1
|
Wang W, Dai Y, Cheng C, Wang R, Ma J, Jing Q. Development and functional evaluation of curcumin-loaded zein-gum Arabic-flaxseed gum complex nanoparticles for anti-fatigue applications. Int J Biol Macromol 2025; 310:142998. [PMID: 40216129 DOI: 10.1016/j.ijbiomac.2025.142998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
In this study, zein-gum Arabic (GA)-flaxseed gum (FG) nanoparticles (ZGF) were prepared using the anti-solvent and electrostatic deposition methods to overcome the hydrophobicity and instability of curcumin (CUR). Additionally, the optimal mass ratio of GA to FG (4:1) and CUR to zein (1:40) was determined. Additionally, the initial concentration of the polysaccharide (0.04 %) was determined and the ZGF nanoparticles encapsulated with CUR (CUR-ZGF) were optimized. The formed CUR-ZGF nanoparticles were spherical, with a particle size of 188 nm and an embedding rate of 96.8 %. Furthermore, the CUR-ZGF nanoparticles showed excellent pH, thermal, storage, and salt stability. The encapsulate CUR exhibited antioxidant capacity and controlled release rate in the gastrointestinal digestive system in vitro. Animal experiments showed CUR-ZGF nanoparticles significantly enhanced exercise capacity and anti-fatigue effects. High-dose CUR-ZGF nanoparticles doubled exhaustion running time versus the model group, improving exercise endurance. Fatigue-related biochemical parameters (serum urea nitrogen, serum lactate, and creatine kinase) were significantly reduced, indicating rapid fatigue elimination. Meanwhile, significantly increased lactate dehydrogenase and fasting glucose levels suggested efficient energy replenishment to mitigate fatigue damage. These results indicate CUR-ZGF nanoparticles may be a promising natural anti-fatigue healthcare product in the future.
Collapse
Affiliation(s)
- Weichen Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China
| | - Yu Dai
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China
| | - Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China; Qiongqing Institute, Harbin Institute of Technology, 618 Liangjiang Road, Longxing Town, Qiongqing 401120, PR China.
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China.
| | - Jiapei Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, PR China
| | - Qiuju Jing
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, 666 Haping Road, Xiangfang District, Harbin 150069, PR China
| |
Collapse
|
2
|
Ould Yahia Z, Xie L, Rashwan AK, Paul B, Liu S, Chen W. Gum Arabic modified nano-nutriosomes for curcumin encapsulation: Characterization, influence on physicochemical, microstructural and microbial properties of integrated yogurt. Int J Biol Macromol 2025; 308:142202. [PMID: 40120905 DOI: 10.1016/j.ijbiomac.2025.142202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
As a hydrophobic compound, curcumin (Cur) requires modification to enhance stability in aqueous media, allowing its application in hydrophilic food matrix. This study aimed to improve the physicochemical stability of curcumin encapsulated in nano-nutriosomes (NU) decorated with gum Arabic (GA) polymer and their incorporation influence on the yogurt (Ygr) properties during 21 days of cold storage. The novel NU were nanosized (< 200 nm), with high encapsulation efficiency >90 % for Cur, spherical in shape, with an acceptable PDI < 0.3. The GA-Cur-NU significantly (p < 0.05) improved the Cur stability under thermal, pH and ionic conditions, as well as controlling the in vitro Cur release in PBS and different food simulants, confirming the improving effect of GA for better Cur stability. However, due to NU dispersion commercializing challenges in food, freeze-drying was employed to facilitate its application. Interestingly, The Cur was highly protected in freeze-dried FZD GA-Cur-NU with an encapsulation efficiency of 97.35 % compared to FZD Cur-NU 93.68 %. The yogurt gel network was strengthened after Cur-NU and GA-Cur-NU addition, improving the physicochemical properties, water holding capacity, color, texture, microstructure and LAB count of yogurt. Overall, the GA-coated NU could be a nano-carrier for Cur encapsulation and controlled delivery.
Collapse
Affiliation(s)
- Zineb Ould Yahia
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Bolai Paul
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
3
|
Radeva-Ilieva M, Stoeva S, Hvarchanova N, Georgiev KD. Green Tea: Current Knowledge and Issues. Foods 2025; 14:745. [PMID: 40077449 PMCID: PMC11899301 DOI: 10.3390/foods14050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Green tea possesses antioxidant, anti-inflammatory, anticancer, and antimicrobial activities, reduces body weight, and slows down aging. These effects are primarily attributed to catechins contained in green tea leaves, particularly epigallocatechin-3-gallate. However, in humans, the realization of green tea's beneficial effects is limited. In order to summarize and critically analyze the available scientific information about green tea's health benefits and issues related to its use, we conducted an in-depth literature review in scientific databases. A number of in vitro studies reported that green tea catechins modulate various signaling pathways in cells, which is thought to underlie their beneficial effects. However, data on the effects of catechins in humans are scarce, which is partly due to their low stability and oral bioavailability. Furthermore, catechins may also participate in pharmacokinetic interactions when co-administered with certain drugs such as anticancer agents, drugs for cardiovascular diseases, immunosuppressors, etc. As a result, adverse drug reactions or therapy failure may occur. In conclusion, over the years, various approaches have been investigated to optimize catechin intake and to achieve beneficial effects in humans, but to date, the use of catechins for prophylaxis or disease treatment remains limited. Therefore, future studies regarding the possibilities of catechins administration are needed.
Collapse
Affiliation(s)
- Maya Radeva-Ilieva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University—Varna, 9002 Varna, Bulgaria; (S.S.); (N.H.); (K.D.G.)
| | | | | | | |
Collapse
|
4
|
Mohamed SA, Elsherbini AM, Alrefaey HR, Adelrahman K, Moustafa A, Egodawaththa NM, Crawford KE, Nesnas N, Sabra SA. Gum Arabic: A Commodity with Versatile Formulations and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:290. [PMID: 39997853 PMCID: PMC11858195 DOI: 10.3390/nano15040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Gum Arabic (GA), or acacia gum, refers to the dried exudate produced by certain Acacia trees. GA is composed mainly of a mixture of polysaccharides and glycoproteins, with proportions that can slightly differ from one species to another. It is commonly utilized in the food and pharmaceutical industries as a stabilizer or an emulsifier owing to its biocompatibility, hydrophilicity, and antibacterial properties. In addition, GA can be manipulated as it possesses many functional groups that can be used in grafting, cross-linking, or chemical modifications to add a new feature to the developed material. In this review, we highlight recent GA-based formulations, including nanoparticles, hydrogels, nanofibers, membranes, or scaffolds, and their possible applications in tissue regeneration, cancer therapy, wound healing, biosensing, bioimaging, food packaging, and antimicrobial and antifouling membranes.
Collapse
Affiliation(s)
- Shaymaa A. Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| | - Asmaa M. Elsherbini
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| | - Heba R. Alrefaey
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Kareem Adelrahman
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (K.A.); (K.E.C.)
| | - Alshaimaa Moustafa
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt;
| | - Nishal M. Egodawaththa
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Kaitlyn E. Crawford
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (K.A.); (K.E.C.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Nasri Nesnas
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Sally A. Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| |
Collapse
|
5
|
Huang R, Song H, Li S, Guan X. Selection strategy for encapsulation of hydrophilic and hydrophobic ingredients with food-grade materials: A systematic review and analysis. Food Chem X 2025; 25:102149. [PMID: 39867216 PMCID: PMC11758843 DOI: 10.1016/j.fochx.2024.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025] Open
Abstract
Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods. Both lipid-based and biopolymer-based nanoparticles exhibit the capability to encapsulate hydrophilic or hydrophobic substances. Liposomes and nanoemulsions allow simultaneous encapsulation of hydrophilic and hydrophobic ingredients, while solid lipid nanoparticles and nanostructured lipid carriers are suited for hydrophobic ingredients. The three-dimensional network structure of nanogels can efficiently load hydrophilic substances, while the functional groups in polysaccharides improve the loading capacity of hydrophobic substances through intermolecular interactions. As for protein nanoparticles, the selection of proteins with solubility characteristics analogous to the bioactives is crucial to achieve high encapsulation efficiency.
Collapse
Affiliation(s)
- Ruihan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| |
Collapse
|
6
|
Karoshi VR, Nallamuthu I, Anand T. Co-encapsulation of vitamins B6 and B12 using zein/gum arabic nanocarriers for enhanced stability, bioaccessibility, and oral bioavailability. J Food Sci 2024; 89:9766-9782. [PMID: 39656779 DOI: 10.1111/1750-3841.17567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 12/17/2024]
Abstract
The present study aimed to fabricate a co-deliver system using zein/gum arabic (GA) polymers for enhanced stability and bioavailability of vitamins (B6 and B12). The anti-solvent evaporation method was used for the preparation of PC-ZG NPs (pyridoxine-cyanocobalamin zein-GA nanoparticles). The process conditions were statistically optimized using the design of Box-Behnken. The optimized conditions produced small-sized particles (∼170 nm) with high zeta potential (-31 mV) and efficient encapsulation for pyridoxine (61.6%) and cyanocobalamin (56.3%). Scanning electron microscopy, x-ray diffractometry, and Thermogravimetric analysis results confirmed that the developed formulation had a roughly spherical shape and an amorphous character with better thermal stability compared to free-forms of the vitamins. The results of the storage study showed no significant changes in nanoparticle size at 4, 25, and 37°C over a 90-day period. However, a slight variation in retention of the vitamins was observed during the initial period. The bioaccessibility of both the vitamins from PC-ZG NPs ranged between 56% and 62% post 6 h simulated digestion. In Caco-2 cells, the cellular uptake of vitamins was higher from nanoforms compared to the free-forms. Further, oral administration of PC-ZG NPs in rats exhibited 4.8- and 2.2-fold increases in relative bioavailability of vitamins B6 and B12, respectively. A significant reduction of plasma homocysteine level (p ˂ 0.05) in the treated group was also observed. Together, these results suggest that the developed nanoformulation has improved physicochemical properties with enhanced bioavailability and, hence, could be used as an effective delivery system for the vitamins in food and nutraceutical products.
Collapse
Affiliation(s)
- Vijaykumar Ramesh Karoshi
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore, India
| | - Ilaiyaraja Nallamuthu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore, India
| | - Tamatam Anand
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore, India
| |
Collapse
|
7
|
Gan N, Li Q, Li Y, Li M, Li Y, Chen L, Zeng T, Song Y, Geng F, Wu D. Encapsulation of lemongrass essential oil by bilayer liposomes based on pectin, gum Arabic, and carrageenan: Characterization and application in chicken meat preservation. Int J Biol Macromol 2024; 281:135706. [PMID: 39349334 DOI: 10.1016/j.ijbiomac.2024.135706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 10/02/2024]
Abstract
The volatile characteristics of lemongrass essential oil (LO) have seriously hindered its further application, and encapsulation it with multilayer modified liposomes may be an effective strategy to improve this dilemma. This study selected chitosan (CH) and three anionic polymers, pectin (P) / gum arabic (GA) / carrageenan (C), as the first and second coating polymers to modify nano liposomes (NL) by layer-by-layer electrostatic deposition, obtaining three bilayer liposomes, P-CH-NL, GA-CH-NL, and C-CH-NL as high-quality stabilized carriers of LO. The bilayer liposomes showed a dense membrane structure ranging from 110 to 150 nm uniformly, with good antioxidant properties. All bilayer liposomes had good stability during 28-day storage at 4 °C, while C-CH-NL performed relatively better inferred by smaller changes of size, PDI and Zeta potential. The total volatile base nitrogen (TVB-N) values of fresh chicken meat and a total number of bacterial colonies (TBC) experiments showed that GA-CH-NL and C-CH-NL could better retard the increase of volatile salt base nitrogen. All bilayer liposomes could delay the time for the total bacterial count to exceed 6 log CFU/g (from 7 days to 10 / 12 days). Therefore, the bilayer liposomes P-CH-NL, GA-CH-NL, and C-CH-NL may be promising natural preservatives for food products.
Collapse
Affiliation(s)
- Na Gan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qinhong Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuanqiao Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mohan Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yilin Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lijuan Chen
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610100, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610100, China.
| | - Fang Geng
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
8
|
Chen T, Wan L, Xiao Y, Wang K, Wu P, Li C, Huang C, Liu X, Xue W, Sun G, Ji X, Lin H, Ji Z. Curcumin/pEGCG-encapsulated nanoparticles enhance spinal cord injury recovery by regulating CD74 to alleviate oxidative stress and inflammation. J Nanobiotechnology 2024; 22:653. [PMID: 39443923 PMCID: PMC11515499 DOI: 10.1186/s12951-024-02916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Spinal cord injury (SCI) often accompanies impairment of motor function, yet there is currently no highly effective treatment method specifically for this condition. Oxidative stress and inflammation are pivotal factors contributing to severe neurological deficits after SCI. In this study, a type of curcumin (Cur) nanoparticle (HA-CurNPs) was developed to address this challenge by alleviating oxidative stress and inflammation. Through non-covalent interactions, curcumin (Cur) and poly (-)-epigallocatechin-3-gallate (pEGCG) are co-encapsulated within hyaluronic acid (HA), resulting in nanoparticles termed HA-CurNPs. These nanoparticles gradually release curcumin and pEGCG at the SCI site. The released pEGCG and curcumin not only scavenge reactive oxygen species (ROS) and prevents apoptosis, thereby improving the neuronal microenvironment, but also regulate CD74 to promote microglial polarization toward an M2 phenotype, and inhibits M1 polarization, thereby suppressing the inflammatory response and fostering neuronal regeneration. Moreover, in vivo experiments on SCI mice demonstrate that HA-CurNPs effectively protect neuronal cells and myelin, reduce glial scar formation, thereby facilitating the repair of damaged spinal cord tissues, restoring electrical signaling at the injury site, and improving motor functions. Overall, this study demonstrates that HA-CurNPs significantly reduce oxidative stress and inflammation following SCI, markedly improving motor function in SCI mice. This provides a promising therapeutic approach for the treatment of SCI.
Collapse
Affiliation(s)
- Tianjun Chen
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Li Wan
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yongchun Xiao
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ke Wang
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ping Wu
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Can Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Caiqiang Huang
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiangge Liu
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Guodong Sun
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe Peoples Hospital), Jinan University, Heyuan, 517000, China
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Hongsheng Lin
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhisheng Ji
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
9
|
Tang W, Luo X, Fan F, Sun X, Jiang X, Li P, Ding J, Lin Q, Zhao S, Cheng Y, Fang Y. Zein and gum arabic nanoparticles: potential enhancers of immunomodulatory functional activity of selenium-containing peptides. Food Funct 2024; 15:9972-9982. [PMID: 39268750 DOI: 10.1039/d4fo02572e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food-derived nanomaterials optimizing bioactive peptides is an emerging route in the functional food field. Zein and gum arabic (GA) possess favorable encapsulation properties for controlled release, targeted delivery and stabilization of food bioactive ingredients, and thus are considered as promising carriers for delivery systems. In order to improve the bioavailability of rice selenium-containing peptide TSeMMM (T), the nanoparticles (ZTGNs) containing peptide T, zein and GA have been previously prepared. This study focused on evaluating the immunomodulatory capacity of ZTGNs. The results showed that ZTGNs significantly alleviated cyclophosphamide-induced reduction in immune organ indices and liver glutathione content of mice. There was a significant upregulation observed in the levels of immune-related cytokines IL-6, TNF-α, and IFN-γ as well as their mRNA expression. Moreover, ZTGNs enriched the diversity of the intestinal flora and promoted the proportion of beneficial bacteria. In conclusion, ZTGNs have potential as immunomodulatory enhancers for food bioactive ingredients, providing prospects for further optimization of dietary supplements.
Collapse
Affiliation(s)
- Wenqian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xieqi Luo
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
10
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
11
|
Tashakor AH, Rezaei A, Fouladseresht H, Mansury D. Characterization and investigation of cytotoxicity and antimicrobial properties of coencapsulated limonene and thymol into the Ferula assafoetida gum microparticles. Int J Biol Macromol 2024; 263:130338. [PMID: 38387626 DOI: 10.1016/j.ijbiomac.2024.130338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Thymol (Th) and d-limonene (L) exhibit low stability and are prone to oxidation when exposed to air, light, humidity, and high temperatures. This study examined the coencapsulation of Th and L into Ferula assafoetida gum (AFG) microparticles. Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analyzer (TGA) were done to characterize the obtained complexes. Furthermore, the encapsulation efficiency, antibacterial properties, cytotoxicity, and anticancer properties of both the free and encapsulated forms of L and Th were measured. For all samples, by increasing the percentage of bioactive compound (L, Th, and L-Th) from 2.5 to 5 % w/w, the EE was increased. FTIR and XRD analysis results demonstrated that Th and L were successfully incorporated into the AFG. Additionally, thermogravimetric analysis showed that in the thermal graphs of all samples, the first weight loss occurred between 30 °C and 160 °C, which was due to the evaporation of water. In the free L and Th graph, a sharp reduction peak was observed in which 80 % of compounds were lost. These reduction peaks disappeared in the thermal graphs of L: AFG and Th: AFG revealing that the thermal stability of Th and L was significantly increased upon their incorporation into the AFG. The inclusion of Th into the AFG also led to an increase in its antibacterial activity, while L exhibited acceptable antibacterial activity, albeit not as high as Th. Additionally, according to the MIC results, Th: AFG had the best antibacterial activity among all compounds, especially on gram-positive bacteria. According to the result of the MTT assay, there was a significant difference between the IC50 of free Th (123.4 μg/ml) and Th: AFG (2312 μg/ml), and free L (1762 μg/ml) and L: AFG (2480 μg/ml) showing that encapsulated Th and L into the AFG has decreased the cytotoxicity of free compounds against L929 cell line. Also, Th: AFG had the best anticancer activity against Hella and CT26 cell lines among all compounds. Finally, the flow cytometry analysis demonstrated that the encapsulated particles effectively eliminated cancer cells. The outcomes imply that AFG can be employed as a suitable delivery system to enhance the use of Th and L into the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Amir Hossein Tashakor
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Peng X, McClements DJ, Liu X, Liu F. EGCG-based nanoparticles: synthesis, properties, and applications. Crit Rev Food Sci Nutr 2024; 65:2177-2198. [PMID: 38520117 DOI: 10.1080/10408398.2024.2328184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a natural phenolic substance found in foods and beverages (especially tea) that exhibits a broad spectrum of biological activities, including antioxidant, antimicrobial, anti-obesity, anti-inflammatory, and anti-cancer properties. Its potential in cardiovascular and brain health has garnered significant attention. However, its clinical application remains limited due to its poor physicochemical stability and low oral bioavailability. Nanotechnology can be used to improve the stability, efficacy, and pharmacokinetic profile of EGCG by encapsulating it within nanoparticles. This article reviews the interactions of EGCG with various compounds, the synthesis of EGCG-based nanoparticles, the functional attributes of these nanoparticles, and their prospective applications in drug delivery, diagnosis, and therapy. The potential application of nanoencapsulated EGCG in functional foods and beverages is also emphasized. Top-down and bottom-up approaches can be used to construct EGCG-based nanoparticles. EGCG-based nanoparticles exhibit enhanced stability and bioavailability compared to free EGCG, making them promising candidates for biomedical and food applications. Notably, the non-covalent and covalent interactions of EGCG with other substances significantly contribute to the improved properties of these nanoparticles. EGCG-based nanoparticles appear to have a wide range of applications in different industries, but further research is required to enhance their efficacy and ensure their safety.
Collapse
Affiliation(s)
- Xiaoke Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Estevinho BN, López-Rubio A. Recent Advances in Encapsulation for Food Applications. Foods 2024; 13:579. [PMID: 38397556 PMCID: PMC10888041 DOI: 10.3390/foods13040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Food-related research is closely related to health [...].
Collapse
Affiliation(s)
- Berta Nogueiro Estevinho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Amparo López-Rubio
- Food Safety and Preservation Department, CSIC—Consejo Superior de Investigaciones Científicas, Instituto de Agroquimica y Tecnologia de los Alimentos (IATA), 46980 Paterna, Valencia, Spain
| |
Collapse
|
14
|
Fabrikov D, Varga ÁT, García MCV, Bélteky P, Kozma G, Kónya Z, López Martínez JL, Barroso F, Sánchez-Muros MJ. Antimicrobial and antioxidant activity of encapsulated tea polyphenols in chitosan/alginate-coated zein nanoparticles: a possible supplement against fish pathogens in aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13673-13687. [PMID: 38261222 PMCID: PMC10881692 DOI: 10.1007/s11356-024-32058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Regulation of antibiotic use in aquaculture calls for the emergence of more sustainable alternative treatments. Tea polyphenols (GTE), particularly epigallocatechin gallate (EGCG), have various biological activities. However, tea polyphenols are susceptible to degradation. In this work, EGCG and GTE were encapsulated in zein nanoparticles (ZNP) stabilized with alginate (ALG) and chitosan (CS) to reduce the degradation effect. ALG-coated ZNP and ALG/CS-coated ZNP encapsulating EGCG or GTE were obtained with a hydrodynamic size of less than 300 nm, an absolute ζ-potential value >30 mV, and an encapsulation efficiency greater than 75%. The antioxidant capacity of the encapsulated substances, although lower than that of the free ones, maintained high levels. On the other hand, the evaluation of antimicrobial activity showed greater efficiency in terms of growth inhibition for ALG/CS-ZNP formulations, with average overall values of around 60%, reaching an inhibition of more than 90% for Photobacterium damselae. These results support encapsulation as a good strategy for tea polyphenols, as it allows maintaining significant levels of antioxidant activity and increasing the potential for antimicrobial activity, in addition to increasing protection against sources of degradation.
Collapse
Affiliation(s)
- Dmitri Fabrikov
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain.
| | - Ágnes Timea Varga
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| | - María Carmen Vargas García
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- MTA, Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | | | - Fernando Barroso
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| | - María José Sánchez-Muros
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| |
Collapse
|
15
|
Paliya BS, Sharma VK, Sharma M, Diwan D, Nguyen QD, Aminabhavi TM, Rajauria G, Singh BN, Gupta VK. Protein-polysaccharide nanoconjugates: Potential tools for delivery of plant-derived nutraceuticals. Food Chem 2023; 428:136709. [PMID: 37429239 DOI: 10.1016/j.foodchem.2023.136709] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Protein-polysaccharide nanoconjugates are covalently interactive networks that are currently the subject of intense research owing to their emerging applications in the food nanotechnology field. Due to their biocompatibility and biodegradability properties, they have played a significant role as wall materials for the formation of various nanostructures to encapsulate nutraceuticals. The food-grade protein-polysaccharide nanoconjugates would be employed to enhance the delivery and stability of nutraceuticals for their real use in the food industry. The most common edible polysaccharides (cellulose, chitosan, pectin, starch, carrageenan, fucoidan, mannan, glucomannan, and arabic gum) and proteins (silk fibroin, collagen, gelatin, soy protein, corn zein, and wheat gluten) have been used as potential building blocks in nano-encapsulation systems because of their excellent physicochemical properties. This article broadens the discussion of food-grade proteins and polysaccharides as nano-encapsulation biomaterials and their fabrication methods, along with a review of the applications of protein-polysaccharide nanoconjugates in the delivery of plant-derived nutraceuticals.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | - Deepti Diwan
- Washington University School of Medicine, 4590 Children's Place, Ste. 8200, Campus Box 8057, St. Louis MO63110, USA
| | - Quang D Nguyen
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Ḿenesiút 45, Hungary
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, India
| | - Gaurav Rajauria
- Department of Biological & Pharmaceutical Sciences, Munster Technological University, Tralee V92HD4V, Co. Kerry, Ireland
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India.
| | - Vijai Kumar Gupta
- Biorefining and Advance Material Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom; Centre for Safe and Improved Food, SRUC, Kings buildings, West Mains Road, Edinburg EH9 3JG, United Kingdom.
| |
Collapse
|
16
|
Yuan Y, Ma M, Zhang S, Wang D. Efficient Utilization of Tea Resources through Encapsulation: Dual Perspectives from Core Material to Wall Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1310-1324. [PMID: 36637407 DOI: 10.1021/acs.jafc.2c07346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the high production and consumption of tea around the world, efficient utilization of tea byproducts (tea pruning, tea residues after production, and drinking) is the focus of improving the economy of the tea industry. This review comprehensively discusses the efficient utilization of tea resources by encapsulation from the dual perspectives of core material and wall material. The core material is mainly tea polyphenols, followed by tea oils. The encapsulation system for tea polyphenols includes microcapsules, nanoparticles, emulsions, gels, conjugates, metal-organic frameworks, liposomes, and nanofibers. In addition, it is also diversified for the encapsulation of tea oils. Tea resources as wall materials refer to tea saponins, tea polyphenols, tea proteins, and tea polysaccharides. The application of the tea-based delivery system widely involves functionally fortified food, meat preservation, film, medical treatment, wastewater treatment, and plant protection. In the future, the coencapsulation of tea resources as core materials and other functional ingredients, the precise targeting of these tea resources, and the wide application of tea resources in wall materials need to be focused on. In conclusion, the described technofunctional properties and future research challenges in this review should be followed.
Collapse
Affiliation(s)
- Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
17
|
Stability and antioxidant activity of chitosan/β-Lactoglobulin on anthocyanins from Aronia melanocarpa. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|