1
|
Ong K, Norris DR. Experimental evidence demonstrating how freeze-thaw patterns affect spoilage of perishable cached food. PLoS One 2025; 20:e0319043. [PMID: 40184381 PMCID: PMC11970643 DOI: 10.1371/journal.pone.0319043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/25/2025] [Indexed: 04/06/2025] Open
Abstract
For the small number of temperate and boreal species that cache perishable food, previous research suggests that increasing freeze-thaw events can have a negative impact on fitness by degrading the quality of cached food. However, there is no experimental evidence that directly links freeze-thaw events to cache quality. To examine how the timing, frequency, duration, and intensity of freeze-thaw events influenced cached food mass loss, a proxy for caloric content, we conducted a series of month-long laboratory experiments by placing simulated caches (raw chicken placed between two pieces of black spruce Picea mariana bark) in programmable freezers. Freeze-thaw treatments were modelled after weather data from Algonquin Provincial Park, Ontario, where a population of Canada jays (Perisoreus canadensis), a species that caches perishable food for overwinter survival and to support late-winter breeding, has declined by > 70% since the 1980s. First, we found no evidence that an increased frequency of freeze-thaw events influenced mass loss, suggesting that microstructural damage caused by crystal reformation does not significantly influence cache quality. Instead, our experimental results demonstrated that mass loss was positively influenced by longer individual thaws, which likely reflects increased microbial growth, oxidation, and progressive drip loss. We also found that caches lost more weight when subjected to early freeze-thaw events compared to late freeze-thaw events. Finally, we show that milder freezes led to less mass loss and, unexpectedly, warmer than average thaws post-freeze also led to less mass loss. Our results suggest that longer thaw periods post-freezing and milder freezes cause or lead to significantly increased spoilage of perishable cached food. All of these temperature-related conditions are closely associated with long-term changes in climate and, thus, the effects on cache degradation reported in these experiments should be applicable to species caching perishable food in the wild.
Collapse
Affiliation(s)
- Karen Ong
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - D. Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Ren J, Meenu M, Hu L, Song T, Liu Y, Ramaswamy HS, Yu Y. The Effect of Ice-Binding Protein from Leucosporidium sp. AY30 (LeIBP) on the Physicochemical Quality and Microstructure of Largemouth Bass During Freeze-Thaw Cycles. Foods 2024; 13:4038. [PMID: 39766980 PMCID: PMC11727216 DOI: 10.3390/foods13244038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
This study investigated the effect of various concentrations (0.01%, 0.05%, 0.1%, 0.2%, 0.5%) of ice-binding protein from Leucosporidium sp. AY30 (LeIBP) on the freezing efficiency, microstructure, and physicochemical quality of largemouth bass during freeze-thaw cycles and demonstrated the optimal addition conditions of LeIBP. This study found that LeIBP could effectively lower the freezing point of fish without altering the phase transition time significantly. LeIBP can significantly reduce the cross-sectional area and diameter of ice crystals and inhibit recrystallization. LeIBP was found to maintain the stability of protein secondary structure and prevented protein denaturation by increasing the proportion of α-helix. The inclusion of LeIBP retained the water-holding capacity of fish effectively. Furthermore, LeIBP treatment could partially prevent the degradation of fish meat texture. The lightness and whiteness values of fish treated with LeIBP were increased, while the redness and yellowness values were decreased. At the end of freeze-thaw cycle, the LeIBP-treated group presented pH values similar to fresh fish. Overall, 0.05% LeIBP was observed to be the most effective concentration to inhibit ice crystal growth, thereby maintaining the quality of the fish.
Collapse
Affiliation(s)
- Junde Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.R.); (M.M.); (L.H.); (T.S.); (Y.L.)
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou 310058, China
| | - Maninder Meenu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.R.); (M.M.); (L.H.); (T.S.); (Y.L.)
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou 310058, China
| | - Lihui Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.R.); (M.M.); (L.H.); (T.S.); (Y.L.)
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou 310058, China
| | - Tao Song
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.R.); (M.M.); (L.H.); (T.S.); (Y.L.)
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou 310058, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.R.); (M.M.); (L.H.); (T.S.); (Y.L.)
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou 310058, China
| | - Hosahalli S. Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Yong Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.R.); (M.M.); (L.H.); (T.S.); (Y.L.)
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
3
|
Rachman AB, Ogawa M, Akazawa T, Febrisiantosa A, Wahyuningsih R, Wahyono T, Ujilestari T, Jambang N, Hakim L, Firmansyah AM. Improved Physical Properties of Frozen Chicken Egg Gels with Olive Leaf Extract Fortification. Food Sci Anim Resour 2024; 44:1327-1344. [PMID: 39554819 PMCID: PMC11564134 DOI: 10.5851/kosfa.2024.e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 11/19/2024] Open
Abstract
The research focused on evaluating the impact of olive leaf water extract (OEx4) on the microbiological and physical properties of egg gels, as well as its ability to protect the rheological properties of gel throughout freeze-thaw cycles. Egg gels with added OEx4 at concentrations of 0.03% and 0.1% (w/w) a to minced whole egg and egg white were frozen at -20°C for five days, undergoing three freeze-thaw cycles. The weight of the OEx4-egg gels was constant throughout the cycles, in contrast to the control egg gels without OEx4, which displayed accelerated thawing weight loss. The OEx4-egg gels maintained their water-holding capacity, breaking strength, elasticity, and viscosity, but the control egg gels saw a decrease. Using scanning electron microscopy, it was discovered that the OEx4-egg gels even after freezing retained a structure similar to their non-frozen condition, in contrast to the control egg gels. These findings suggest that OEx4 imparts freeze-resistance to egg gels. Additionally, OEx4 application improved the interaction between non-polar groups and water molecules, in egg gels leading to a rise in pH. Then, OEx4 has been found to effectively hinder the proliferation of bacteria while also minimizing the occurrence of gel contamination in eggs subjected to the freeze-thaw process. Therefore, OEx4 proves to be beneficial in enhancing the physical, chemical and microbiological properties of frozen processed poultry products.
Collapse
Affiliation(s)
- Agus Bahar Rachman
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
- Department of Food Technology, Faculty of
Agriculture, State University of Gorontalo, Gorontalo 96128,
Indonesia
| | - Masahiro Ogawa
- Department of Applied Biological Science,
Faculty of Agriculture, Kagawa University, Kagawa 7610795,
Japan
| | - Takashi Akazawa
- Graduate School of Science and Technology,
Niigata University, Niigata 9502181, Japan
| | - Andi Febrisiantosa
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Rina Wahyuningsih
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Teguh Wahyono
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Tri Ujilestari
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Nicolays Jambang
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Lukman Hakim
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| | - Angga Maulana Firmansyah
- Research Center for Food Technology and
Processing, National Research and Innovation Agency,
Yogyakarta 55861, Indonesia
| |
Collapse
|
4
|
Shen Z, Wang H, Liang J, Zhao Q, Lu W, Cui Y, Wang P, Shen Q, Chen J. An in situ and real-time analytical method for detection of freeze-thew cycles in tuna via IKnife rapid evaporative ionization mass spectrometry. Food Chem X 2024; 23:101705. [PMID: 39229614 PMCID: PMC11369502 DOI: 10.1016/j.fochx.2024.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/22/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
Freezing is one of the most commonly used preservation methods for Bluefin tuna (Thunnus orientalis). However, repeated freezing and thawing would inevitably occur due to the temperature fluctuation, leading to the microstructure damage, lipid oxidation and protein integrity decline of tuna muscle without notable visual appearance change. In this study, we used a rapid evaporative ionization mass spectrometry (REIMS) technique for the real-time determination of the extent of repeated freezing and thawing cycles in tuna fillets. We found significant variance in the relative abundance of fatty acids between bluefin tuna and its fresh counterpart following freeze-thaw cycles. Meanwhile, the difference is statistically significant (p < 0.05). The quality of tuna remains largely unaffected by a single freeze-thaw cycle but significantly deteriorates after freeze-thaw cycles (freeze-thaw count ≥2), and the relative fatty acid content of the ionized aerosol analysis in the REIMS system positively correlated with the number of freeze-thaw cycles. Notably, palmitic acid (C 16:0, m/z 255.23), oleic acid (C 18:1, m/z 281.24), and docosahexaenoic acid (C 22:6, m/z 327.23) displayed the most pronounced changes within the spectrum of fatty acid groups.
Collapse
Affiliation(s)
- Zhifeng Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou 310052, China
- Key Laboratory of Quality and Safety of Functional Food for State Market Regulation
| | - Qiaoling Zhao
- Zhoushan Institute of Food & Drug Control, Zhoushan 316000, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Pingya Wang
- Zhoushan Institute of Food & Drug Control, Zhoushan 316000, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jian Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
5
|
Xie Y, Zhao K, Yang F, Shu W, Ma J, Huang Y, Cao X, Liu Q, Yuan Y. Modification of myofibrillar protein structural characteristics: Effect of ultrasound-assisted first-stage thermal treatment on unwashed Silver Carp surimi gel. ULTRASONICS SONOCHEMISTRY 2024; 107:106911. [PMID: 38761771 PMCID: PMC11127271 DOI: 10.1016/j.ultsonch.2024.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The hardness properties of unwashed surimi gel are considered as the qualities of gelation defect. This research investigated the effect of ultrasound-assisted first-stage thermal treatment (UATT) on the physicochemical properties of unwashed Silver Carp surimi gel, and the enhancement mechanism. UATT could reduce protein particle size, which significantly reduced from 142.22 μm to 106.70 μm after 30 min of UATT compared with the nature protein. This phenomenon can promote the protein crosslinking, resulting in the hardness of surimi gel increased by 15.08 %. Partially unfolded structure of myofibrillar protein and exposures of tryptophan to water, lead to the increase in the zeta potential absolute value, driven by UATT. The reduced SH group level and the conformational conversion of proteins from random coiling to α-helix and β-sheet, which was in support of intermolecular interaction and gel network construction. The results are valuable for processing protein gels and other food products.
Collapse
Affiliation(s)
- Yisha Xie
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China.
| | - Kangyu Zhao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Feng Yang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Wenjing Shu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Junkun Ma
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Yizhen Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xi Cao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Qingqing Liu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Yongjun Yuan
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China.
| |
Collapse
|
6
|
Lan W, Shao Z, Lang A, Xie J. Effects of slightly acidic electrolyzed water combined with ԑ-polylysine-chitooligosaccharide Maillard reaction products treatment on the quality of vacuum packaged sea bass (Lateolabrax japonicas). Int J Biol Macromol 2024; 260:129554. [PMID: 38246458 DOI: 10.1016/j.ijbiomac.2024.129554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
In this study, a new natural preservative, ε-polylysine (ε-PL) and chitooligosaccharides (COS) Maillard reaction products (LC-MRPs), was prepared by Maillard reaction. The preservation effect of LC-MRPs combined with slightly acidic electrolyzed water (SAEW) pretreatment (SM) on vacuum-packed sea bass during refrigerated storage was evaluated. The results showed that after 16 days, SM treatment could effectively inhibit the microbial growth and prevent water migration in sea bass. In addition, the highest water holding capacity (69.79 %) and the best sensory characteristics, the lowest malonaldehyde (MDA) (58.96 nmol/g), trimethylamine (TMA) (3.35 mg/100 g), total volatile basic nitrogen (TVB-N) (16.93 mg N/100 g), myofibril fragmentation index (MFI) (92.2 %) and TCA-soluble peptides (2.16 μmol tyrosine/g meat) were related to SM group. Combined with sensory analysis, we can conclude that the combined treatment of SAEW and LC-MRPs could prolong the shelf-life of sea bass for another 11 days compared with the DW group. Results disclosed that the composite treatment of SAEW and LC-MRPs is a promising technology to improve the shelf-life of vacuum-packed sea bass during refrigerated storage.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Zhe Shao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
7
|
Wang R, Guo F, Zhao J, Feng C. Myofibril degradation and structural changes in myofibrillar proteins of porcine longissimus muscles during frozen storage. Food Chem 2024; 435:137671. [PMID: 37813022 DOI: 10.1016/j.foodchem.2023.137671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
The effect of frozen time and the temperature on myofibril degradation and the structure of myofibrillar proteins of porcine longissimus muscles were investigated. With extended frozen time and increased temperature, the muscle fibres became broken; the muscle cells became irregularly arranged; and the fragmentation index value, number of ionic bonds, and number of hydrogen bonds of the samples significantly decreased. Meanwhile, the myofibril fragmentation index value, number of hydrophobic interactions, and number of disulphide bonds significantly increased (P < 0.05). After 12 months of storage, the intensities of I760/I1003, I850/I830, I1450/I1003, and I2945/I1003 in the samples frozen at -8 °C were reduced by 4.36 %, 1.28 %, 1.86 %, and 0.74 %, respectively. A reduction in the maximum absorption peak and a red shift were observed in the ultraviolet spectrum. Therefore, frozen storage resulted in significant damage to the tissue microstructureand caused accelerated protein degradation, and the loss of protein structural integrity.
Collapse
Affiliation(s)
- Rui Wang
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China.
| | - Fang Guo
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| | - Jianying Zhao
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| | - Caiping Feng
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| |
Collapse
|
8
|
Chu Y, Ding Z, Xie J. The application of ice glazing containing D-sodium erythorbate combined with vacuum packaging to maintain the physicochemical quality and sweet/umami non-volatile flavor compounds of frozen stored large yellow croaker (Pseudosciaena crocea). Food Res Int 2024; 175:113657. [PMID: 38129018 DOI: 10.1016/j.foodres.2023.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Ice glazing containing 0.3 % D-sodium erythorbate (DSE), combined with vacuum packaging, was used as a method to maintain the quality of large yellow croaker during frozen storage. This study aimed to assess various aspects, including water properties (water holding capacity and moisture distribution), protein-related characteristics (secondary and tertiary structure of myofibrillar protein), freshness indicators (K value and total volatile base nitrogen (TVB-N)), and non-volatile flavor compounds (free amino acids (FAAs) and nucleotides) in samples stored for 300 days at -23 °C. The results showed that vacuum packaging had a significant inhibitory effect on the growth of ice crystal. Notably, it successfully maintained the cross-sectional area of nearly all ice crystals below 20,000 μm2, effectively curtailing water loss. Simultaneously, the combination of vacuum packaging with the complex ice glaze effectively mitigated the degradation of IMP and free amino acids, maintaining low levels of K value (12.85 %) and TVB-N (11.28 mg N/100 g) throughout the 300-day frozen storage, retaining first-class freshness. Among the various treatment modalities assessed, the combined application of vacuum packaging and 0.3 % DSE-infused ice glazing emerged as the most effective in terms of preservation outcomes. This efficacious combination shows promising potential for the frozen storage of aquatic products and is therefore recommended for practical implementation.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Zhaoyang Ding
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
9
|
Li W, Chen Q, Wang X, Chen Z. Effect of Freezing on Soybean Protein Solution. Foods 2023; 12:2650. [PMID: 37509741 PMCID: PMC10379167 DOI: 10.3390/foods12142650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the impact of frozen storage conditions on the physicochemical properties of soybean protein and explore the underlying mechanisms, this study focused on soybean isolate (SPI), ß-soybean companion globulin (7S), and soybean globulin (11S). The protein solutions were prepared at a concentration of 2% and subjected to freezing for 1 and 5 days. Subsequently, the protein content, physicochemical properties, secondary structure, sulfhydryl content, and chemical interaction forces were assessed and analyzed using UV spectrophotometry, Zeta potential measurements, SDS-PAGE, Fourier infrared spectroscopy, and endogenous fluorescence photoemission spectroscopy. The obtained results revealed that the solubility and total sulfhydryl content of SPI, 7S, and 11S exhibited a decreasing trend with prolonged freezing time. Among them, 11S demonstrated the largest decrease in solubility and total sulfhydryl content, followed by SPI, and 7S the least. During freezing, the aromatic amino acids of SPI, 7S, and 11S molecules were exposed, leading to increased hydrophobicity, protein aggregation, and particle size enlargement, and the structure of the protein changed from disordered structure to ordered structure. After freezing, the polarity of the microenvironment of SPI, 7S, and 11S increased, and their maximum fluorescence emission wavelengths were red-shifted. Notably, the largest red shift of SPI was from 332 nm to 335 nm. As freezing time increased, the contribution of hydrogen bonding increased, while the contribution of hydrophobic interactions decreased. This indicates that freezing affects the hydrophobic interactions, hydrogen bonding, and other chemical forces of the protein. The growth of ice crystals leads to the unfolding of protein molecular chains, exposure of internal hydrophobic groups, enhancement of hydrophobicity, and alters the secondary structure of the protein.
Collapse
Affiliation(s)
- Wenhui Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
10
|
Luo K, Feng A, Lin X, Fu R, Wei H. Analysis of the water state and microfractal dimension of tilapia fillets during freezing and thawing. J Food Sci 2023; 88:1089-1100. [PMID: 36717371 DOI: 10.1111/1750-3841.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/26/2022] [Accepted: 12/24/2022] [Indexed: 02/01/2023]
Abstract
To study the effects of freezing and thawing times and freezing temperatures on the water state and microstructure of tilapia fillets, experiments on tilapia fillets were carried out at -4 and -18°C with one to four freezing and thawing cycles (FTCs). Low-field nuclear magnetic resonance (LF-NMR) and nuclear magnetic resonance imaging were used to observe the water state after different treatments, and scanning electron microscopy (SEM) and frozen sections were used to observe the microstructure changes. Fractal dimension (FD) was used to quantitatively characterize the microstructure of the fish tissue, and the correlation between FD and fish fillet quality parameters was studied by principal component analysis (PCA). The findings showed that with the increase of FTCs, the thawing loss increased, and the water holding capacity (WHC) fell. FTCs cause a decrease in immobilized water and an increase in free water in the fillet. This indicates the migration of immobilized water to free water. SEM and frozen slice images showed that the growth of ice crystals led to the destruction of myogenic fibers. A decrease in freezing temperature inhibited ice crystal growth. The FD value dropped in accordance with an increase in FTCs. PCA demonstrated that the WHC, NMR data, and FD value had a strong correlation with the quality changes in the tilapia fillets. Therefore, FD and water state can reflect the quality characteristics of tilapia fillets. PRACTICAL APPLICATION: The water migration in tilapia fillets is detected with LF-NMR, and the microscopic image may be quantified using the FD value. Both approaches can offer fresh perspectives on how to assess the quality of tilapia fillets and reflect changes in their quality.
Collapse
Affiliation(s)
- Kaixuan Luo
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Aiguo Feng
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiangdong Lin
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Renhao Fu
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Heyun Wei
- College of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
11
|
Chang L, Li Y, Bai X, Xia X, Xu W. Inhibition of Chitosan Ice Coating on the Quality Deterioration of Quick-Frozen Fish Balls during Repeated Freeze-Thaw Cycles. Foods 2023; 12:foods12040717. [PMID: 36832791 PMCID: PMC9955944 DOI: 10.3390/foods12040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Chitosan ice coating's properties and its inhibitory effect on the quality deterioration of quick-frozen fish balls during repeated freeze-thaw cycles were investigated. When the chitosan (CH) coating concentration increased, the viscosity and ice coating rate increased, while water vapor permeability (WVP), water solubility, and transmittance decreased, and 1.5% CH was regarded as the excellent coating to apply to freeze-thaw quick-frozen fish balls. As the freeze-thaw cycles increased, the frost production, total volatile base nitrogen (TVB-N) values, and free water content of all of the samples increased significantly (p < 0.05), and the whiteness values, textural properties, and water-holding capacity (WHC) decreased. Freeze-thaw cycles expanded the aperture between the muscle fibers and the occurrence of crystallization and recrystallization between cells increased, damaging the original intact tissue structure, which were confirmed by SEM and optical microscopy. Compared with the untreated ones, the frost production, free water, and TVB-N of the samples with 1.5% CH decreased during 1, 3, 5, and 7 cycles, and were reduced by 23.80%, 32.21%, 30.33%, and 52.10% by the 7th cycle. The WHC and texture properties showed an increasing trend during the freeze-thaw cycles. Therefore, the chitosan ice coating effectively inhibited the quality deterioration by reducing water loss, the occurrence of ice crystallization and recrystallization, and the pores of the samples.
Collapse
Affiliation(s)
- Lixin Chang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.X.); (W.X.); Tel.: +86-451-55191289 (X.X.); +86-451-86700713 (W.X.)
| | - Weidong Xu
- Office of Student Work, Heilongjiang Agricultural Engineering Vocational College, Harbin 150088, China
- Correspondence: (X.X.); (W.X.); Tel.: +86-451-55191289 (X.X.); +86-451-86700713 (W.X.)
| |
Collapse
|
12
|
Effects of Modified Atmosphere Packaging with Varied CO 2 and O 2 Concentrations on the Texture, Protein, and Odor Characteristics of Salmon during Cold Storage. Foods 2022; 11:foods11223560. [PMID: 36429151 PMCID: PMC9689085 DOI: 10.3390/foods11223560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The effect of gas ratio on the growth of bacteria has been well demonstrated, but some adverse effects of modified atmosphere packaging (MAP) on seafoods have also been found. To provide a better understanding of the effects of CO2 and O2 concentrations (CO2 from 40% to 100% and O2 from 0% to 30%) in MAP on the texture and protein contents and odor characteristics of salmon during cold storage, the physiochemical, microbial, and odor indicators were compared with those without treatment (CK). Generally, MAP treatments hindered the increase of microbial counts, total volatile basic nitrogen, and TCA-soluble peptides, and decreased the water-holding capacity, hardness, springiness, and sarcoplasmic and myofibrillar protein contents. The results also indicated that 60%CO2/10%O2/30%N2 was optimal and decreased the total mesophilic bacterial counts by 2.8 log cfu/g in comparison with CK on day 12. In agreement, the concentration of CO2 of 60% showed the lowest myofibrillar protein degradation, and less subsequent loss of hardness. The electronic nose characteristics analysis indicated that 60%CO2/20%O2/20%N2 and 60%CO2/10%O2/30%N2 had the best effect to maintain the original odor profiles of salmon. The correlation analysis demonstrated that microbial growth had a strong relationship with myofibrillar and sarcoplasmic protein content. It can be concluded that 60%CO2/10%O2/30%N2 displayed the best effect to achieve the goal of preventing protein degradation and odor changes in salmon fillets.
Collapse
|
13
|
Wu G, Lv Y, Chu Y, Zhang X, Ding Z, Xie J. Evaluation of Preservation (−23 to 4 °C) for Cuttlefish Through Functional Ice Glazing During Storage and Cold Chain Logistics. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Diao H, Lin S, Li D, Li S, Feng Q, Sun N. Control on moisture distribution and protein changes of Antarctic krill meat by antifreeze protein during multiple freeze–thaw cycles. J Food Sci 2022; 87:4440-4452. [DOI: 10.1111/1750-3841.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Huayu Diao
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian P. R. China
| | - Dongmei Li
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian P. R. China
| | - Shuang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
| | - Qi Feng
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian P. R. China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian P. R. China
| |
Collapse
|
15
|
Rusanova P, Bono G, Dara M, Falco F, Gancitano V, Lo Brutto S, Okpala COR, Nirmal NP, Quattrocchi F, Sardo G, Hassoun A. Effect of different packaging methods on the free amino acid profiles of the deep-water rose shrimp ( Parapenaeus longirostris) during frozen storage. Front Nutr 2022; 9:955216. [PMID: 35967817 PMCID: PMC9363887 DOI: 10.3389/fnut.2022.955216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The composition of free amino acids (FAAs) in seafood products contributes to characterizing their flavor, as well as freshness and quality during storage. Deep-water rose shrimps (Parapenaues longirostris, Lucas, 1846) (DWRS) are being increasingly harvested in the Mediterranean Sea, and the captured specimens are quickly frozen onboard fishing trawlers to preserve freshness and post-harvest quality. Here, we quantified the FAA profiles of DWRS packaged using five methods: (1) 100% N2; (2) vacuum; (3) 50% N2 + 50% CO2; (4) commercial anhydrous sodium sulfite; and (5) air (control). All samples were quickly frozen at -35°C and stored for 12 months at -18°C. Arginine (661 mg/100 g), proline (538 mg/100 g), and glycine (424 mg/100 g) were the most abundant FAAs, whereas the least abundant were tyrosine (67 mg/100 g), histidine (58 mg/100 g), and aspartic acid (34 mg/100 g). FAAs in all samples gradually (and significantly) increased in the first 6 to 8 months of storage, and then significantly decreased. The sodium sulfite treatment (Method 4) kept the initial FAA contents lower than the other treatments, due to the strong antioxidant action of sulfite agents. Interestingly, similar results were obtained for vacuum packaging (Method 2). Thus, combining frozen storage with vacuum packaging represents an alternative approach to chemical additives in shrimp/prawn processing to meet the increasing demand for high-quality seafood products with long shelf-life.
Collapse
Affiliation(s)
- Polina Rusanova
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, Italy.,Department of Biological, Geological and Environmental Sciences (BiGeA)-Marine Biology and Fisheries Laboratory of Fano (PU), University of Bologna, Bologna, Italy
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, Italy
| | - Manuela Dara
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Francesca Falco
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, Italy
| | - Vita Gancitano
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, Italy
| | - Sabrina Lo Brutto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Federico Quattrocchi
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, Italy
| | - Giacomo Sardo
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, Italy
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France.,Syrian Academic Expertise (SAE), Gaziantep, Turkey
| |
Collapse
|
16
|
Li J, Niu L, Yu J, Wang F, Li X, Huang Y, Liu Y. Effects of frozen temperature and multiple freeze‐thaw cycles on gel structure, protein and lipid oxidation and formation of advanced glycation end‐products in unwashed silver carp surimi. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiayi Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Lihong Niu
- School of Food Engineering Ludong University Yantai 264025 Shandong China
| | - Jian Yu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Faxiang Wang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Xianghong Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Yiqun Huang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Yongle Liu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| |
Collapse
|
17
|
Asefa BG, Sun C, Van Beers R, Saeys W, Ruyters S. A feasibility study on nondestructive classification of frozen Atlantic salmon (Salmo salar) fillets based on temperature history at the logistics using NIR spectroscopy. J Food Sci 2022; 87:2847-2857. [PMID: 35638339 DOI: 10.1111/1750-3841.16195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Temperature fluctuation commonly occurs in the cold chain leading to complete or partial thawing and refreezing of frozen products resulting in a multifrozen product. Such oscillation of temperature could cause significant quality reduction compared to single frozen products. This study was designed to differentiate frozen Atlantic salmon fillets based on the level of temperature fluctuation. Near-infrared spectroscopy (NIRS) coupled with chemometrics was used to classify the frozen fillets stored at no fluctuation (NF), low fluctuation (LF), high fluctuation (HF), and very high fluctuation (VF) temperature. Using spectral profiles obtained at both frozen and thawed states, fillets were classified based on the level of temperature fluctuation by partial least squares discriminant analysis (PLS-DA). The thawed samples showed better classification accuracy (71%) than frozen samples (66%) in a four-class model. Considering the small variation within the first two (NF, LF) and the last two (HF, VF) groups, a two-class classification model was developed using thawed samples, and the obtained model correctly classified the two groups ([NF, LF] and [HF, VF]) with 100 % classification accuracy. Protein- and water-related changes were found important to distinguish the fillets. Based on these findings, the four-class prediction model is found insufficient to be used for nondestructive determination of temperature history of frozen fillets. However, the two-class prediction model with further external validation can be applied to determine the level of temperature fluctuation particularly using fillets scanned at thawed state. PRACTICAL APPLICATION: NIR spectroscopy can be used to evaluate the degree of temperature fluctuation and thus related quality loss throughout the logistics of frozen Atlantic salmon fillets. Researchers, food control authorities, and the retail industry could be the primary beneficiaries of this research output.
Collapse
Affiliation(s)
- Bezuayehu Gutema Asefa
- Food Science and Nutrition Research Department, National Fishery and Aquatic Life Research Center (NFALRC), Ethiopian Institute of Agricultural Research (EIAR), Sebeta, Ethiopia.,Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), University of Leuven (KU Leuven), Leuven, Belgium
| | - Chanjun Sun
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), University of Leuven (KU Leuven), Leuven, Belgium
| | - Robbe Van Beers
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), University of Leuven (KU Leuven), Leuven, Belgium
| | - Wouter Saeys
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
18
|
Processing Effects on Protein Structure and Physicochemical Properties. Foods 2022; 11:foods11111607. [PMID: 35681356 PMCID: PMC9180706 DOI: 10.3390/foods11111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
|
19
|
Cheng H, Bian C, Chu Y, Mei J, Xie J. Effects of Dual-Frequency Ultrasound-Assisted Thawing Technology on Thawing Rate, Quality Properties, and Microstructure of Large Yellow Croaker ( Pseudosciaena crocea). Foods 2022; 11:226. [PMID: 35053958 PMCID: PMC8775265 DOI: 10.3390/foods11020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
This research evaluated the effects of dual-frequency ultrasound-assisted thawing (UAT) on the thawing time, physicochemical quality, water-holding capacity (WHC), microstructure, and moisture migration and distribution of large yellow croaker. Water thawing (WT), refrigerated thawing (RT), and UAT (single-frequency: 28 kHz (SUAT-28), single-frequency: 40 kHz (SUAT-40), dual-frequency: 28 kHz and 40 kHz (DUAT-28/40)) were used in the current research. Among them, the DUAT-28/40 treatment had the shortest thawing time, and ultrasound significantly improved the thawing rate. It also retained a better performance from the samples, such as color, texture, water-holding capacity and water distribution, and inhibited disruption of the microstructure. In addition, a quality property analysis showed that the pH, total volatile basic nitrogen (TVB-N), and K value were the most desirable under the DUAT-28/40 treatment, as well as this being best for the flavor of the samples. Therefore, DUAT-28/40 treatment could be a possible thawing method because it improves the thawing rate and maintains the quality properties of large yellow croaker.
Collapse
Affiliation(s)
- Hao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
| | - Chuhan Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
| | - Yuanming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
20
|
Li Q, Yi S, Wang W, Xu Y, Mi H, Li X, Li J. Different Thermal Treatment Methods and TGase Addition Affect Gel Quality and Flavour Characteristics of Decapterus maruadsi Surimi Products. Foods 2021; 11:66. [PMID: 35010193 PMCID: PMC8750094 DOI: 10.3390/foods11010066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Decapterus maruadsi surimi products were prepared using the thermal treatment methods of boiling (BOI), steaming (STE), back-pressure sterilization (BAC), roasting (ROA), microwaving (MIC), and frying (FRI), respectively. The effect of glutamine transaminase (TGase) addition was also investigated. The moisture distribution, water retention, microstructure, color, fracture constant, protein secondary structure, chemical forces, and flavor components of each sample were determined. The differences in gel and favor characteristics between D. maruadsi surimi products caused by thermal treatment methods were analyzed. The results showed that BOI, STE, and FRI had the largest protein secondary structure transitions and formed dense gel structures with high fracture constant. The kinds of flavour components in BOI and STE were completer and more balanced. The high temperature treatment available at BAC and FRI (110 °C and 150 °C) accelerated the chemical reaction involved in flavor formation, which highlighted the flavor profiles dominated by furans or esters. The open thermal treatment environments of ROA, MIC, and FRI gave them a low moisture content and water loss. This allowed the MIC to underheat during the heat treatment, which formed a loose gel structure with a low fracture coefficient. The addition of TGase enhances the gel quality, most noticeably in the ROA. The aldehyde content of the FRI was enhanced in the flavor characteristic. The effect of adding TGase to enhance the quality of the gel is most evident in ROA. It also substantially increased the content of aldehydes in FRI. In conclusion, different heat treatments could change the gel characteristics of surimi products and provide different flavor profiles. The gel quality of BOI and STE was consistently better in all aspects.
Collapse
Affiliation(s)
- Qiang Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Wei Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Yongxia Xu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Hongbo Mi
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| |
Collapse
|