1
|
Mohamed MYI, Khalifa HO, Habib I. Food Pathways of Salmonella and Its Ability to Cause Gastroenteritis in North Africa. Foods 2025; 14:253. [PMID: 39856919 PMCID: PMC11765101 DOI: 10.3390/foods14020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Infections caused by human pathogenic bacteria in food sources pose significant and widespread concerns, leading to substantial economic losses and adverse impacts on public health. This review seeks to shed light on the recent literature addressing the prevalence of Salmonella in the food supply chains of North African countries. Additionally, it aims to provide an overview of the available information regarding health-related concerns, such as virulence genes, and the presence of antibiotic resistance in Salmonella. This review highlights a gap in our comprehensive understanding of Salmonella prevalence in the food supply chains of North African nations, with limited molecular characterization efforts to identify its sources. Studies at the molecular level across the region have shown the diversity of Salmonella strains and their virulence profiles, thus, these results show the difficulty of controlling Salmonella infections in the region. In addition, the discussion of antibiotic resistance makes it clear that there is a need for the development of comprehensive strategies to fight the potential threat of antimicrobial resistance in Salmonella strains. Despite common reports on animal-derived foods in this region, this review underscores the persistent challenges that Salmonella may pose to food safety and public health in North African countries.
Collapse
Affiliation(s)
- Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| |
Collapse
|
2
|
Rahman MM, Hossain H, Chowdhury MSR, Hossain MM, Saleh A, Binsuwaidan R, Noreddin A, Helmy YA, El Zowalaty ME. Molecular Characterization of Multidrug-Resistant and Extended-Spectrum β-Lactamases-Producing Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Raw Meat in Retail Markets. Antibiotics (Basel) 2024; 13:586. [PMID: 39061268 PMCID: PMC11274296 DOI: 10.3390/antibiotics13070586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
In the present study, a total of 720 samples were collected from retail raw meat from 13 upazilas in Sylhet District, Bangladesh, of which 225 samples were from cattle meat, 210 samples were from goat meat, and 285 samples were from chicken meat. Salmonella enterica serovars Typhimurium and Enteritidis were screened for extended-spectrum β-lactamase (ESBL) genes using multiplex PCR. Among the 720 samples, Salmonella spp. was detected in 28.06% (202 out of 720) of the samples, with S. Enteritidis and S. Typhimurium were identified in 11.53% (83 out of 720) and 12.22% (88 out of 720) of the samples, respectively. It was found that all Salmonella enterica serovars isolated from cattle meat displayed multidrug resistance (MDR) based on antimicrobial susceptibility testing. Notably, a significant proportion of S. Enteritidis isolates and all S. Typhimurium isolates from goat meat demonstrated complete resistance to multiple drugs (ampicillin, cefuroxime, and ceftazidime). Regarding chicken meat, out of 89 isolates encompassing both S. Typhimurium and S. Enteritidis, 57 isolates (64.04%) exhibited MDR. Additionally, blaCTX-M-1 exhibited the highest occurrence at 15.69% for S. Typhimurium and 7.89% for S. Enteritidis in chicken meat. Moreover, blaCTX-M-9 was only detected at 3.92% for S. Enteritidis in chicken meat. Furthermore, blaOXA had the highest prevalence rate of 19.04% for S. Enteritidis and 25.80% for S. Typhimurium in cattle meat, followed by chicken meat. These findings highlight the urgency for monitoring ESBL-producing Salmonella in retail raw meat and the need for strict measure to manage antibiotic use to prevent the spread of multidrug-resistant and ESBL-producing Salmonella strains, thereby protecting humans and reducing public health risks.
Collapse
Affiliation(s)
- Md. Mahfujur Rahman
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; (M.S.R.C.); (M.M.H.)
| | - Hemayet Hossain
- Department of Anatomy and Histology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Md. Shahidur Rahman Chowdhury
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; (M.S.R.C.); (M.M.H.)
| | - Md. Mukter Hossain
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; (M.S.R.C.); (M.M.H.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.)
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.)
| | - Ayman Noreddin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City 3221405, Egypt
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed E. El Zowalaty
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City 3221405, Egypt
| |
Collapse
|
3
|
Sallam KI, Kasem NG, Abdelkhalek A, Elshebrawy HA. Extensively drug-, ciprofloxacin-, cefotaxime-, and azithromycin-resistant Salmonella enterica serovars isolated from camel meat in Egypt. Int J Food Microbiol 2024; 411:110538. [PMID: 38134580 DOI: 10.1016/j.ijfoodmicro.2023.110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Given the great importance of Salmonella as a leading foodborne pathogen of global concern and the few available data regarding its prevalence in camel meat, the present study aimed to determine the prevalence, antimicrobial resistance (AMR) profile, virulence genes, β-lactamase genes of Salmonella enterica serovars isolated from camel meat marketed in Egypt. Forty-five (29.6 %) of the 152 camel meat samples examined were positive for Salmonella spp. Among the 432 Salmonella presumptive colonies isolated, 128 were molecularly verified as Salmonella after confirmation by PCR targeting the Salmonella marker (invA) gene. Virulence genes, encompassing stn, spvC, and hilA genes, were detected in 91.4 % (117/128), 20.3 % (26/128), and 80.5 % (103/128) of the isolates, respectively. S. Enteritidis, S. Typhimurium, S. Cerro, and S. Montevideo were the most prevalent serovars with incidences of 25 % (32/128), 15.6 % (20/128), 15.6 % (20/128), and 12.5 % (16/128), respectively. Interestingly, 56.3 %, 53.1 %, 37.5 %, 28.1 %, 21.9 %, 18.8 %, 12.5 %, and 3.1 % of the isolates tested showed resistance to cefepime, ciprofloxacin, levofloxacin, cefotaxime, gentamicin, colistin, meropenem, and azithromycin, respectively. Salmonella isolates showed resistance to at least one antibiotic, with a mean multiple antibiotic resistance (MAR) index of 0.472. Interestingly, 59.4 %, 15.6 %, and 3.1 % of the isolates were categorized into multidrug-resistant, extensively drug-resistant, and pan-drug-resistant, respectively. Only 23 (25 %) of the 92 ampicillin-resistant isolates were proven to be Extended Spectrum Beta-Lactamase (ESBL)-producing Salmonella, in which β-lactamase (bla) genes were detected. The blaOXA-2 was the most existing gene where it was detected lonely in 10 of the ampicillin-resistant isolates and coexisted with blaCMY-1 in 4 isolates and with blaCMY-2 in a single isolate. The blaCMY-1, however, existed in 11 isolates, whereas the blaCMY-2 gene was only detected in 3 isolates tested. The present findings affirm that camel meat could be a leading reservoir for multi- and extensively-drug-resistance β-lactamase-producing Salmonella, representing a global public health challenge. Therefore, further research is necessary to detect the prevalence and AMR of Salmonella serovars from camel meat in Egypt and other countries to put camel meat as a source of Salmonella in foods of animal origin.
Collapse
Affiliation(s)
- Khalid Ibrahim Sallam
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Nahed Gomaa Kasem
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hend Ali Elshebrawy
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Peruzy MF, La Tela I, Carullo MR, Ioele S, Proroga YTR, Balestrieri A, Murru N. Occurrence and distribution of Salmonella serovars associated with human infection isolated from irrigation waters and food-producing animals in southern Italy: eleven-year monitoring (2011-2021). Ital J Food Saf 2023; 12:11538. [PMID: 38116371 PMCID: PMC10726394 DOI: 10.4081/ijfs.2023.11538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 12/21/2023] Open
Abstract
Salmonella is one of the main zoonotic agents causing foodborne diseases in Europe. The main reservoirs of the infection are represented by domestic and wild animals, and the infection occurs by direct contact or following the consumption of contaminated food or water. The study aimed to evaluate the presence of Salmonella spp. in food-producing animals and irrigation waters in southern Italy and the serovar distribution. From 2011 to 2021, a total of 473 samples from 6 different animal species (bovine, buffalo, goat, ovine, swine, poultry, and wild boars) and 313 irrigation water samples were collected and analyzed. The overall percentage of positive samples was 56.87% in organs, 50.85% in feces, and 20.45% in irrigation waters. By animal species, the most frequently detected serovar was Salmonella Typhimurium in bovine (17.39%), in buffalo (13.10%) and swine (28.21%), and S. Kentucky (24.78%) in poultry. The subspecies diarizonaeIIIb was frequently detected in goats (40.00%) and ovine (83.33%), while salamaeII (14.12%) and diarizonaeIIIb (11.76%) were frequently isolated in wild boars. In the irrigation water samples, the most frequently detected serovar was S. Napoli (25%). Results revealed that, although in Europe, control strategies aimed at preventing the spread of Salmonella have been implemented, the prevalence of this pathogen in food-producing animals and irrigation waters is high. Considering the risk to public health associated with the contamination of products or foods, more stringent control interventions are needed at primary production and along the food chain.
Collapse
Affiliation(s)
- Maria Francesca Peruzy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II
| | - Immacolata La Tela
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Maria Rosaria Carullo
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Simona Ioele
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | | | - Anna Balestrieri
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II
| |
Collapse
|
5
|
Mkangara M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8899596. [PMID: 37727836 PMCID: PMC10506869 DOI: 10.1155/2023/8899596] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Salmonella is a foodborne zoonotic pathogen causing diarrhoeal disease to humans after consuming contaminated water, animal, and plant products. The bacterium is the third leading cause of human death among diarrhoeal diseases worldwide. Therefore, human salmonellosis is of public health concern demanding integrated interventions against the causative agent, Salmonella enterica. The prevention of salmonellosis in humans is intricate due to several factors, including an immune-stable individual infected with S. enterica continuing to shed live bacteria without showing any clinical signs. Similarly, the asymptomatic Salmonella animals are the source of salmonellosis in humans after consuming contaminated food products. Furthermore, the contaminated products of plant and animal origin are a menace in food industries due to Salmonella biofilms, which enhance colonization, persistence, and survival of bacteria on equipment. The contaminated food products resulting from bacteria on equipment offset the economic competition of food industries and partner institutions in international business. The most worldwide prevalent broad-range Salmonella serovars affecting humans are Salmonella Typhimurium and Salmonella Enteritidis, and poultry products, among others, are the primary source of infection. The broader range of Salmonella serovars creates concern over multiple strategies for preventing and controlling Salmonella contamination in foods to enhance food safety for humans. Among the strategies for preventing and controlling Salmonella spread in animal and plant products include biosecurity measures, isolation and quarantine, epidemiological surveillance, farming systems, herbs and spices, and vaccination. Other measures are the application of phages, probiotics, prebiotics, and nanoparticles reduced and capped with antimicrobial agents. Therefore, Salmonella-free products, such as beef, pork, poultry meat, eggs, milk, and plant foods, such as vegetables and fruits, will prevent humans from Salmonella infection. This review explains Salmonella infection in humans caused by consuming contaminated foods and the interventions against Salmonella contamination in foods to enhance food safety and quality for humans.
Collapse
Affiliation(s)
- Mwanaisha Mkangara
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dar es Salaam, Tanzania
| |
Collapse
|
6
|
Al-Hindi RR, Alharbi MG, Alotibi I, Azhari SA, Algothmi KM, Esmael A. Application of a novel lytic Jerseyvirus phage LPSent1 for the biological control of the multidrug-resistant Salmonella Enteritidis in foods. Front Microbiol 2023; 14:1135806. [PMID: 37089535 PMCID: PMC10113451 DOI: 10.3389/fmicb.2023.1135806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Non-typhoidal Salmonella is the tremendously predominant source of acquired foodborne infection in humans, causing salmonellosis which is a global threat to the healthcare system. This threat is even worse when it is combined with the incidence of multidrug-resistant Salmonella strains. Bacteriophage therapy has been proposed as a promising potential candidate to control a diversity of foodborne infective bacteria. The objective of this study designed to isolate and characterize lytic phages infecting zoonotic multi-drug resistant and strong biofilm producer Salmonella enterica serovar Enteritidis EG.SmE1 and then apply the isolated phage/s as a biocontrol agent against infections in ready-to-eat food articles including milk, water, apple juice, and chicken breasts. One lytic phage (LPSent1) was selected based on its robust and stable lytic activity. Phage LPSent1 belonged to the genus Jerseyvirus within the Jerseyvirinae subfamily. The lysis time of phage LPSent1 was 60 min with a latent period of 30 min and each infected cell burst about 112 plaque-forming units. Phage LPSent1 showed a narrow host range. Furthermore, the LPSent1 genome did not encode any virulence or lysogenic genes. In addition, phage LPSent1 had wide pH tolerance, prolonged thermal stability, and was stable in food articles lacking its susceptible host for 48 h. In vitro applications of phage LPSent1 inhibited free planktonic cells and biofilms of Salmonella Enteritidis EG.SmE1 with a lower occurrence to form phage-resistant bacterial mutants which suggests promising applications on food articles. Application of phage LPSent1 at multiplicities of infections of 100 or 1000 showed significant inhibition in the bacterial count of Salmonella Enteritidis EG.SmE1 by 5 log10/sample in milk, water, apple juice, and chicken breasts at either 4°C or 25°C. Accordingly, taken together these findings establish phage LPSent1 as an effective, promising candidate for the biocontrol of MDR Salmonella Enteritidis in ready-to-eat food.
Collapse
Affiliation(s)
- Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khloud M. Algothmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Banha, Egypt
- Nebraska Center for Virology, University of Nebraska–Lincoln, Lincoln, NE, United States
| |
Collapse
|
7
|
Diab MS, Thabet AS, Elsalam MA, Ewida RM, Sotohy SA. Detection of Virulence and β-lactamase resistance genes of non-typhoidal Salmonella isolates from human and animal origin in Egypt "one health concern". Gut Pathog 2023; 15:16. [PMID: 36998086 PMCID: PMC10061834 DOI: 10.1186/s13099-023-00542-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) is a major foodborne zoonotic pathogen worldwide. In the current study, Various NTS strains were isolated from (cows, milk and dairy products in addition to humans) in New Valley and Assiut Governorate, Egypt. NTS were firstly serotyped and tested by antibiotic sensitivity test. Secondly, some virulence genes and Antibiotic resistance genes have been identified by using PCR. Finally, Phylogenesis was performed depending on the invA gene, for two S. typhimurium isolates (one of animal origin and the other of human origin for evaluating zoonotic potential). RESULTS Out of 800 examined samples, the total number of isolates was 87 (10.88%), which were classified into 13 serotypes, with the most prevalent being S. Typhimurium and S. enteritidis. Both bovine and human isolates showed the highest resistance to clindamycin and streptomycin, with 90.80% of the tested isolates exhibiting MDR. The occurrence of the invA gene was 100%, while 72.22%, 30.56%, and 94.44% of the examined strains were positive for stn, spvC, and hilA genes, respectively. Additionally, blaOXA-2 was detected in 16.67% (6/ 36) of the tested isolates, while blaCMY-1 was detected in 30.56% (11of 36) of the tested isolates. Phylogenesis revealed a high degree of similarity between the two isolates. CONCLUSIONS The high occurrence of MDR strains of NTS in both human and animal samples with high degree of genetic similarity, shows that cows, milk and milk product may be a valuable source of human infection with NTS and interfere with treatment procedures.
Collapse
Affiliation(s)
- Mohamed S. Diab
- grid.252487.e0000 0000 8632 679XDepartment of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Asmaa S. Thabet
- Assiut Lab., Animal Health Research Institute, ARC, Asyut, Egypt
| | | | - Rania M. Ewida
- grid.252487.e0000 0000 8632 679XDepartment of Food Hygiene (Milk Hygiene), Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Sotohy A. Sotohy
- grid.252487.e0000 0000 8632 679XDepartment of Animal, Poultry and Environmental Hygiene, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| |
Collapse
|
8
|
Oh H, Yoon Y, Yoon JW, Oh SW, Lee S, Lee H. Salmonella Risk Assessment in Poultry Meat from Farm to Consumer in Korea. Foods 2023; 12:foods12030649. [PMID: 36766177 PMCID: PMC9914641 DOI: 10.3390/foods12030649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
This study predicted Salmonella outbreak risk from eating cooked poultry in various methods. The incidence of Salmonella in poultry meat and the environment from farm to home for consumption was investigated. To develop the predictive models, Salmonella growth data were collected at 4-25 °C during storage and fitted with the Baranyi model. The effects of cooking on cell counts in poultry meat were investigated. Temperature, duration, and consumption patterns were all searched. A simulation in @Risk was run using these data to estimate the probability of foodborne Salmonella disease. In farm, Salmonella was detected from only fecal samples (8.5%; 56/660). In slaughterhouses, Salmonella was detected from feces 16.0% (38/237) for chicken and 19.5% (82/420) for duck) and from carcasses of each step (scalding, defeathering, and chilling) by cross contamination. In chicken (n = 270) and duck (n = 205), Salmonella was detected in 5 chicken (1.9%) and 16 duck meat samples (7.8%). Salmonella contamination levels were initially estimated to be -3.1 Log CFU/g and -2.5 Log CFU/g, respectively. With R2 values between 0.862 and 0.924, the predictive models were suitable for describing the fate of Salmonella in poultry meat with of 0.862 and 0.924. The Salmonella was not detected when poultry meat cooks completely. However, if poultry meat contaminated with Salmonella were cooked incompletely, Salmonella remained on the food surface. The risk of foodborne Salmonella disease from poultry consumption after cooking was 3.0 × 10-10/person/day and 8.8 × 10-11/person/day in South Korea, indicating a low risk.
Collapse
Affiliation(s)
- Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Yohan Yoon
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Jang-Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul 02703, Republic of Korea
| | - Soomin Lee
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea
- Correspondence: (S.L.); (H.L.)
| | - Heeyoung Lee
- Food Standard Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Correspondence: (S.L.); (H.L.)
| |
Collapse
|
9
|
Jeamsripong S, Thaotumpitak V, Anuntawirun S, Roongrojmongkhon N, Atwill ER, Hinthong W. Molecular Epidemiology of Antimicrobial Resistance and Virulence Profiles of Escherichia coli, Salmonella spp., and Vibrio spp. Isolated from Coastal Seawater for Aquaculture. Antibiotics (Basel) 2022; 11:1688. [PMID: 36551345 PMCID: PMC9774326 DOI: 10.3390/antibiotics11121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The occurrence of waterborne antimicrobial-resistant (AMR) bacteria in areas of high-density oyster cultivation is an ongoing environmental and public health threat given the popularity of shellfish consumption, water-related human recreation throughout coastal Thailand, and the geographical expansion of Thailand's shellfish industry. This study characterized the association of phenotypic and genotypic AMR, including extended-spectrum β-lactamase (ESBL) production, and virulence genes isolated from waterborne Escherichia coli (E. coli) (n = 84), Salmonella enterica (S. enterica) subsp. enterica (n = 12), Vibrio parahaemolyticus (V. parahaemolyticus) (n = 249), and Vibrio cholerae (V. cholerae) (n = 39) from Thailand's coastal aquaculture regions. All Salmonella (100.0%) and half of V. cholerae (51.3%) isolates harbored their unique virulence gene, invA and ompW, respectively. The majority of isolates of V. parahaemolyticus and E. coli, ~25% of S. enterica subsp. enterica, and ~12% of V. cholerae, exhibited phenotypic AMR to multiple antimicrobials, with 8.9% of all coastal water isolates exhibiting multidrug resistance (MDR). Taken together, we recommend that coastal water quality surveillance programs include monitoring for bacterial AMR for food safety and recreational water exposure to water for Thailand's coastal water resources.
Collapse
Affiliation(s)
- Saharuetai Jeamsripong
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Varangkana Thaotumpitak
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saran Anuntawirun
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nawaphorn Roongrojmongkhon
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Woranich Hinthong
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| |
Collapse
|
10
|
New Strategies in Production and Product Quality Control of Fresh Meat. Foods 2022. [PMCID: PMC9601524 DOI: 10.3390/foods11203293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|