1
|
Leo M, D'Angeli F, Genovese C, Spila A, Miele C, Ramadan D, Ferroni P, Guadagni F. Oral Health and Nutraceutical Agents. Int J Mol Sci 2024; 25:9733. [PMID: 39273680 PMCID: PMC11395598 DOI: 10.3390/ijms25179733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Oral health is essential for both overall health and quality of life. The mouth is a window into the body's health, and nutrition can strongly impact the state of general and oral health. A healthy diet involves the synergistic effect of various nutraceutical agents, potentially capable of conferring protective actions against some inflammatory and chronic-degenerative disorders. Nutraceuticals, mostly present in plant-derived products, present multiple potential clinical, preventive, and therapeutic benefits. Accordingly, preclinical and epidemiological studies suggested a protective role for these compounds, but their real preventive and therapeutic effects in humans still await confirmation. Available evidence suggests that plant extracts are more effective than individual constituents because they contain different phytochemicals with multiple pharmacological targets and additive/synergistic effects, maximizing the benefits for oral health. Moreover, nutritional recommendations for oral health should be personalized and aligned with valid suggestions for overall health. This review is aimed to: introduce the basic concepts of nutraceuticals, including their main food sources; examine the logic that supports their relationship with oral health, and summarize and critically discuss clinical trials testing the utility of nutraceuticals in the prevention and treatment of oral diseases.
Collapse
Affiliation(s)
- Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Floriana D'Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Department of Medicine and Surgery, "Kore" University of Enna, Contrada Santa Panasia, 94100 Enna, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, "Kore" University of Enna, Contrada Santa Panasia, 94100 Enna, Italy
- Nacture S.r.l., Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| |
Collapse
|
2
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
3
|
Xie L, Yuan Y, Yang F, Jiang H, Yang F, Yang C, Yu Z. Comparative analysis of antioxidant activities and chemical compositions in the extracts of different edible parts from Camellia tetracocca Zhang ( C. tetracocca) with two distinct color characteristics. Food Chem X 2024; 22:101496. [PMID: 38817977 PMCID: PMC11137522 DOI: 10.1016/j.fochx.2024.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
The Camellia tetracocca Zhang is a rare and ancient plant, exclusively found in the vicinity of Puan County, Guizhou Province, China. According to leaf color, two distinct variations have been identified: purple C. tetracocca Zhang (PCTZ) and green C. tetracocca (GCTZ). This research was conducted to investigate the antioxidant activities and chemical compositions of different edible parts of PCTZ and GCTZ. Antioxidant activity was evaluated using DPPH, ABTS, HSA, and T-AOC assays, while the content of compounds was determined by HPLC. The findings demonstrated that the antioxidant capacity of PCTZ leaves is significantly superior to that of GCTZ leaves. Notably, theacrine, a rare compound, contains up to 2.075% in PCTZ leaves, indicating potential as a novel natural antidepressant and antioxidant. In conclusion, PCTZ is a distinctive tea beverage and a valuable genetic material for tea tree breeding due to its high theacrine and low caffeine characteristics.
Collapse
Affiliation(s)
| | | | - Feijiao Yang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Huqin Jiang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Feng Yang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Chenju Yang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Zhengwen Yu
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
4
|
Saini A, Seni K, Chawla PA, Chawla V, Ganti SS. An insight into recent updates on analytical techniques for bioactive alkaloids. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:423-444. [PMID: 38369684 DOI: 10.1002/pca.3338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Alkaloids represent a wide class of naturally existing nitrogen-containing organic compounds having diverse biological activities. They are primary bioactive substances extracted from diverse plant parts. Due to their diverse biological activities, they are frequently used as medicines. The alkaloids have diverse pharmacological impacts on the human body; alkaloids are used for prevention, treatment, and reduction of discomfort associated with chronic illnesses. As most alkaloids exist in plants in complex form, combined with numerous other natural plant components, it is essential to recognize and characterize these molecules using different analytical techniques. OBJECTIVES We aimed to review the literature on the methods and protocols for the analysis of naturally occurring alkaloids. METHODS We carried out a literature survey using the PubMed, Scopus, and Google Scholar databases and other relevant published materials. The keywords used in the searches were "alkaloids," "analytical methods," "HPLC method," "GC method," "electrochemical methods," and "bioanalytical methods," in various combinations. RESULTS In this article, several classes of alkaloids are presented, along with their biological activities. Moreover, it includes a thorough explanation of chromatographic techniques, hyphenated techniques, electrochemical techniques, and current trending analytical methods utilized for the isolation, identification, and comprehensive characterization of alkaloids. CONCLUSIONS The various analytical techniques play an important role in the identification as well as the characterization of various alkaloids from plants, plasma samples, and urine samples. The hyphenation of various chromatographic techniques with mass spectrometry and NMR spectroscopy plays a crucial role in the characterization of unknown compounds.
Collapse
Affiliation(s)
- Aniket Saini
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Kushal Seni
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
5
|
Jin Q, Wang Z, Sandhu D, Chen L, Shao C, Xie S, Shang F, Wen S, Wu T, Jin H, Huang F, Liu G, Hu J, Su Q, Huang M, Zhu Q, Zhou B, Zhu L, Peng L, Liu Z, Huang J, Tian N, Liu S. miR828a-CsMYB114 Module Negatively Regulates the Biosynthesis of Theobromine in Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4464-4475. [PMID: 38376143 DOI: 10.1021/acs.jafc.3c07736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Theobromine is an important quality component in tea plants (Camellia sinensis), which is produced from 7-methylxanthine by theobromine synthase (CsTbS), the key rate-limiting enzyme in theobromine biosynthetic pathway. Our transcriptomics and widely targeted metabolomics analyses suggested that CsMYB114 acted as a potential hub gene involved in the regulation of theobromine biosynthesis. The inhibition of CsMYB114 expression using antisense oligonucleotides (ASO) led to a 70.21% reduction of theobromine level in leaves of the tea plant, which verified the involvement of CsMYB114 in theobromine biosynthesis. Furthermore, we found that CsMYB114 was located in the nucleus of the cells and showed the characteristic of a transcription factor. The dual luciferase analysis, a yeast one-hybrid assay, and an electrophoretic mobility shift assay (EMSA) showed that CsMYB114 activated the transcription of CsTbS, through binding to CsTbS promoter. In addition, a microRNA, miR828a, was identified that directly cleaved the mRNA of CsMYB114. Therefore, we conclude that CsMYB114, as a transcription factor of CsTbS, promotes the production of theobromine, which is inhibited by miR828a through cleaving the mRNA of CsMYB114.
Collapse
Affiliation(s)
- Qifang Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Zhong Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, California 92507, United States
| | - Lan Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Siyi Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Fanghuizi Shang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Ting Wu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Huiying Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Feiyi Huang
- Tea Research Institute, Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery, Changsha 410125, China
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Jinyu Hu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Qin Su
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Mengdi Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Qian Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Biao Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Lihua Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Lvwen Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Na Tian
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Shuoqian Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| |
Collapse
|
6
|
Chen Y, Niu S, Deng X, Song Q, He L, Bai D, He Y. Genome-wide association study of leaf-related traits in tea plant in Guizhou based on genotyping-by-sequencing. BMC PLANT BIOLOGY 2023; 23:196. [PMID: 37046207 PMCID: PMC10091845 DOI: 10.1186/s12870-023-04192-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Studying the genetic characteristics of tea plant (Camellia spp.) leaf traits is essential for improving yield and quality through breeding and selection. Guizhou Plateau, an important part of the original center of tea plants, has rich genetic resources. However, few studies have explored the associations between tea plant leaf traits and single nucleotide polymorphism (SNP) markers in Guizhou. RESULTS In this study, we used the genotyping-by-sequencing (GBS) method to identify 100,829 SNP markers from 338 accessions of tea germplasm in Guizhou Plateau, a region with rich genetic resources. We assessed population structure based on high-quality SNPs, constructed phylogenetic relationships, and performed genome-wide association studies (GWASs). Four inferred pure groups (G-I, G-II, G-III, and G-IV) and one inferred admixture group (G-V), were identified by a population structure analysis, and verified by principal component analyses and phylogenetic analyses. Through GWAS, we identified six candidate genes associated with four leaf traits, including mature leaf size, texture, color and shape. Specifically, two candidate genes, located on chromosomes 1 and 9, were significantly associated with mature leaf size, while two genes, located on chromosomes 8 and 11, were significantly associated with mature leaf texture. Additionally, two candidate genes, located on chromosomes 1 and 2 were identified as being associated with mature leaf color and mature leaf shape, respectively. We verified the expression level of two candidate genes was verified using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and designed a derived cleaved amplified polymorphism (dCAPS) marker that co-segregated with mature leaf size, which could be used for marker-assisted selection (MAS) breeding in Camellia sinensis. CONCLUSIONS In the present study, by using GWAS approaches with the 338 tea accessions population in Guizhou, we revealed a list of SNPs markers and candidate genes that were significantly associated with four leaf traits. This work provides theoretical and practical basis for the genetic breeding of related traits in tea plant leaves.
Collapse
Affiliation(s)
- Yanjun Chen
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Suzhen Niu
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Xinyue Deng
- School of Architecture, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Qinfei Song
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Limin He
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Dingchen Bai
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Yingqin He
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| |
Collapse
|
7
|
Yang G, Meng Q, Shi J, Zhou M, Zhu Y, You Q, Xu P, Wu W, Lin Z, Lv H. Special tea products featuring functional components: Health benefits and processing strategies. Compr Rev Food Sci Food Saf 2023; 22:1686-1721. [PMID: 36856036 DOI: 10.1111/1541-4337.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiushuang You
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
8
|
Zheng XQ, Dong SL, Li ZY, Lu JL, Ye JH, Tao SK, Hu YP, Liang YR. Variation of Major Chemical Composition in Seed-Propagated Population of Wild Cocoa Tea Plant Camellia ptilophylla Chang. Foods 2022; 12:foods12010123. [PMID: 36613339 PMCID: PMC9818582 DOI: 10.3390/foods12010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Excessive intake of high-caffeine tea will induce health-related risk. Therefore, breeding and cultivating tea cultivars with less caffeine is a feasible way to control daily caffeine intake. Cocoa tea (Camellia ptilophylla Chang) is a wild tea plant which grows leaves with little or no caffeine. However, the vegetative propagation of cocoa tea plants is difficult due to challenges with rooting. Whether natural seeds collected from wild cocoa tea plants can be used to produce less-caffeinated tea remains unknown, because research on the separation of traits among the seed progeny population is lacking. The present study was set to investigate the variation of caffeine and other chemical compositions in seed-propagated plant individuals using colorimetric and HPLC methods. It shows that there were great differences in chemical composition among the seed-propagated population of wild cocoa tea plants, among which some individuals possessed caffeine contents as high as those of normal cultivated tea cultivars (C. sinensis), suggesting that the naturally seed-propagated cocoa tea seedlings are not suitable for directly cultivating leaf materials to produce low-caffeine tea. Therefore, the cocoa tea plants used for harvesting seeds for growing low-caffeine tea plants should be isolated in order to prevent their hybridization with normal cultivated C. sinensis plants. Interestingly, the leaves of cocoa tea seedlings contained high levels of gallocatechin gallate (GCG) and would be a good source of leaf materials for extracting more stable antioxidant, because GCG is a more stable antioxidant than epigallocatechin gallate (EGCG), the dominant component of catechins in normal cultivated tea cultivars. Some plant individuals which contained low levels of caffeine along with high levels of amino acids and medium levels of catechins, are considered to be promising for further screening of less-caffeinated green tea cultivars.
Collapse
Affiliation(s)
- Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shu-Ling Dong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ze-Yu Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shi-Ke Tao
- Tea Research Institute of Pu’er City, Pu’er 665000, China
| | - Yan-Ping Hu
- Tea Research Institute of Pu’er City, Pu’er 665000, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|