1
|
Zhou Y, Jiang M, Li X, Shen K, Zong H, Lv Q, Shen B. Bibliometric and visual analysis of human microbiome-breast cancer interactions: current insights and future directions. Front Microbiol 2024; 15:1490007. [PMID: 39717276 PMCID: PMC11664440 DOI: 10.3389/fmicb.2024.1490007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
The composition of the gut microbiome differs from that of healthy individuals and is closely linked to the progression and development of breast cancer. Recent studies have increasingly examined the relationship between microbial communities and breast cancer. This study analyzed the research landscape of microbiome and breast cancer, focusing on 736 qualified publications from the Web of Science Core Collection (WoSCC). Publications in this field are on the rise, with the United States leading in contributions, followed by China and Italy. Despite this strong output, the centrality value of China in this field is comparatively low at ninth, highlighting a gap between the quantity of research and its global impact. This pattern is repetitively observed in institutional contributions, with a predominance of Western institutes among the top contributors, underscoring a potential research quality gap in China. Keyword analysis reveals that research hotspots are focused on the effect of microbiome on breast cancer pathogenesis and tumor metabolism, with risk factors and metabolic pathways being the most interesting areas. Publications point to a shift toward anti-tumor therapies and personalized medicine, with clusters such as "anti-tumor" and "potential regulatory agent" gaining prominence. Additionally, intratumor bacteria studies have emerged as a new area of significant interest, reflecting a new direction in research. The University of Helsinki and Adlercreutz H are influential institutions and researchers in this field. Current trends in microbiome and breast cancer research indicate a significant shift toward therapeutic applications and personalized medicine. Strengthening international collaborations and focusing on research quality is crucial for advancing microbiome and breast cancer research.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Lv
- Department of Breast Surgery and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
| | - Bairong Shen
- Department of Breast Surgery and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
2
|
Wang C, Qiu M, Wang S, Luo J, Huang L, Deng Q, Fang Z, Sun L, Gooneratne R. Gut-Microbiota-Derived Butyric Acid Overload Contributes to Ileal Mucosal Barrier Damage in Late Phase of Chronic Unpredictable Mild Stress Mice. Int J Mol Sci 2024; 25:12998. [PMID: 39684708 DOI: 10.3390/ijms252312998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Intestinal mucosal barrier damage is regarded as the critical factor through which chronic unpredictable mild stress (CUMS) leads to a variety of physical and mental health problems. However, the exact mechanism by which CUMS induces intestinal mucosal barrier damage is unclear. In this study, 14, 28, and 42 d CUMS model mice were established. The indicators related to ileal mucosal barrier damage (IMBD), the composition of the ileal microbiota and its amino acid (AA) and short-chain fatty acid (SCFA) metabolic functions, and free amino acid (FAA) and SCFA levels in the ileal lumen were measured before and after each stress period. The correlations between them are analyzed to investigate how CUMS induces intestinal mucosal barrier damage in male C57BL/6 mice. With the progression of CUMS, butyric acid (BA) levels decreased (14 and 28 d) and then increased (42 d), and IMBD progressively increased. In the late CUMS stage (42 d), the degree of IMBD is most severe and positively correlated with significantly increased BA levels (p < 0.05) in the ileal lumen and negatively correlated with significantly decreased FAAs, such as aspartic, glutamic, alanine, and glycine levels (p < 0.05). In the ileal lumen, the abundance of BA-producing bacteria (Muribaculaceae, Ruminococcus, and Butyricicoccus) and the gene abundance of specific AA degradation and BA production pathways and their related enzymes are significantly increased (p < 0.05). In addition, there is a significant decrease (p < 0.05) in the abundance of core bacteria (Prevotella, Lactobacillus, Turicibacter, Blautia, and Barnesiella) that rely on these specific AAs for growth and/or are sensitive to BA. These changes, in turn, promote further colonization of BA-producing bacteria, exacerbating the over-accumulation of BA in the ileal lumen. These results were validated by ileal microbiota in vitro culture experiments. In summary, in the late CUMS stages, IMBD is related to an excessive accumulation of BA caused by dysbiosis of the ileal microbiota and its overactive AA degradation.
Collapse
Affiliation(s)
- Chen Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mei Qiu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuo Wang
- College of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
| | - Jinjin Luo
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ling Huang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhijia Fang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lijun Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| |
Collapse
|
3
|
Yang C, Wu J, Yang L, Hu Q, Li L, Yang Y, Hu J, Pan D, Zhao Q. Altered gut microbial profile accompanied by abnormal short chain fatty acid metabolism exacerbates nonalcoholic fatty liver disease progression. Sci Rep 2024; 14:22385. [PMID: 39333290 PMCID: PMC11436816 DOI: 10.1038/s41598-024-72909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Dysregulation of the gut microbiome has associated with the occurrence and progression of non-alcoholic fatty liver disease (NAFLD). To determine the diagnostic capacity of this association, we compared fecal microbiomes across 104 participants including non-NAFLD controls and NAFLD subtypes patients that were distinguished by magnetic resonance imaging. We measured their blood biochemical parameters, 16 S rRNA-based gut microbiota and fecal short-chain fatty acids (SCFAs). Multi-omic analyses revealed that NAFLD patients exhibited specific changes in gut microbiota and fecal SCFAs as compared to non-NAFLD subjects. Four bacterial genera (Faecalibacterium, Subdoligranulum, Haemophilus, and Roseburia) and two fecal SCFAs profiles (acetic acid, and butyric acid) were closely related to NAFLD phenotypes and could accurately distinguish NAFLD patients from healthy non-NAFLD subjects. Twelve genera belonging to Faecalibacterium, Subdoligranulum, Haemophilus, Intestinibacter, Agathobacter, Lachnospiraceae_UCG-004, Roseburia, Butyricicoccus, Actinomycetales_unclassified, [Eubacterium]_ventriosum_group, Rothia, and Rhodococcus were effective to distinguish NAFLD subtypes. Of them, combination of five genera can distinguish effectively mild NAFLD from non-NAFLD with an area under curve (AUC) of 0.84. Seven genera distinguish moderate NAFLD with an AUC of 0.83. Eight genera distinguish severe NAFLD with an AUC of 0.90. In our study, butyric acid distinguished mild-NAFLD from non-NAFLD with AUC value of 0.83. And acetic acid distinguished moderate-NAFLD and severe-NAFLD from non-NAFLD with AUC value of 0.84 and 0.70. In summary, our study and further analysis showed that gut microbiota and fecal SCFAs maybe a method with convenient detection advantages and invasive manner that are not only a good prediction model for early warning of NAFLD occurrence, but also have a strong ability to distinguish NAFLD subtypes.
Collapse
Affiliation(s)
- Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China.
| | - Jiale Wu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qiaosheng Hu
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, 223400, Jiangsu, China
| | - Lihua Li
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, 223400, Jiangsu, China
| | - Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Jing Hu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qing Zhao
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, 223400, Jiangsu, China
| |
Collapse
|
4
|
Ośko J, Nasierowska K, Grembecka M. Application of In Vitro Digestion Models in the Evaluation of Dietary Supplements. Foods 2024; 13:2135. [PMID: 38998641 PMCID: PMC11240933 DOI: 10.3390/foods13132135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nowadays, dietary supplements are a permanent part of our diet. Using various simulated in vitro digestive models, the bioavailability of dietary supplement ingredients has also been investigated. In most cases, static models are used instead of dynamic ones. This article focuses on the division of applications of in vitro methods, such as assessing the quality of dietary supplements (in chemical and pharmaceutical form), the impact of diet on the assessment of the bioavailability of product ingredients, the impact of supplement ingredients on the state of intestinal microflora, and the development of new products using various encapsulation methods. The review included publications from 2000 to 2024 showing the use of in vitro methods in dietary supplements containing polysaccharides, proteins, elements, vitamins, and bioactive substances, as well as probiotic and prebiotic products. The impact of components in dietary supplements on the human digestive tract and their degree of bioaccessibility were determined through the use of in vitro methods. The application of in vitro methods has also become an effective tool for designing new forms of dietary supplements in order to increase the availability and durability of labile ingredients in these products.
Collapse
Affiliation(s)
- Justyna Ośko
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland
| | - Katarzyna Nasierowska
- Student Scientific Circle, Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland
| |
Collapse
|
5
|
Calvete-Torre I, Sabater C, Villamiel M, Margolles A, Méndez-Albiñana P, Ruiz L, Hernandez-Hernandez O. Exploring the modulatory effect of trehalose-derived galactooligosaccharides on key gut microbiota groups. Int J Biol Macromol 2024; 273:133053. [PMID: 38857723 DOI: 10.1016/j.ijbiomac.2024.133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Trehalose (α-d-glucopyranosyl-(1-1)-α-D-glucopyranoside) has found applications in diverse food products as a sweetener, stabilizer, and humectant. Recent attention has focused on trehalose due to its contradictory effects on the virulence of Clostridium difficile. In this study, we investigate the impact of novel trehalose-derived galactooligosaccharides (Treh-GOS) on the human gut microbiota using in vitro fecal fermentation models. Distinct Treh-GOS structures elicit varying taxonomic responses. For instance, β-Gal-(1-4)-trehalose [DP3(1-4)] leads to an increase of Bifidobacterium, comparable to results observed with commercial GOS. Conversely, β-Gal-(1-6)-trehalose [DP3(1-6)] prompts an increase in Lactobacillus. Notably, both of these trisaccharides yield the highest concentrations of butyric acid across all samples. On the other hand, Treh-GOS tetrasaccharide mixture (DP4), featuring a novel trehalose galactosylation in both glucose units, fosters the growth of Parabacteroides. Our findings underscore the capacity of novel Treh-GOS to modulate the human gut microbiota. Consequently, these innovative galactooligosaccharides emerge as promising candidates for novel prebiotic applications.
Collapse
Affiliation(s)
- Ines Calvete-Torre
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Madrid, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Pablo Méndez-Albiñana
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Madrid, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | | |
Collapse
|
6
|
Lu S, Cheng D, Yao H, Wen Y, Yu Y, Li H, Wang J, Sun B. Cascade Microbial Metabolism of Ferulic Acid In Vitro Fermented by the Human Fecal Inoculum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9807-9817. [PMID: 38602350 DOI: 10.1021/acs.jafc.3c09782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Ferulic acid (FA), predominantly existing in most cereals, can modulate the gut microbiome, but the influences of its metabolites on the microbial population and FA-transforming microorganisms are still unclear. In this study, FA and its potential phenolic metabolites were fermented in vitro for 24 h with the human fecal inoculum. A comparable short chain fatty acid (SCFA) production trend was observed in the presence and absence of substrates, suggesting limited contribution of FA mechanism to SCFA formation. Dihydroferulic acid, 3-(3,4-dihydroxyphenyl)propionic acid, and 3-(3-hydroxyphenyl)propionic acid were ascertained to be successive metabolites of FA, by tracking the intermediate variation. FA remarkably promoted the absolute abundances of total bacteria, while different metabolites affected bacterial growth of selective genera. Specific genera were identified as quantitatively correlating to the content of FA and its metabolites. Ultimately, FA-mediated gut microbiota modulation involves both the action of metabolizing microbes and the regulation effects of metabolites on bacterial growth.
Collapse
Affiliation(s)
- Shiyi Lu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Danyang Cheng
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Hong Yao
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yonghui Yu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
7
|
Kaewarsar E, Chaiyasut C, Lailerd N, Makhamrueang N, Peerajan S, Sirilun S. Effects of Synbiotic Lacticaseibacillus paracasei, Bifidobacterium breve, and Prebiotics on the Growth Stimulation of Beneficial Gut Microbiota. Foods 2023; 12:3847. [PMID: 37893739 PMCID: PMC10606279 DOI: 10.3390/foods12203847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiota is a complex community of microorganisms that plays a vital role in maintaining overall health, and is comprised of Lactobacillus and Bifidobacterium. The probiotic efficacy and safety of Lacticaseibacillus paracasei and Bifidobacterium breve for consumption were confirmed by in vitro experiments. The survival rate of the probiotics showed a significant decline in in vitro gut tract simulation; however, the survival rate was more than 50%. Also, the probiotics could adhere to Caco-2 cell lines by more than 90%, inhibit the pathogenic growths, deconjugate glycocholic acid and taurodeoxycholic acid through activity of bile salt hydrolase (BSH) proteins, and lower cholesterol levels by over 46%. Regarding safety assessment, L. paracasei and B. breve showed susceptibility to some antibiotics but resistance to vancomycin and were examined as γ-hemolytic strains. Anti-inflammatory properties of B. breve with Caco-2 epithelial cell lines showed the significantly highest value (p < 0.05) for interleukin-10. Furthermore, probiotics and prebiotics (inulin, fructooligosaccharides, and galactooligosaccharides) comprise synbiotics, which have potential effects on the increased abundance of beneficial microbiota, but do not affect the growth of harmful bacteria in feces samples. Moreover, the highest concentration of short chain fatty acid was of acetic acid, followed by propionic and butyric acid.
Collapse
Affiliation(s)
- Ekkachai Kaewarsar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Netnapa Makhamrueang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Prebiotic Supplements on the Gastrointestinal Microbiota and Associated Health Parameters in Pigs. Animals (Basel) 2023; 13:3012. [PMID: 37835619 PMCID: PMC10572080 DOI: 10.3390/ani13193012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Establishing a balanced and diverse microbiota in the GIT of pigs is crucial for optimizing health and performance throughout the production cycle. The post-weaning period is a critical phase, as it is often associated with dysbiosis, intestinal dysfunction and poor performance. Traditionally, intestinal dysfunctions associated with weaning have been alleviated using antibiotics and/or antimicrobials. However, increasing concerns regarding the prevalence of antimicrobial-resistant bacteria has prompted an industry-wide drive towards identifying natural sustainable dietary alternatives. Modulating the microbiota through dietary intervention can improve animal health by increasing the production of health-promoting metabolites associated with the improved microbiota, while limiting the establishment and proliferation of pathogenic bacteria. Prebiotics are a class of bioactive compounds that resist digestion by gastrointestinal enzymes, but which can still be utilized by beneficial microbes within the GIT. Prebiotics are a substrate for these beneficial microbes and therefore enhance their proliferation and abundance, leading to the increased production of health-promoting metabolites and suppression of pathogenic proliferation in the GIT. There are a vast range of prebiotics, including carbohydrates such as non-digestible oligosaccharides, beta-glucans, resistant starch, and inulin. Furthermore, the definition of a prebiotic has recently expanded to include novel prebiotics such as peptides and amino acids. A novel class of -biotics, referred to as "stimbiotics", was recently suggested. This bioactive group has microbiota-modulating capabilities and promotes increases in short-chain fatty acid (SCFA) production in a disproportionally greater manner than if they were merely substrates for bacterial fermentation. The aim of this review is to characterize the different prebiotics, detail the current understating of stimbiotics, and outline how supplementation to pigs at different stages of development and production can potentially modulate the GIT microbiota and subsequently improve the health and performance of animals.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
9
|
Hashikura N, Murakami R, Sakurai T, Horigome A, Toda K, Xiao JZ, Odamaki T. Synbiotics of Bifidobacterium breve MCC1274 and lactulose enhances production of tryptophan metabolites in fermented human fecal communities. Food Res Int 2023; 163:112308. [PMID: 36596205 DOI: 10.1016/j.foodres.2022.112308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Probiotics and prebiotics have beneficial effects on host physiology via metabolites from the gut microbiota in addition to their own. Here, we used a pH-controlled single-batch fermenter as a human gut microbiota model. We conducted fecal fermentation with Bifidobacterium breve MCC1274 (probiotic), lactulose (prebiotic), or a combination of both (synbiotic) to evaluate their influence on the gut environment. Fecal inoculum without the probiotic and prebiotic was used as the control. Principal coordinate analysis (PCoA), based on the composition of gut microbiota, showed a significant difference among the groups. The relative abundance of Bifidobacterium was significantly higher in the synbiotic group, compared to that in the other three treatment groups. The relative abundance of Blautia was the highest in the control group among the four groups. CE-TOFMS and LC-TOFMS showed that the number of metabolites detected in the synbiotic group was the highest (352 in total); 29 of the 310 hydrophilic metabolites and 17 of the 107 lipophilic metabolites were significantly different among the four groups in the Kruskal-Wallis test. A clustering based on 46 metabolites indicated that tryptophan-metabolites such as indole-3-lactic acid (ILA), indole-3-ethanol, and indole-3-carboxaldehyde, were included in a sub cluster composed of metabolites enriched in the synbiotic group. Spermidine, a major polyamine, was enriched in the two groups supplemented with the probiotic whereas spermine was enriched only in the synbiotic group. Not all metabolites enriched in the probiotic and/or synbiotic groups were found in the monocultures of the probiotic strain with or without the prebiotics. This implies that some of the metabolites were produced through the interaction of the fecal microbiota with the inoculated probiotic strain. Co-abundance networking analysis indicated the differences in the correlations between the relative abundance of the fecal microbiota genus and the tryptophan metabolites in each group. There was a strong correlation between ldh4 gene abundance and ILA concentration in the fecal fermentation. The copy number of ldh4 gene was significantly higher in the groups with the probiotic than that in the control group. In conclusion, synbiotics could enhance the production of signaling molecules in the gut environment. Our results provide an insight into more effective administration of probiotics at the molecular level.
Collapse
Affiliation(s)
- Nanami Hashikura
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Ryuta Murakami
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Takuma Sakurai
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Ayako Horigome
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Kazuya Toda
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan.
| |
Collapse
|