1
|
Manyi-Loh CE, Lues R. Listeria monocytogenes and Listeriosis: The Global Enigma. Foods 2025; 14:1266. [PMID: 40238523 PMCID: PMC11989209 DOI: 10.3390/foods14071266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Listeria monocytogenes is an intracellular, Gram-positive, non-spore-forming, non-encapsulated, facultative anaerobic, rod-shaped, and psychrotrophic food-borne pathogen that causes the infection, listeriosis, thus it attracts great attention following listeriosis outbreaks, which are often associated with high mortality rates. The prevalence of listeriosis is quite low globally; however, the most recent and deadliest outbreak occurred in South Africa, during which 216 persons lost their lives. L. monocytogenes is endowed with the potential to multiply through a wide range of harsh environmental conditions, forming biofilms on varying surfaces in the food industry, as well as having persistent and antibiotic-resistant cells, which pose a major threat and burden to the ready-to-eat food industry. A more frustrating characteristic of this bacterium is its strain divergence, alongside an increased level of antibiotic resistance registered among the strains of L. monocytogenes recovered from food, humans, and environmental sources, especially to those antibiotics involved in the treatment of human listeriosis. Antibiotic resistance exerted by and among pathogenic food-borne microbes is an ongoing public health menace that continues to be an issue. Against this background, a thorough search into different databases using various search engines was performed, which led to the gathering of salient information that was organised, chronologically, based on Listeria monocytogenes and listeriosis. Altogether, the findings elaborated in this study present up-to date knowledge on different aspects of this pathogen which will improve our understanding of the mystery associated with it and the ways to prevent and control its dissemination through ready-to-eat foods. In addition, constant monitoring of the antibiotic resistance profiles of strains of L. monocytogenes from varying sources detected changes, giving an update on the trend in antibiotic resistance. Overall, monitoring of bacterial contamination serves as the key aspect in the control of the food safety output in the food industry.
Collapse
Affiliation(s)
- Christy E. Manyi-Loh
- Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein X9301, South Africa;
| | | |
Collapse
|
2
|
Sharma R, Nath PC, Rustagi S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Cold Plasma-A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:4166141. [PMID: 40124845 PMCID: PMC11930388 DOI: 10.1155/ijfo/4166141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Nonthermal technologies, mostly utilized for microbial inactivation and quality preservation in food, are attracting increased interest, particularly in nonthermal plasma. Cold plasma (CP) demonstrates favorable results, such as increased germination, enhanced functional and rheological characteristics, and the eradication of microorganisms. Consequently, CP is a novel technology in food processing that has significantly contributed to the prevention of food spoilage. This study highlights contemporary research on CP technology in food processing. This includes its use in microbial decontamination, shelf life extension, mycotoxin degradation, enzyme inactivation, and surface modification of food products. The CP generation techniques under low pressure, including glow discharge, radio frequency and microwave techniques, and atmospheric pressure, including dielectric barrier discharge (DBD), plasma jet, and corona discharge, are discussed. Additionally, the source for the generation of plasma-activated water (PAW) with its significant role in food processing is critically discussed. The CP is an effective method for the decontamination of several food materials like fruits, vegetables, meat, and low-moisture food products. Also, the review addressed the effects of CP on the physicochemical properties of foods and CP for pretreatment in various aspects of food processing, including drying of food, extraction of bioactive compounds, and oil hydrogenation. CP improved the drying kinetics of food, resulting in reduced processing time and improved product quality. Similarly, CP is effective in maintaining food safety and quality, removing the formation of biofilm, and also in reducing protein allergenicity. The review also underscored the importance of CP as a sterilizing agent for food packaging materials, emphasizing its role in enhancing the barrier characteristics of biopolymer-based food packaging materials. Therefore, it is concluded that CP is effective in the reduction of pathogenic microorganisms from food products. Moreover, it is effective in maintaining the nutritional and sensory properties of food products. Overall, it is effective for application in all aspects of food processing. There is a critical need for ongoing research on upscaling for commercial purposes.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Pinku Chandra Nath
- Research and Development Cell, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, Haryana, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | | | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, India
| |
Collapse
|
3
|
Singh B, Kumar N, Yadav A, Rohan, Bhandari K. Harnessing the Power of Bacteriocins: A Comprehensive Review on Sources, Mechanisms, and Applications in Food Preservation and Safety. Curr Microbiol 2025; 82:174. [PMID: 40053112 DOI: 10.1007/s00284-025-04155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The Sustainable Development Goals (SDGs) emphasize the importance of food safety, prolonged shelf life, and reduced food waste, all of which rely on effective food preservation methods. Bacteriocins, natural antimicrobial substances produced by lactic acid bacteria (LAB), have potential applications in food preservation. This review highlights the role of LAB-derived bacteriocins in preserving food. Bacteriocins are highly effective against foodborne infections because they target cell membranes, break down enzymes, and interfere with cellular activities. The following study used molecular docking to understand the interaction of bacteriocins and their mode of action. With their natural origin and specific action, bacteriocins offer a promising strategy for preventing foodborne diseases and extending shelf life without impacting sensory characteristics. However, challenges such as stable manufacturing, regulatory hurdles, and cost effectiveness hinder the wide adoption of bacteriocins. Nevertheless, LAB-derived bacteriocins offer a safe and efficient approach to improving food preservation, enhancing food safety, and reducing reliance on artificial preservatives. Moreover, immobilized bacteriocins have the potential to be integrated into antimicrobial packaging films, providing a targeted way to reduce the risk of foodborne pathogen contamination and improve food safety. Exploring novel bacteriocins presents exciting opportunities for advancing food preservation and safety. The present study also highlights recent advancements in food preservation through bacteriocins.
Collapse
Affiliation(s)
- Bharmjeet Singh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Nishant Kumar
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Aman Yadav
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Rohan
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Kriti Bhandari
- Department of Biotechnology, Delhi Technological University, New Delhi, India.
| |
Collapse
|
4
|
Oliulla H, Mizan MFR, Kang I, Ha SD. On-going issues regarding biofilm formation in meat and meat products: challenges and future perspectives. Poult Sci 2024; 103:104373. [PMID: 39426218 PMCID: PMC11536009 DOI: 10.1016/j.psj.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
The meat industry has been significantly threatened by the risks of foodborne microorganisms and biofilm formation on fresh meat and processed products. A microbial biofilm is a sophisticated defensive mechanism that enables bacterial cells to survive in unfavorable environmental circumstances. Generally, foodborne pathogens form biofilms in various areas of meat-processing plants, and adequate sanitization of these areas is challenging owing to the high tolerance of biofilm cells to sanitization compared with their planktonic states. Consequently, preventing biofilm initiation and maturation using effective and powerful technologies is imperative. In this review, novel and advanced technologies that prevent bacterial and biofilm development via individual and combined intervention technologies, such as ultrasound, cold plasma, enzymes, bacteriocins, essential oils, and phages, were evaluated. The evidence regarding current technologies revealed in this paper is potentially beneficial to the meat industry in preventing bacterial contamination and biofilm formation in food products and processing equipment.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea.
| |
Collapse
|
5
|
Rodrigues SSQ, Leite A, Vasconcelos L, Teixeira A. Exploring the Nexus of Feeding and Processing: Implications for Meat Quality and Sensory Perception. Foods 2024; 13:3642. [PMID: 39594057 PMCID: PMC11593356 DOI: 10.3390/foods13223642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The intrinsic quality of meat is directly related to muscle and fat tissues. Factors such as the rate and extent of anaerobic glycolysis affect muscle pH, influencing the meat's color, water holding, and texture. Postmortem anomalies can result in deviations from this intrinsic quality. The animals' diet plays a crucial role in meat quality. Specific nutrients, such as proteins, vitamins, and minerals, affect meat's texture, flavor, and juiciness. Feeds rich in omega-3 fatty acids can improve the sensorial quality of meat. Meat processing and methods such as aging, marinating, and cooking affect the texture, flavor, and juiciness, which can be evaluated by specific equipment or trained or untrained consumers. This comprehensive review investigates the relationship between animal feeding practices and meat processing techniques and their combined impact on meat quality and sensory perception. By synthesizing recent research, we explore how various feeding protocols (including diet composition and feed additives) and processing methods shape meat products' nutritional value, texture, flavor profile, and overall consumer appeal. Understanding this nexus is crucial for optimizing meat quality while ensuring sustainability and safety in the food supply chain.
Collapse
Affiliation(s)
- Sandra S. Q. Rodrigues
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (A.T.)
| | | | | | | |
Collapse
|
6
|
Zhang J, Zhao R, Zhang Y, Wang H, Song Z, Xing R, Lu J, Ding C. Effects of Discharge Parameters on the Thawing Characteristics and Physicochemical Properties of Beef in a Dielectric Barrier Discharge (DBD) System. Foods 2024; 13:3360. [PMID: 39517143 PMCID: PMC11544901 DOI: 10.3390/foods13213360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Traditional thawing techniques can cause certain losses to beef quality. Due to the increasing demand for high-quality beef, there is an urgent need to research new thawing techniques. Dielectric barrier discharge (DBD), as an innovative non-thermal thawing technology, still has a lot of work to be studied. In order to explore the influence of DBD on the thawing characteristics and quality of beef, different discharge parameters were used for thawing. The results show that voltage and needle distance have significant effects on ion wind speed and composition. Ion wind can improve the thawing rate, and the thawing time of DBD is 50% shorter than that of natural thawing. DBD improved the water-holding capacity, nutritional components, and color of beef, and the ordered structure of beef protein could be improved by 6.25% at most. The plasma emission spectrum shows that the plasma produced by DBD is mainly active substances of nitrogen and oxygen, which can reduce the fat oxidation of thawed beef and improve the quality of beef. This work provides the theoretical basis and practical guidance for deeply understanding the influencing parameters and thawing mechanism of DBD thawing technology.
Collapse
Affiliation(s)
- Jie Zhang
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010051, China; (J.Z.); (Z.S.)
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; (R.Z.); (Y.Z.); (H.W.)
| | - Rui Zhao
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; (R.Z.); (Y.Z.); (H.W.)
| | - Yaming Zhang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; (R.Z.); (Y.Z.); (H.W.)
| | - Huixin Wang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; (R.Z.); (Y.Z.); (H.W.)
| | - Zhiqing Song
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010051, China; (J.Z.); (Z.S.)
| | - Ru Xing
- School of Physical Science and Technology, Baotou Teacher’s College, Baotou 014030, China;
| | - Jingli Lu
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; (R.Z.); (Y.Z.); (H.W.)
| | - Changjiang Ding
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010051, China; (J.Z.); (Z.S.)
| |
Collapse
|
7
|
E S, Gummadi SN. Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria. Crit Rev Microbiol 2024; 50:702-727. [PMID: 37861086 DOI: 10.1080/1040841x.2023.2271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the "farm-to-fork continuum". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.
Collapse
Affiliation(s)
- Suja E
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
8
|
Chen BR, Roobab U, Madni GM, Abdi G, Zeng XA, Aadil RM. A review of emerging applications of ultrasonication in Comparison with non-ionizing technologies for meat decontamination. ULTRASONICS SONOCHEMISTRY 2024; 108:106962. [PMID: 38943850 PMCID: PMC11261440 DOI: 10.1016/j.ultsonch.2024.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Meat is highly susceptible to contamination with harmful microorganisms throughout the production, processing, and storage chain, posing a significant public health risk. Traditional decontamination methods like chemical sanitizers and heat treatments often compromise meat quality, generate harmful residues, and require high energy inputs. This necessitates the exploration of alternative non-ionizing technologies for ensuring meat safety and quality. This review provides a comprehensive analysis of the latest advancements, limitations, and future prospects of non-ionizing technologies for meat decontamination, with a specific focus on ultrasonication. It further investigates the comparative advantages and disadvantages of ultrasonication against other prominent non-ionizing technologies such as microwaves, ultraviolet (UV) light, and pulsed light. Additionally, it explores the potential of integrating these technologies within a multi-hurdle strategy to achieve enhanced decontamination across the meat surface and within the matrix. While non-ionizing technologies have demonstrated promising results in reducing microbial populations while preserving meat quality attributes, challenges remain. These include optimizing processing parameters, addressing regulatory considerations, and ensuring cost-effectiveness for large-scale adoption. Combining these technologies with other methods like antimicrobial agents, packaging, and hurdle technology holds promise for further enhancing pathogen elimination while safeguarding meat quality.
Collapse
Affiliation(s)
- Bo-Ru Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551 Al‑Ain, United Arab Emirates.
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169 Iran.
| | - Xin-An Zeng
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
9
|
Kaavya R, Rajasekaran B, Shah K, Nickhil C, Palanisamy S, Palamae S, Chandra Khanashyam A, Pandiselvam R, Benjakul S, Thorakattu P, Ramesh B, Aurum FS, Babu KS, Rustagi S, Ramniwas S. Radical species generating technologies for decontamination of Listeria species in food: a recent review report. Crit Rev Food Sci Nutr 2024; 65:1974-1998. [PMID: 38380625 DOI: 10.1080/10408398.2024.2316295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Foodborne illnesses occur due to the contamination of fresh, frozen, or processed food products by some pathogens. Among several pathogens responsible for the illnesses, Listeria monocytogenes is one of the lethal bacteria that endangers public health. Several preexisting and novel technologies, especially non-thermal technologies are being studied for their antimicrobial effects, particularly toward L. monocytogenes. Some noteworthy emerging technologies include ultraviolet (UV) or light-emitting diode (LED), pulsed light, cold plasma, and ozonation. These technologies are gaining popularity since no heat is employed and undesirable deterioration of food quality, especially texture, and taste is devoided. This review aims to summarize the most recent advances in non-thermal processing technologies and their effect on inactivating L. monocytogenes in food products and on sanitizing packaging materials. These technologies use varying mechanisms, such as photoinactivation, photosensitization, disruption of bacterial membrane and cytoplasm, etc. This review can help food processing industries select the appropriate processing techniques for optimal benefits, in which the structural integrity of food can be preserved while simultaneously destroying L. monocytogenes present in foods. To eliminate Listeria spp., different technologies possess varying mechanisms such as rupturing the cell wall, formation of pyrimidine dimers in the DNA through photochemical effect, excitation of endogenous porphyrins by photosensitizers, generating reactive species, causing leakage of cellular contents and oxidizing proteins and lipids. These technologies provide an alternative to heat-based sterilization technologies and further development is still required to minimize the drawbacks associated with some technologies.
Collapse
Affiliation(s)
| | - Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Suguna Palanisamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - R Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Priyamavada Thorakattu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, KS, USA
| | - Bharathi Ramesh
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Fawzan Sigma Aurum
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
| | | | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
10
|
Bernardo YAA, Conte-Junior CA. Modeling and optimization of non-thermal technologies for animal-origin food decontamination. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:65-101. [PMID: 40023569 DOI: 10.1016/bs.afnr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Non-thermal technologies (NTT) have been primarily studied for obtaining animal-origin products with improved bacteriological stability, aiming to eliminate the main foodborne pathogens associated with outbreaks, e.g., Salmonella spp., Escherichia coli, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Bacillus spp., and Clostridium perfringens, but avoiding the use of heat, leading to energy savings. On the other hand, due to the novelty of these technologies, there is a lack of standardization in their use and, consequently, a reduction in the process efficiency and undesirable changes in the physicochemical, nutritional, and sensory characteristics of food. Therefore, there is a need to utilize mathematical approaches for developing the modeling, validation, and optimization of NTT aiming the pathogen inactivation. In this context, the Box-Behnken design (BBD) and the central composite rotatable design (CCRD) have been severely explored due to the possibility of developing second-order polynomial models based on the linear, quadratic and interaction behaviors of the independent variables, but with a lower number of experiments. In this chapter, we summarized the principles and fundamentals of pathogen inactivation using the main NTT, e.g., high-pressure processing (HPP), ultraviolet C radiation (UV-C), high-intensity ultrasound (HIUS), cold atmospheric plasma (CAP) and pulsed electric field (PEF), as well as the principles of use of BBD and CCRD and their recent application for modeling and optimization of the NTT.
Collapse
Affiliation(s)
- Yago A A Bernardo
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Hadinoto K, Niemira BA, Trujillo FJ. A review on plasma-activated water and its application in the meat industry. Compr Rev Food Sci Food Saf 2023; 22:4993-5019. [PMID: 37799092 DOI: 10.1111/1541-4337.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Meat is a nutritious food with a short shelf life, making it challenging to ensure safety, quality, and nutritional value. Foodborne pathogens and oxidation are the main concerns that lead to health risks and economic losses. Conventional approaches like hot water, steam pasteurization, and chemical washes for meat decontamination improve safety but cause nutritional and quality issues. Plasma-activated water (PAW) is a potential alternative to thermal treatment that can reduce oxidation and microbial growth, an essential factor in ensuring safety, quality, and nutritional value. This review explores the different types of PAW and their physiochemical properties. It also outlines the reaction pathways involved in the generation of short-lived and long-lived reactive nitrogen and oxygen species (RONS) in PAW, which contribute to its antimicrobial abilities. The review also highlights current studies on PAW inactivation against various planktonic bacteria, as well as critical processing parameters that can improve PAW inactivation efficacy. Promising applications of PAW for meat curing, thawing, and decontamination are discussed, with emphasis on the need to understand how RONS in PAW affect meat quality. Recent reports on combining PAW with ultrasound, mild heating, and non-thermal plasma to improve inactivation efficacy are also presented. Finally, the need to develop energy-efficient systems for the production and scalability of PAW is discussed for its use as a potential meat disinfectant without compromising meat quality.
Collapse
Affiliation(s)
- Koentadi Hadinoto
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Brendan A Niemira
- USDA-ARS, Eastern Regional Research Center, Food Safety and Intervention Technologies Unit, Wyndmoor, Pennsylvania, USA
| | - Francisco J Trujillo
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Mukhtar K, Nabi BG, Ansar S, Bhat ZF, Aadil RM, Khaneghah AM. Mycotoxins and consumers' awareness: Recent progress and future challenges. Toxicon 2023:107227. [PMID: 37454753 DOI: 10.1016/j.toxicon.2023.107227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
While food shortages have become an important challenge, providing safe food resources is a point of interest on a global scale. Mycotoxins are secondary metabolites that are formed through various fungi species. They are mainly spread through diets such as food or beverages. About one quarter of the world's food is spoiled with mycotoxins. As this problem is not resolved, it represents a significant threat to global food security. Besides the current concerns regarding the contamination of food items by these metabolites, the lack of knowledge by consumers and their possible growth and toxin production attracted considerable attention. While globalization provides a favorite condition for some countries, food security still is challenging for most countries. There are various approaches to reducing the mycotoxigenic fungi growth and formation of mycotoxins in food, include as physical, chemical, and biological processes. The current article will focus on collecting data regarding consumers' awareness of mycotoxins. Furthermore, a critical overview and comparison among different preventative approaches to reduce risk by consumers will be discussed. Finally, the current effect of mycotoxins on global trade, besides future challenges faced by mycotoxin contamination on food security, will be discussed briefly.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
13
|
Roobab U, Madni GM, Ranjha MMAN, Khan AW, Selim S, Almuhayawi MS, Samy M, Zeng XA, Aadil RM. Applications of water activated by ozone, electrolysis, or gas plasma for microbial decontamination of raw and processed meat. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1007967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
A raw or processed meat product can be a breeding ground for spoilage bacteria (Enterobacteriaceae, Lactobacillus spp., Pseudomonas spp., etc.). Failure of decontamination results in food quality loss and foodborne illnesses caused by pathogens such as Salmonella, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. Often, meat processors decontaminate the carcass using cheap chemicals or artificial antimicrobial agents not listed on the ingredient list, which is discouraged by health-conscious consumers. Foods with clean labels became more popular during the COVID-19 pandemic, which led consumers to choose healthier ingredients. Novel methods of controlling or improving meat safety are constantly being discovered. This review focuses on novel means of electrochemically activate water that is being investigated as a sanitizing agent for carcasses and processing area decontamination during production or at the end. Water can be activated by using non-thermal techniques such as ozonation, electrolysis, and cold plasma technologies. Recent studies showed that these activated liquids are powerful tools for reducing microbial activity in raw and processed meat. For instance, plasma-activated water can be used to enhance microbiological safety and avoid the negative effects of direct gaseous plasma on the organoleptic aspects of food products. In addition, electrolyzed water technology offers hurdle enhancement by combining with non-thermal strategies that have great potential. Ozonation is another way of activating water which provides a very convenient way to control microbiological safety and finds several recent applications as aqueous ozone for meat decontamination. These solutions are highly reactive and convenient for non-conventional applications in the meat industry related to food safety because of their antimicrobial or antiviral impact. The present review highlights the efficacy of activated-water decontamination of raw and processed meat via non-thermal solutions.
Collapse
|
14
|
Nonthermal Food Processing: A Step Towards a Circular Economy to Meet the Sustainable Development Goals. Food Chem X 2022; 16:100516. [DOI: 10.1016/j.fochx.2022.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
|
15
|
Kaur R, Kaur L, Gupta TB, Singh J, Bronlund J. Multitarget preservation technologies for chemical-free sustainable meat processing. J Food Sci 2022; 87:4312-4328. [PMID: 36120824 PMCID: PMC9825855 DOI: 10.1111/1750-3841.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023]
Abstract
Due to the growing consumer demand for safe and naturally processed meats, the meat industry is seeking novel methods to produce safe-to-consume meat products without affecting their sensory appeal. The green technologies can maintain the sensory and nutritive characteristics and ensure the microbial safety of processed meats and, therefore, can help to reduce the use of chemical preservatives in meat products. The use of chemical additives, especially nitrites in processed meat products, has become controversial because they may form carcinogenic N-nitrosamines, a few of which are suspected as cancer precursors. Thus, the objective of reducing or eliminating nitrite is of great interest to meat researchers and industries. This review, for the first time, discusses the influence of processing technologies such as microwave, irradiation, high-pressure thermal processing (HPTP) and multitarget preservation technology on the quality characteristics of processed meats, with a focus on their sensory quality. These emerging technologies can help in the alleviation of ingoing nitrite or formed nitrosamine contents in meat products. The multitarget preservation technology is an innovative way to enhance the shelf life of meat products through the combined use of different technologies/natural additives. The challenges and opportunities associated with the use of these technologies for processing meat are also reviewed.
Collapse
Affiliation(s)
- Ramandeep Kaur
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Lovedeep Kaur
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Tanushree B. Gupta
- AgResearch Ltd, Hopkirk Research InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Jaspreet Singh
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - John Bronlund
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
16
|
Wang LH, Chen L, Zhao S, Huang Y, Zeng XA, Aadil RM. Inactivation efficacy and mechanisms of atmospheric cold plasma on Alicyclobacillus acidoterrestris: Insight into the influence of growth temperature on survival. Front Nutr 2022; 9:1012901. [PMID: 36185645 PMCID: PMC9521650 DOI: 10.3389/fnut.2022.1012901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
The bactericidal effect of dielectric barrier discharge-atmospheric cold plasma (DBD-ACP, 20, and 30 kV) against Alicyclobacillus acidoterrestris on the saline solution and apple juice was investigated. Results show that DBD-ACP is effective for the inactivation of A. acidoterrestris by causing significant changes in cell membrane permeability and bacterial morphology. The effect of culture temperatures on the resistance of A. acidoterrestris to DBD-ACP was also studied. A. acidoterrestris cells grown at 25°C had the lowest resistance but it was gradually increased as the culture temperature was increased (25-45°C) (p < 0.05). Moreover, results from Fourier transform infrared spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometer (GC-MS) analysis showed that the increase in the culture temperature can gradually cause the decreased level of cyclohexaneundecanoic acid in the cell membrane of A. acidoterrestris (p < 0.05). In contrast, cyclopentaneundecanoic acid, palmitic acid, and stearic acid showed an increasing trend in which the fluidity of the bacterial cell membrane decreased. This study shows a specific correlation between the resistance of A. acidoterrestris and the fatty acid composition of the cell membrane to DBD-ACP.
Collapse
Affiliation(s)
- Lang-Hong Wang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- College of Food Science and Technology and College of Life Sciences, Northwest University, Xi'an, China
| | - Lin Chen
- College of Food Science and Technology and College of Life Sciences, Northwest University, Xi'an, China
| | - Siqi Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanyan Huang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
| | - Xin-An Zeng
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|