-plant-derived prebiotics. Based on this review, the future directions of research on chitosan and COS are explored. Collectively, optimizing the production technology of chitin derivatives and enriching understanding of their biological functions will shed more light on their capability to improve human health.
Collapse
Affiliation(s)
- Zhiwei Guan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China;
- School of Life Science, Qilu Normal University, Jinan 250200, China
| | - Qiang Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China;
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266347, China
- Correspondence:
| |
Collapse
|
20
|
Dragojlović D, Đuragić O, Pezo L, Popović L, Rakita S, Tomičić Z, Spasevski N. Comparison of Nutritional Profiles of Super Worm ( Zophobas morio) and Yellow Mealworm ( Tenebrio molitor) as Alternative Feeds Used in Animal Husbandry: Is Super Worm Superior? Animals (Basel) 2022; 12:1277. [PMID: 35625124 PMCID: PMC9137835 DOI: 10.3390/ani12101277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Edible insects are acknowledged as a valuable nutritional source and promising alternative to traditional feed ingredients, while the optimization of rearing conditions is required for their wider utilization in the animal feed industry. The main goal of this study was to compare and optimize the rearing conditions of the two species' larvae and identify the most favorable nutritive composition of the full-fat larval meal. For that purpose, Tenebrio molitor (TM) and Zophobas morio (ZM) were reared on three different substrates and harvested after three time periods. An artificial neural network (ANN) with multi-objective optimization (MOO) was used to investigate the influence between the observed parameters as well as to optimize and determine rearing conditions. The optimization of the larval rearing conditions showed that the best nutritive composition of full-fat larval meal was obtained for ZM larvae reared on a mixture of cabbage, carrot and flaxseed and harvested after 104 days. The best nutritive composition contained 39.52% protein, 32% crude fat, 44.01% essential amino acids, 65.21 mg/100 g Ca and 651.15 mg/100 g P with a favorable ratio of 1.5 of n6/n3 fatty acids. Additionally, the incorporation of flaxseed in the larval diet resulted in an increase in C18:3n3 content in all samples.
Collapse
Affiliation(s)
- Danka Dragojlović
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Đ.); (S.R.); (Z.T.); (N.S.)
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Olivera Đuragić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Đ.); (S.R.); (Z.T.); (N.S.)
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia;
| | - Ljiljana Popović
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Slađana Rakita
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Đ.); (S.R.); (Z.T.); (N.S.)
| | - Zorica Tomičić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Đ.); (S.R.); (Z.T.); (N.S.)
| | - Nedeljka Spasevski
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (O.Đ.); (S.R.); (Z.T.); (N.S.)
| |
Collapse
|
21
|
Kemboi VJ, Kipkoech C, Njire M, Were S, Lagat MK, Ndwiga F, Wesonga JM, Tanga CM. Biocontrol Potential of Chitin and Chitosan Extracted from Black Soldier Fly Pupal Exuviae against Bacterial Wilt of Tomato. Microorganisms 2022; 10:microorganisms10010165. [PMID: 35056613 PMCID: PMC8780822 DOI: 10.3390/microorganisms10010165] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 12/29/2022] Open
Abstract
Globally, Ralstonia solanacearum (Smith) is ranked one of the most destructive bacterial pathogens inducing rapid and fatal wilting symptoms on tomatoes. Yield losses on tomatoes vary from 0 to 91% and most control measures are unaffordable to resource-poor farmers. This study investigated the antimicrobial activities of chitin and chitosan extracted from black soldier fly (BSF) pupal exuviae against R. solanacearum. Morphological, biochemical, and molecular techniques were used to isolate and characterize R. solanacearum for in vitro pathogenicity test using disc diffusion technique. Our results revealed that BSF chitosan significantly inhibited the growth of R. solanacearum when compared to treatments without chitosan. However, there was no significant difference in the antibacterial activities between BSF and commercial chitosan against R. solanacearum. Soil amended with BSF-chitin and chitosan demonstrated a reduction in bacterial wilt disease incidence by 30.31% and 34.95%, respectively. Whereas, disease severity was reduced by 22.57% and 23.66%, when inoculated tomato plants were subjected to soil amended with BSF chitin and chitosan, respectively. These findings have demonstrated that BSF pupal shells are an attractive renewable raw material for the recovery of valuable products (chitin and chitosan) with promising ability as a new type of eco-friendly control measure against bacterial wilt caused by R. solanacearum. Further studies should explore integrated pest management options that integrate multiple components including insect-based chitin and chitosan to manage bacterial wilt diseases, contributing significantly to increased tomato production worldwide.
Collapse
Affiliation(s)
- Violah Jepkogei Kemboi
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Carolyne Kipkoech
- Department of Food and Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya
- Correspondence:
| | - Moses Njire
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Samuel Were
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Mevin Kiprotich Lagat
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Francis Ndwiga
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - John Mwibanda Wesonga
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya;
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|
22
|
Lagat MK, Were S, Ndwigah F, Kemboi VJ, Kipkoech C, Tanga CM. Antimicrobial Activity of Chemically and Biologically Treated Chitosan Prepared from Black Soldier Fly ( Hermetia illucens) Pupal Shell Waste. Microorganisms 2021; 9:microorganisms9122417. [PMID: 34946019 PMCID: PMC8706517 DOI: 10.3390/microorganisms9122417] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Globally, the broad-spectrum antimicrobial activity of chitin and chitosan has been widely documented. However, very little research attention has focused on chitin and chitosan extracted from black soldier fly pupal exuviae, which are abundantly present as byproducts from insect-farming enterprises. This study presents the first comparative analysis of chemical and biological extraction of chitin and chitosan from BSF pupal exuviae. The antibacterial activity of chitosan was also evaluated. For chemical extraction, demineralization and deproteinization were carried out using 1 M hydrochloric acid at 100 °C for 2 h and 1 M NaOH for 4 h at 100 °C, respectively. Biological chitin extraction was carried out by protease-producing bacteria and lactic-acid-producing bacteria for protein and mineral removal, respectively. The extracted chitin was converted to chitosan via deacetylation using 40% NaOH for 8 h at 100 °C. Chitin characterization was done using FTIR spectroscopy, while the antimicrobial properties were determined using the disc diffusion method. Chemical and biological extraction gave a chitin yield of 10.18% and 11.85%, respectively. A maximum chitosan yield of 6.58% was achieved via chemical treatment. From the FTIR results, biological and chemical chitin showed characteristic chitin peaks at 1650 and 1550 cm−1—wavenumbers corresponding to amide I stretching and amide II bending, respectively. There was significant growth inhibition for Escherichia coli, Bacillus subtilis,Pseudomonas aeruginosa,Staphylococcus aureus, and Candida albicans when subjected to 2.5 and 5% concentrations of chitosan. Our findings demonstrate that chitosan from BSF pupal exuviae could be a promising and novel therapeutic agent for drug development against resistant strains of bacteria.
Collapse
Affiliation(s)
- Mevin Kiprotich Lagat
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Samuel Were
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Francis Ndwigah
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Violah Jepkogei Kemboi
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Carolyne Kipkoech
- Department of Food and Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya
- Correspondence:
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|